首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 948 毫秒
1.
Anarwia工艺处理猪场废水节能效果的研究   总被引:4,自引:1,他引:4  
分析比较了厌氧-加原水-间隙曝气(Anarwia)工艺、SBR(序批式反应器)以及厌氧-SBR工艺处理猪场废水的效果。比较三种工艺处理效果表明:厌氧-SBR工艺处理猪场废水,污染物去除效率低,出水污染物浓度高,不适于猪场废水的处理。Anarwia工艺处理效果与SBR工艺相当,污染物去除率高,出水COD和NH3-N浓度低。在此基础上,以一个日处理1200 t猪场废水处理工程为例,分析比较了Anarwia与SBR工艺的能耗。就能量消耗有关的工艺参数——污泥量和需氧量而言,Anarwia工艺分别比SBR工艺减少16.4%和95.9%,此外Anarwia工艺每天可产生2784 m3沼气。Anarwia工艺增加了废水提升能耗,但减少了曝气、污泥处理、滗水和搅拌的能耗,结果Anarwia工艺总电耗比SBR工艺低81.0%。Anarwia工艺产生的沼气用于发电能完全补偿消耗的能量,并有剩余。  相似文献   

2.
采用间歇曝气动态膜生物反应器(DMBR)处理不同盐度下的水产养殖废水,研究盐度对有机物降解和反硝化过程的影响。结果表明:当盐度在0~35g/L范围内,随着盐度的提高,由于盐度对微生物的抑制作用,在含盐条件下有机物降解和反硝化效率下降,间歇曝气动态膜生物反应器对水产养殖废水化学需氧量CODMn的去除率从89.5%下降到75.5%;出水总氮TN去除率从89.9%下降到74.4%。通过对有机物降解速率常数和反硝化速率常数的动力性模拟,CODMn降解速率常数和硝态氮NO3--N的降解速率常数随盐度的提高呈线性下降的趋势,其线性回归模型的决定系数分别为0.9838、0.9665。盐度对水产养殖废水反硝化过程的抑制作用要大于有机物降解过程。  相似文献   

3.
Luo  Ancheng  Zhu  Jun  Ndegwa  Pius M. 《Water, air, and soil pollution》2002,140(1-4):219-230
A feasibility study with three pre-conditioning times was carriedout to examine the effect of anaerobic pre-treatment on phosphorus removal by aeration. The results showed that solublephosphorus could be decreased from 120 mg L-1 to about40 mg L-1 within one-day aeration. However, soluble phosphorusconcentration was found not affected by pre-conditioning, butmore pH dependent. Anaerobic pre-treatment significantly increased the uptake of phosphorus by microbes indicated by theincrease in concentration of organic phosphorus fraction. The presence of a large proportion of inorganic insoluble phosphorusconsiderably eclipsed the biological removal of soluble phosphorus, which suggested that the solids/liquid separationbefore aeration could be important to improve the biologicaluptake of soluble phosphorus.  相似文献   

4.
The rate of nitrous oxide emission from a laboratory sequence batch reactor (SBR) wastewater treatment system using synthetic wastewater was measured under controlled conditions. The SBR was operated in the mode of 4 h for aeration, 3.5 h for stirring without aeration, 0.5 h for settling and drainage, and 4 h of idle. The sludge was acclimated by running the system to achieve a stable running state as chemical oxygen demand, NO2^-, NO3^-, NH4^+, pH, and N2O. indicated by rhythmic changes of total N, dissolved oxygen, Under the present experimental conditions measured nitrous oxide emitted from the off-gas in the aerobic and anaerobic phases, respectively, accounted for 8.6%-16.1% and 0-0.05% of N removed, indicating that the aerobic phase was the main source of N2O emission from the system. N2O dissolved in discharged water was considerable in term of concentration. Thus, measures to be developed for the purpose of reducing N2O emission from the system should be effective in the aeration phase.  相似文献   

5.
Solvents, greases, and rinse waters from routine vehicle maintenance contain heavy metals and volatile organic chemicals (VOCs). In Wisconsin, these fluids enter catch basins along with rinsing waters and are discharged to soil infiltration systems drainfields after mixing with domestic wastewaters in a septic tank. The purpose of this study was to monitor heavy metal and VOC removal and treatment in catch basins and septic tanks at four publicly-owned motor vehicle service stations (MVSS). Cadmium, chromium, and lead were found in catch basin wastewater, septic tank effluent, and septic tank sludge at concentrations ranging from 0.002–7.7 mg L?1. Lead was found in the highest concentration. The highest concentrations of metals were in septic tank sludge. Of the >50 VOCs scanned for in catch basin wastewater, septic tank effluent, and septic tank sludge samples, 29 were found in concentrations that exceeded analytical detection limits. Concentrations of detected VOCs ranged from 1.0–15,800 µg L?1 and the highest concentrations of VOCs were found in catch basin wastewater and septic tank sludge. Acetone, ethylbenzene, toluene, and xylenes were the most commonly found VOCs at all sampling locations. Thus, heavy metals and VOCs were not completely removed in catch basins and were discharged to septic tanks where removal occured possibly as these contaminants settled with solids in the sludge. The level of treatment was, however, inadequate and heavy metals and VOCs were discharged to drainfields.  相似文献   

6.
猪场废水常温短程硝化特性   总被引:1,自引:0,他引:1  
为实现短程脱氮处理高氨氮猪场废水,在非限制溶解氧条件下,采用序列式活性污泥法(SBR)工艺处理某猪场废水,考察了温度、氨氮质量浓度及曝气时间等因素对短程硝化特性的影响。试验结果表明,SBR工艺能够有效去除猪场废水中的氨氮,处理效果稳定,且全部试验过程均有短程硝化现象发生,短程硝化的实现为低化学需氧量(COD)、高质量浓度尿素废水处理工艺的优化奠定基础。当进水氨氮质量浓度在250 mg/L以下时,氨氮质量浓度和反应温度(即使其在15℃时)对氨氮去除效果和亚硝酸盐积累率影响不大,二者均在80%左右,长时间曝气并未对短程硝化造成影响;高质量浓度氨氮废水生物处理过程中,亚硝酸盐积累是游离氨(FA)和游离亚硝酸(FNA)共同抑制作用的结果。  相似文献   

7.
A novel biofilm reactor named as `rotating perforated tubes biofilm reactor' was used for treatment of synthetic wastewaterwith and without liquid phase aeration. Effects of major processvariables such as feed wastewater flow rate, COD concentration and loading rate, liquid phase aeration on the rate and extent ofCOD removal were investigated. Liquid phase aeration was provento be advantageous especially for high strength wastewaters at highCOD loading rates. Kinetics of COD removal was investigated andkinetic constants were determined by using the experimental data.An empirical design equation was developed to quantify the system's performance as a function of major process variables.  相似文献   

8.
为探讨地下穴贮滴灌条件下根际注气对干旱区葡萄根际土壤化学性质、细菌多样性及群落结构影响。该研究以3a箱栽‘红地球’葡萄为试验材料,以自行设计的地下穴贮滴灌"水肥气"一体化设备作为注气装置,16S高通量基因组测序作为研究土壤细菌多样性及群落结构的关键技术手段。结果表明地下穴贮滴灌根际注气可有效提高土壤pH值,显著增加土壤速效磷(40~50 cm除外)和速效钾含量,促进土层深度20~30 cm土壤有机质分解;对氮磷钾相关菌属的分析表明,根际注气可促进与硝化作用相关的亚硝化螺菌属,磷钾代谢相关的假单胞菌属、芽孢杆菌属,抑制与反硝化相关的罗尔斯通菌属,表明加气灌溉能促进植株对氮磷钾的吸收与能提高硝化作用、解磷解钾相关菌群数量有关。chao1、shannon指数分析表明地下穴贮滴灌根际注气可有效改变细菌群落丰度,但对细菌群落多样性影响较小;对于细菌门,注气处理增加了放线菌门和硝化螺旋菌门的丰度,其中在40~50 cm土层注气处理放线菌门和硝化螺旋菌门分别比未注气高16.7%与22.7%,达到极显著水平;典型相关分析及相关分析表明,地下穴贮滴灌注气条件下土壤pH值、速效磷和硝酸盐含量是影响细菌群落结构的重要指标。该研究结果可为干旱区地下穴贮滴灌条件下科学合理注气提供理论依据。  相似文献   

9.
为了满足农村多用户化粪池联用处理要求,对单独净化槽进行了改造。将原有的两级厌氧一级好氧工艺改为一级厌氧两级好氧工艺,提高净化过程的生物处理能力。针对这种新型净化槽,调查了不同曝气量下的生活污水净化能力,分别测定了各区出水水质COD、BOD5、NH3-N和浊度的变化情况。实验表明,一级好氧和二级好氧中的溶解氧随着曝气量的不断增加表现出先快速增加,然后缓慢增加,最后又快速增加的特点。在曝气量均为1.8L·min^-1时,一级和二级好氧区溶解氧分别为2.4mg·L^-1和3.1mg·L^-1.出水COD、BODs、NH3-N和浊度分别为23、13、7.6mg·L^-1和9NTU。若再增加曝气量,出水水质变化将趋缓,因二级好氧区生物降解的底物浓度较低,已成为主要的控制因素,所以基于能耗的考虑,曝气量的优化就变得更为重要。  相似文献   

10.
Zou  Juan  Guo  Xuesong  Han  Yunping  Liu  Junxin  Liang  Hanwen 《Water, air, and soil pollution》2012,223(2):889-900
Constructed wetlands are recognized as a reliable technology for rural wastewater treatment. However, conventional constructed wetlands face problems with low pollutant removal efficiency and limited oxygen transfer capability. Therefore, a novel vertical flow constructed wetland (VFCW) system with drop aeration was developed in this study. Two pilot-scale vertical flow constructed wetlands of 0.75 m2 each were constructed with the same dimensions and configuration but different media, one of which (named as CW1) was filled with a 1:1 mixture (by weight) of zeolite and dolomite and the other (named as CW2) with the same zeolite only. The oxygen transfer capability of a multilevel two-layer drop aeration device, organics and nitrogen removal of CW1 and CW2, and pollutant distribution along the depths of CW1 and CW2 in different operational phases were studied. The results demonstrated that compared with the direct drop aeration process, the multilevel, two-layer drop aeration device supplied 2–6 mg/L higher dissolved oxygen per meter of drop height, and after installation of the six-level, two-layer drop aeration devices, the 5-day biochemical oxygen demand removal load was improved from 8.1 to 14.2 g m−2 day−1 for CW1. With regard to the different filter media, nitrogen removal was improved by the adsorption of zeolite in the first year, with 5–36% higher NH4+–N removal efficiency of CW2 compared with that in CW1. Since it did not have a significant positive effect on phosphate removal, dolomite can be replaced by zeolite. The chemical oxygen demand removal mainly took place in the upper 15-cm filter layer in different operational phases, while nitrogen distribution along the depths of the VFCWs was different in different operational phases. In addition, as no operational problems occurred, the vertical flow constructed wetland system with drop aeration is an appropriate alternative for rural wastewater treatment, with numerous advantages of low capital and operation costs, no energy consumption, easy maintenance, high hydraulic loading rate, high pollutant removal efficiency, and no clogging.  相似文献   

11.
Hydrocarbons emissions were measured from an aerationtank of a municipal wastewater treatment pilot plant. The collected off-gas samples werecharacterised for C2–C7 hydrocarbons usingGC-FID analytical technique while the total volatileorganic compounds (TVOC) were measured using acontinuous hydrocarbon gas analyser. Approximately,the estimated emission rates for 1 m3 of wastewaterfrom this aeration tank were 5 mgC of C2–C7hydrocarbons, and an average of 7 gC of TVOC. Withexception to toluene, all other measured hydrocarbonsare emitted less than 1 mgC day-1. The results supportthe view that a significant reduction in annualemissions of hydrocarbons from wastewater treatmentplants in Vienna has taken place.  相似文献   

12.
以造纸废弃物白泥作为pH调节剂,利用MAP沉淀法回收厌氧消化液中的氮磷,并采用曝气的方式提高消化液pH值和造纸白泥的溶解性,研究了造纸白泥的添加量和曝气时间对厌氧消化液中氮、磷回收效果的影响,并考察了曝气过程中pH、COD、PO34--P、NH3-N、Mg2+、Ca2+的变化规律。结果表明造纸白泥的添加量为8g.L-1,曝气时间为120min时,PO34--P和NH3-N的回收率分别达到98和59,出水的PO34--P和NH3-N浓度分别为0.98mg.L-1和60.66mg.L-1,均达到了《畜禽养殖业污染物排放标准》(GB18596—2001)的要求,同时,COD的去除率为45;如果仅用曝气方式处理,120min后PO34--P和NH3-N的回收率仅分别为66和41,均未达到排放标准要求。可见,与仅用曝气方式处理相比,添加造纸白泥协同曝气对厌氧消化液中氮磷的回收有明显的效果。  相似文献   

13.
采取现场试验方法,在不同季节测定了6个各种有10棵海寿植物的水培净化槽(曝气、非曝气各设3个平行)中植物叶片的叶绿素(Chl)、可溶性蛋白(SP)含量与植物根组织过氧化物酶(POD)、过氧化氢酶(CAT)活性及对应的净化槽出水水质,测定了植物根、茎、叶的长度,植物分蘖数、根密度,植株氮磷积累、生物量等生物学指标,比较研究了不同季节连续曝气下海寿的生理响应及净水效果。结果表明,曝气影响植物的生理特性,植物根、茎、叶的长度分别较非曝气槽中植物短,叶片Chla、Chlb、SP含量分别较非曝气槽中植物叶片低,而根组织POD、CAT活性分别较非曝气槽中植物根组织高,曝气槽中植株的氮磷含量、生物量分别较非曝气槽中植株低,曝气槽中植物的分蘖数、根密度分别高于非曝气槽中植物;曝气槽出水中TN、NHg—N去除效率较非曝气槽出水高,而TP、溶P去除效率较非曝气槽出水低;曝气对植物生理特性的影响与植物的生长状况密切相关,春、夏季曝气对植物的影响较小,但两类净化槽的水质差异较明显,秋季曝气对植物的影响较大,两类净化槽的水质差异较小。  相似文献   

14.
Analysis for sixteen types of Polycyclic Aromatic hydrocarbons (PAHs)from samples of raw and treated wastewater, sediments, sludge andplants growing along treated wastewater way was performed inOctober 1997. The collection sites represent two wastewatertreatment plants (WWTP) receiving different types of wastewaterand one site from disposal of raw wastewater in the city ofKarak in southern Jordan.Wastewater treatment efficiency showed removal of PAHs throughsettling tanks and adsorption on sediments after treatment. Theremoval percentage ranged from 44–100% for individual PAH.PAHs were widely distributed at various levels in rawwastewater, treated wastewater, sludge, sediments and plants.The highest concentration was observed in sludge and the lowestin plants. There was a variation in PAHs concentration betweenthe three investigated sites which was attributed to theefficiency of treatment, period of contact with the wastewater,and the nature of activities. The WWTPs were capable or reducingPAHs contamination in water, up to 40% of the total PAHs byadsorption on sludge and sediments.  相似文献   

15.
采用不同曝气位置的上向流生物滤池处理对虾养殖污水,连续运行30d,分析出水水质,并观察系统运行情况和装置污染状况。考察了对虾养殖污水中化学需氧量、氨氮、硝酸盐氮、亚硝酸盐氮、无机氮及活性磷酸盐6项指标的去除效果。结果表明:从养殖污水主要污染物指标的去除效果上看,中下部曝气生物滤池(MUBAF)要优于底部曝气生物滤池(BUBAF)。在系统进水化学需氧量质量浓度为7.62~8.20mg·L-1,氨氮质量浓度为0.62~0.65mg·L-1,硝酸盐氮质量浓度为0.54~0.59mg·L-1,亚硝酸盐氮质量浓度为0.23~0.27mg·L-1,无机氮质量浓度为1.40~1.47mg·L-1,活性磷酸盐质量浓度为0.24~0.29mg·L-1,水温为25℃~30℃时,中下部曝气生物滤池对养殖污水中6项指标的去除率分别为45.2%、88.9%、58.5%、78.8%、75.3%和25.1%。可见,对氨氮的去除效果最佳,亚硝酸盐氮和无机氮次之,化学需氧量和硝酸盐氮的去除效果较差,活性磷酸盐去除率最低。总体而言,曝气生物滤池在水产养殖污水应用中处理效果明显,具有可行性和实用性。  相似文献   

16.
This paper presents the results of using a pilot-scale-constructed wetland as a tertiary system to simulate the treatment conditions of wastewater effluents from the metal-mechanical industry, aiming to achieve the Brazilian legal standards of phosphorus and nitrogen emission. The macrophytes were placed in 1 m3 polyethylene tanks, daily estimating the treatment of 2 m3 of effluents. The effluents were circulated in a horizontal subsurface flow through a porous matrix of thick sand and gravel, in which the roots of the macrophytes of the species Reed (Scirpus sp.) and Cattail (Typha sp.) were fixed. Monitoring of the pilot plant was performed through a battery of physical?Cchemical and biological analyses. Despite the load variations and operational problems, the system presented a positive degree of pollutant efficiency removal, especially for phosphorus (73% medium), TKN (61% medium), and NH4?CN (56% medium). Peak results were achieved during the last 3 months of monitoring. The chemical analysis of the support layer, plus the root system and aerial portion of the plants, revealed that these wastes could be used as fertilizer.  相似文献   

17.
In this study, the N2O emission from an intermittently aerated sequencing batch reactor (IASBR-1) treating the separated liquid fraction of anaerobically digested pig manure (SLAP) was investigated. The wastewater had chemical oxygen demand (COD) concentrations of 11,540?±?860?mg?l?1, 5-day biochemical oxygen demand (BOD5) concentrations of 2,900?±?200?mg?l?1and total nitrogen concentrations of 4,041?±?59?mg?l?1, with low COD:N ratios (2.9, on average) and BOD5:N ratios (0.72, on average). Synthetic wastewater, simulating the SLAP with similar COD and nitrogen concentrations but with higher BOD5 concentrations of up to 11,500?±?100?mg?l?1, was treated in another identical reactor (IASBR-2) to compare the effects of carbon source on nutrient removals and N2O emissions. In steady-state, soluble N2O accumulated in the non-aeration periods, with the highest N2O concentrations measured at the end of the non-aeration periods. There was a significant reduction in N2O concentrations during the aeration periods with reductions occurring immediately on commencement of aeration. The mean N2O emissions in an operational cycle were 253.6 and 205.3?mg for IASBR-1 and IASBR-2, respectively. During the non-aeration periods, only 8.3% and 8.4% of total N2O emissions occurred in IASBR-1 and IASBR-2, respectively; while during the aeration periods, 91.7% and 91.6% of N2O emissions took place in IASBR-1 and IASBR-2, respectively. The mean specific N2O generation rates were 0.010 and 0.005?mg (g VSS·min)?1 in the aeration periods, 0.024 and 0.021?mg (g VSS·min)?1 in the non-aeration periods for IASBR-1 and IABSR-2, respectively. Mean nitrogen removal via N2O emissions was 15.6% and 10.1% for IASBR-1 and IASBR-2, respectively. The IASBR-1 with low influent BOD5 concentrations emitted and generated more N2O.  相似文献   

18.
A study of physicochemical and biological treatment of pharmaceutical wastewater by the activated sludge process was performed in an oxidation ditch. The physicochemical study using different coagulants revealed that all the coagulants used are not effective and their doses required were very high for COD reduction. In the biological oxidation study, it was found that the wastewater could be processed at all organic loadings and phenol concentrations encountered in wastewater. The yield coefficient and decay coefficient were 0.75 (COD basis) and 0.01 day?1 (COD basis), respectively.  相似文献   

19.
Plants can play an important role in wastewater treatment and water reuse in terrestrial and space systems. Chive growth in biologically treated graywater, simulating the anticipated early planetary base graywater, was evaluated in this study for NASA. Phytotoxicity due to physiochemical parameters such as ammonium-nitrogen (NH4 +-N), nitrite-nitrogen (NO2 ?-N), pH, and sodium (Na+) was assessed using a series of hydroponic experiments in an environmentally controlled growth chamber. Nitrification in wastewater was observed in all graywater treatments, which converted NO2 ?-N (a toxic form of nitrogen) and NH4 +-N (toxic at high concentrations) to nitrate-nitrogen (NO3 ?-N) (preferred N form for plant uptake). Irrespective of the increase in the NO3 -N concentration due to nitrification, chives in the wastewater treatments typically had poor or no growth. The high levels of Na+ present in the graywater treatments affected potassium uptake and may have affected other nutrient uptake. The impact of nitrification on wastewater pH and NO2 ?-N toxicity is believed to be the critical factor affecting chive growth and may hinder the use high nitrogen waste streams for plant growth unless NO2 ?-N concentrations are controlled during biological treatment of graywater.  相似文献   

20.
A new scientific apparatus and method are proposed for determining biological stability by oxygen uptake (respiration index, RI), on municipal solid waste (MSW) and derived products. For measuring the RI, a dynamic approach (with continuous aeration) was demonstrated to be more effective than the static approach (without aeration). The validity of the method was tested by comparing carbon losses calculated using both respirometric (carbon lossesresp) and analytical data (carbon lossesanal) during four trials performed on MSW and products derived from it. Carbon losses (expressed as g kg?1Ci, in which Ci represents initial carbon content) were: 219.0 and 248.0, 67.9 and 57.1, 39.6 and 36.4, and 250.7 and 280.3, using respirometric and analytical data alternately for Trials 1,2,3, and 4. The comparison between respirometric data using continuous or no aeration showed, for the latter, an underestimation of RI of between 70% and 90% that was more evident for unstable biomass leading to more similar values when stabilization occurred. The scientific apparatus proposed made it possible to measure oxygen uptake under autothermal conditions and avoid problems connected with the use of a preset temperature, biomass temperature being a consequence of the microbial activity, as is also suggested by the significant linear regression of T versus RI (R2 = 0.84, 0.73, 0.82, and 0.90 for the four trials, respectively). The methods proposed could be used with advantage in the future for biological stability measurements, above all for heterogeneous material such as MSW and its products, thus obtaining respirometric data that better reflect what happens during an aerobic process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号