首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
A novel angiotensin I-converting enzyme (ACE) inhibitory peptide (RMLGQTPTK; 9mer) from porcine skeletal troponin C was investigated for its inhibitory profile. This peptide was noncompetitive and as hydrophobic as the known ACE inhibitory peptides. Aminopeptidase M quickly hydrolyzed 9mer, resulting in production of MLGQTPTK and LGQTPTK with inhibitory activities similar to those of 9mer. The main hydrolysis product of 9mer with carboxypeptidase A and B was RMLGQTPT showing very weak activity. Most products derived from 9mer hydrolysis by ACE, aminopeptidase, or carboxypeptidase showed weak but definite ACE inhibitory activities. Thus, 9mer was estimated to be a wholly efficient inhibitor with these fragment peptides.  相似文献   

2.
Angiotensin I converting enzyme (ACE) inhibitory activity was determined in the soy protein isolate (SPI) digest produced by in vitro pepsin-pancreatin sequential digestion. The inhibitory activity was highest within the first 20 min of pepsin digestion and decreased upon subsequent digestion with pancreatin. An IC(50) value of 0.28 +/- 0.04 mg/mL was determined after 180 min of digestion, while no ACE inhibitory activity was measured for the undigested SPI at 0.73 mg/mL. Chromatographic fractionation of the SPI digest resulted in IC(50) values of active fractions ranging from 0.13 +/- 0.03 to 0.93 +/- 0.08 mg/mL. Although many of the fractions showed ACE inhibition, peptides with lower molecular masses and higher hydrophobicities were most active. The findings show that many different peptides with ACE inhibitory activities were produced after in vitro pepsin-pancreatin digestion of SPI and lead to the speculation that physiological gastrointestinal digestion could also yield ACE inhibitory peptides from SPI.  相似文献   

3.
Angiotensin-I-converting enzyme (ACE) inhibitory activity was identified in milk proteins fermented with Lactobacillus (Lb.) helveticus NCC 2765 (Nestle Culture Collection, Vers-chez-les-Blanc, Switzerland). Hydrolyzing sodium caseinate for 1 and 2 h inhibited ACE activity, as measured by an in vitro ACE inhibition test. The hydrolysates with the highest ACE inhibitory potential were fractionated by gel permeation chromatography and their low molecular weight fractions collected. These fractions were subsequently subfractionated by reverse-phase high-pressure liquid chromatography. Several hydrophobic subfractions showed high ACE inhibitory potential, and their peptide composition was determined using an ion trap mass spectrometer equipped with an elctrospray ionization source. Analysis of the low molecular weight fraction identified 14 peptides with known antihypertensive activity and 1 with previously described opioid activity. On the basis of the peptide composition of active subfractions, two potentially active novel sequences were defined, and the following synthetic peptides were synthesized: FVAPFPEVFG (alphaS1 39-48), ENLLRFFVAPFPEVFG (alphaS1 33-48), NENLLRFFVAPFPEVFG (alphaS1 32-48), LNENLLRFFVAPFPEVFG (alphaS1 31-48), NLHLPLPLL (beta 147-155), ENLHLPLPLL (beta 146-155), and VENLHLPLPLL (beta 145-155). The ACE inhibitory potential of these synthetic peptides was assessed, and IC50 values were determined. NLHLPLPLL (beta 147-155), which was the only synthetic peptide also present in the sodium caseinate hydrolysates, and NENLLRFFVAPFPEVFG (alphaS1 32-48) showed the highest inhibition of ACE activity, with IC50 values of 15 and 55 microM, respectively. Furthermore, the stability of all synthetic peptides was assessed using an in vitro model simulating gastric digestion. The beta-casein-derived peptides remained intact following the successive hydrolysis by pepsin and pancreatin, whereas alphaS1-casein-derived peptides were degraded by pepsin.  相似文献   

4.
Bovine skin gelatin was hydrolyzed with sequential protease treatments in the order of Alcalase, Pronase E, and collagenase using a three-step ultrafiltration membrane reactor. The molecular weight distributions of the first, second, and third hydrolysates were 4.8-6.6, 3.4-6.6, and 0.9-1.9 kDa, respectively. The angiotensin I converting enzyme (ACE) inhibitory activity of the third hydrolysate (IC(50) = 0.689 mg/mL) was higher than that of the first and second hydrolysates. Two different peptides showing strong ACE inhibitory activity were isolated from the hydrolysate using consecutive chromatographic methods including gel filtration chromatography, ion-exchange chromatography, and reversed-phase high-performance liquid chromatography. The isolated peptides were composed of Gly-Pro-Leu and Gly-Pro-Val and showed IC(50) values of 2.55 and 4.67 microM, respectively.  相似文献   

5.
Angiotensin converting enzyme (ACE) inhibitory peptides prepared from soy protein by the action of alcalase enzyme was tested for its hypotensive effect on spontaneously hypertensive rats (SHR). Captopril, an ACE inhibitor used widely for hypertension treatment, was also applied in comparison. A significant (p < 0.05) decrease in systolic blood pressure of SHR was observed when soy ACE inhibitory peptides were orally administrated at three different dose levels (100, 500, and 1000 mg/kg of body weight/day), whereas little change occurred in the blood pressure of normotensive rats even at the highest dose. After a month-long feeding, blood pressure readings of SHR fell by approximately 38 mmHg from the original level at the lowest dose; a steadily and progressively hypotensive effect existed for these soy ACE inhibitory peptides administration groups. An obvious fluctuation was observed at the third week, although Captopril had a stronger hypotensive effect. The ACE activity of serum, aorta and lung, and lipid content of serum of SHR upon administration of soy ACE inhibitory peptides did not show a significant difference from that of the control group, whereas the serum ACE activity increased and the aorta ACE activity decreased significantly (p < 0.05) for the Captopril group. Serum Na(+) concentration decreased significantly in both the peptides-treated groups and the Captopril-treated group in comparison with the control group, whereas no lowering effect was observed for serum K(+) and serum Ca(2+) concentrations. These results suggested that the hypotensive effect of ACE inhibitory peptides derived from soy protein could be at least partly attributed to the action on salt/water balance.  相似文献   

6.
Gastrointestinal digestion is of major importance in the bioavailability of angiotensin I converting enzyme (ACE) inhibitory peptides, bioactive peptides with possible antihypertensive effects. In this study, the conditions of in vitro gastrointestinal digestion leading to the formation and degradation of ACE inhibitory peptides were investigated for pea and whey protein. In batch experiments, the digestion simulating the physiological conditions sufficed to achieve the highest ACE inhibitory activity, with IC(50) values of 0.076 mg/mL for pea and 0.048 mg/mL for whey protein. The degree of proteolysis did not correlate with the ACE inhibitory activity and was always higher for pea than whey. In a semicontinuous model of gastrointestinal digestion, response surface methodology studied the influence of temperature and incubation time in both the stomach and small intestine phases on the ACE inhibitory activity and degree of proteolysis. For pea protein, a linear model for the degree of proteolysis and a quadratic model for the ACE inhibitory activity could be constituted. Within the model, a maximal degree of proteolysis was observed at the highest temperature and the longest incubation time in the small intestine phase, while maximal ACE inhibitory activity was obtained at the longest incubation times in the stomach and small intestine phase. These results show that ACE inhibitory activity of pea and whey hydrolysates can be controlled by the conditions of in vitro gastrointestinal digestion.  相似文献   

7.
酶解制备鱼鳞蛋白降血压肽的工艺优化   总被引:1,自引:0,他引:1  
涂丹  张益奇  叶繁  戴志远 《核农学报》2019,33(1):120-128
为有效利用鱼鳞制备降血压肽,以罗非鱼鱼鳞为原料,在121℃条件下进行热预处理15 min后,运用响应面分析法优化酶解制备鱼鳞蛋白ACE抑制肽的工艺条件。结果表明,以水解度和ACE抑制率为评价指标,筛选出碱性蛋白酶为最优酶。在单因素试验的基础上,根据Box-Behnken中心组合试验设计原理,最终确立最优的酶解工艺参数为:酶解时间2 h、酶解温度56.3℃、pH值8.0,酶底比1.1%,此条件下ACE抑制率理论值为87.95%,实际值为88.26%。最优条件下制得的酶解产物相对分子质量集中在300~3 000 Da之间,水解效果较好。本研究结果对酶解法制备鱼鳞蛋白降血压活性肽具有一定的实践参考价值。  相似文献   

8.
Defibrinated bovine plasma (DBP) was treated with the microbial protease Flavourzyme to obtain protein hydrolysates with various degrees of hydrolysis (DH). The angiotensin I-converting enzyme (ACE) inhibiting activity of the hydrolyzed protein was assessed with hippuryl-His-Leu as the substrate. The amount of hippuric acid released, due to uninhibited ACE activity, was determined by high-performance liquid chromatography. ACE inhibiting (ACEI) activity was found to increase with increasing DH; the 43% DH hydrolysate exhibited the highest activity and had an IC(50) of 1.08 mg/mL. Peptide fractions with high ACEI activity were isolated using size exclusion chromatography. The fraction that possessed the highest ACEI activity contained peptides with GYP, HL(I), HPY, HPGH, L(I)F, SPY, and YPH sequence motifs, as determined by reversed-phase liquid chromatography-tandem mass spectrometry using a novel immonium precursor-ion scanning technique. Some of these motifs correspond to sequences found in bovine serum albumin, a potential source of ACEI peptides in bovine plasma.  相似文献   

9.
Sunflower protein isolates and the proteases pepsin and pancreatin were used for the production of protein hydrolysates that inhibit angiotensin-I converting enzyme (ACE). Hydrolysates obtained after 3 h of incubation with pepsin and 3 h with pancreatin were studied. An ACE inhibitory peptide with the sequence Phe-Val-Asn-Pro-Gln-Ala-Gly-Ser was obtained by G-50 gel filtration chromatography and high-performance liquid chromatography C18 reverse phase chromatography. This peptide corresponds to a fragment of helianthinin, the 11S globulin from sunflower seeds, which is the main storage protein in sunflower. These results show that sunflower seed proteins are a potential source of ACE inhibitory peptides when hydrolyzed with pepsin and pancreatin.  相似文献   

10.
Alaska pollack frame protein, which is normally discarded as an industrial byproduct in the processing of fish in plants, was hydrolyzed with pepsin. This was fractionated into five major types of Alaska pollack frame protein hydrolysates (APH-I, 10-30 kDa; APH-II, 5-10 kDa; APH-III, 3-5 kDa; APH-IV, 1-3 kDa; and APH-V, below 1 kDa) using an ultrafiltration membrane bioreactor system. Angiotensin I converting enzyme (ACE) inhibitory activities of the fractionated hydrolysates were investigated, and the fraction that exhibited the highest ACE inhibitory activity was further purified using consecutive chromatographic methods on SP-Sephadex C-25 column, Sephadex G-25 column, and high-performance liquid chromatography (HPLC) on an octadecylsilane column. Finally, we purified a novel ACE inhibitory peptide with an IC50 value of 14.7 microM, and the sequence of the peptide was Phe-Gly-Ala-Ser-Thr-Arg-Gly-Ala. In addition, the ACE inhibition pattern of the peptide was found to be noncompetitive.  相似文献   

11.
To investigate a sourdough-specific peptide, low molecular weight peptides were extracted from sourdough. The peptide fraction was subjected to two kinds of chromatography to separate the peptides. Reverse-phase chromatography of the peptide fraction in the sourdough showed certain specific peptides. The specific peptide fraction was further separated by gel filtration chromatography. Liquid chromatography tandem mass spectrometry analysis identified one of the peptides as VPFGVG (six-mer). This sequence was estimated to occur at the 287-292 position of a low molecular weight glutenin subunit. The peptide (designed as SDP1) was produced by proteases derived from wheat flour. SDP1 showed angiotensin-converting enzyme (ACE) inhibitory activity, and the 50% inhibitory peptide concentration (IC50) was 336 microM. It is possible that the SDP1 peptide partially confers ACE inhibitory activity in sourdough.  相似文献   

12.
It has been reported that soybean peptide fractions isolated from Korean fermented soybean paste exert angiotensin I converting enzyme (ACE) inhibitory activity in vitro. In this study, further purification and identification of the most active fraction inhibiting ACE activity were performed, and its antihypertensive activity in vivo was confirmed. Subsequently, a novel ACE inhibitory peptide was isolated by preparative HPLC. The amino acid sequence of the isolated peptide was identified as His-His-Leu (HHL) by Edman degradation. The IC(50) value of the HHL for ACE activity was 2.2 microg/mL in vitro. Moreover, the synthetic tripeptide HHL (spHHL) resulted in a significant decrease of ACE activity in the aorta and led to lowered systolic blood pressure (SBP) in spontaneously hypertensive (SH) rats compared to control. Triple injections of spHHL, 5 mg/kg of body weight/injection resulted in a significant decrease of SBP by 61 mmHg (p < 0.01) after the third injection. These results demonstrated that the ACE inhibitory peptide HHL derived from Korean fermented soybean paste exerted antihypertensive activity in vivo.  相似文献   

13.
A selection of lactoferricin B (LfcinB)-related peptides with an angiotensin I-converting enzyme (ACE) inhibitory effect have been examined using in vitro and ex vivo functional assays. Peptides that were analyzed included a set of sequence-related antimicrobial hexapeptides previously reported and two representative LfcinB-derived peptides. In vitro assays using hippuryl-L-histidyl-L-leucine (HHL) and angiotensin I as substrates allowed us to select two hexapeptides, PACEI32 (Ac-RKWHFW-NH2) and PACEI34 (Ac-RKWLFW-NH2), and also a LfcinB-derived peptide, LfcinB17-31 (Ac-FKCRRWQWRMKKLGA-NH2). Ex vivo functional assays using rabbit carotid arterial segments showed PACEI32 (both D- and L-enantiomers) and LfcinB17-31 have inhibitory effects on ACE-dependent angiotensin I-induced contraction. None of the peptides exhibited in vitro ACE inhibitory activity using bradykinin as the substrate. In conclusion, three bioactive lactoferricin-related peptides exhibit inhibitory effects on both ACE activity and ACE-dependent vasoconstriction with potential to modulate hypertension that deserves further investigation.  相似文献   

14.
Naturally occurring ACE (angiotensin converting enzyme) inhibitory peptides have a potential as antihypertensive components in functional foods or nutraceuticals. These peptides have been discovered in various food sources from plant and animal protein origin. In this paper an overview is presented of the ACE inhibitory peptides obtained by enzymatic hydrolysis of muscle protein of meat, fish, and invertebrates. Some of these peptides do not only show in vitro ACE inhibitory activity but also in vivo antihypertensive activity in spontaneously hypertensive rats. To focus on new sources of ACE inhibitory peptides, more specifically insects and other invertebrates, we compared the vertebrate and invertebrate musculature and analyzed phylogenetic relationships.  相似文献   

15.
海洋生物ACE抑制肽研究进展   总被引:1,自引:0,他引:1  
血管紧张素转化酶(ACE)抑制肽是一类通过抑制ACE活性实现降压作用的多肽类物质。天然来源的ACE抑制肽具有安全性高、毒副作用小、可长期服用等优点,目前已经从陆源性植物蛋白、动物蛋白中发现了多种ACE抑制肽。海洋生物是一类重要的新型生物资源,含有大量的蛋白质类物质,通过降解可得到ACE抑制肽。本文运用生物信息学检索方法,对国内外主要海洋生物ACE抑制肽的研究进行了综述,主要从材料来源、降解酶、氨基酸序列以及IC50值4个方面重点介绍海洋鱼、虾、贝、藻等来源的ACE抑制肽,比较了其可能的区别和特征,并对海洋生物ACE抑制肽应用前景进行了展望,旨在为开发和利用海洋生物蛋白,促进海洋生物活性物质的研发提供指导。  相似文献   

16.
A lung extract rich in angiotensin converting enzyme (ACE) and pure ACE were immobilized by reaction with the activated support 4 BCL glyoxyl-agarose. These immobilized ACE derivatives were used for purification of ACE inhibitory peptides by affinity chromatography. The immobilized lung extract was used to purify inhibitory peptides from sunflower and rapeseed protein hydrolysates that had been obtained by treatment of protein isolates with alcalase. The ACE binding peptides that were retained by the derivatives were specifically released by treatment with the ACE inhibitor captopril and further purified by reverse-phase C18 HPLC chromatography. Inhibitory peptides with IC50 50 and 150 times lower than those of the original sunflower and rapeseed hydrolysates, respectively, were obtained. The derivative prepared using pure ACE was used for purification of ACE inhibitory peptides from the same type of sunflower protein hydrolysate. ACE binding peptides were released from the ACE-agarose derivatives by treatment with 1 M NaCl and had an IC50 a little higher than those obtained using immobilized extract and elution with captopril. Affinity chromatography facilitated the purification of ACE inhibitory peptides and potentially other bioactive peptides present in food proteins.  相似文献   

17.
The angiotensin converting enzyme (ACE)-inhibitory activity of several commercial fermented milks was evaluated. Most of these products showed moderate inhibitory activity, but a few exceptions were detected. The high ACE-inhibitory activity found in some cases could be related to the origin of the milk. Two of these products were subjected to an enzymatic hydrolysis process, which simulates physiological digestion, to study the influence of digestion on ACE-inhibitory activity. The activity did not significantly change or increase during simulated gastrointestinal digestion. The peptides generated from one selected product during simulated digestion were sequenced by tandem spectrometry. Most peptides found at the end of the simulated digestion were released after 30 min of incubation with the pancreatic extract. This suggests that physiological digestion promotes the formation of active peptides from the proteins present in these fermented products. The potential ACE-inhibitory activity of the identified peptides is discussed with regard to their amino acid sequences.  相似文献   

18.
In this project we report on the angiotensin I-converting enzyme (ACE)-inhibitory activity of a bovine gelatin hydrolysate (Bh2) that was submitted to further hydrolysis by different enzymes. The thermolysin hydrolysate (Bh2t) showed the highest in vitro ACE inhibitory activity, and interestingly a marked in vivo blood pressure-lowering effect was demonstrated in spontaneously hypertensive rats (SHR). In contrast, Bh2 showed no effect in SHR, confirming the need for the extra thermolysin hydrolysis. Hence, an angiotensin I-evoked contractile response in isolated rat aortic rings was inhibited by Bh2t, but not by Bh2, suggesting ACE inhibition as the underlying antihypertensive mechanism for Bh2t. Using mass spectrometry, seven small peptides, AG, AGP, VGP, PY, QY, DY and IY or LY or HO-PY were identified in Bh2t. As these peptides showed ACE inhibitory activity and were more prominent in Bh2t than in Bh2, the current data provide evidence that these contribute to the antihypertensive effect of Bh2t.  相似文献   

19.
Angiotensin I converting enzyme (ACE) inhibitory activity of hetero-chitooligosaccharides (hetero-COSs) prepared from partially different deacetylated chitosans was investigated. Partially deacetylated chitosans, 90, 75, and 50% deacetylated chitosan, were prepared from crab chitin by N-deacetylation with 40% sodium hydroxide solution for durations. In addition, nine kinds of hetero-COSs with relatively high molecular masses (5000-10 000 Da; 90-HMWCOSs, 75-HMWCOSs, and 50-HMWCOSs), medium molecular masses (1000-5000 Da; 90-MMWCOSs, 75-MMWCOSs, and 50-MMWCOSs), and low molecular masses (below 1000 Da; 90-LMWCOSs, 75-LMWCOSs, and 50-LMWCOSs) were prepared using an ultrafiltration membrane bioreactor system. ACE inhibitory activity of hetero-COSs was dependent on the degree of deacetylation of chitosans. 50-MMWCOSs that are COSs hydrolyzed from 50% deacetylated chitosan, the relatively lowest degree of deacetylation, exhibited the highest ACE inhibitory activity, and the IC(50) value was 1.22 +/- 0.13 mg/mL. In addition, the ACE inhibition pattern of the 50-MMWCOSs was investigated by Lineweaver-Burk plots, and the inhibition pattern was found to be competitive.  相似文献   

20.
The potential of hypoallergenic (HA) infant milk formulas containing hydrolyzed milk proteins as main constituents to inhibit angiotensin-converting enzyme (ACE) in vitro was investigated. Seven commercially available HA products designed for babies up to 4 months showed a potent inhibition of ACE in vitro, with IC 50 values ranging between 3.2 and 68.5 mg of nitrogen/L. For six samples of conventional milk-based infant formulas and three breast milk samples, no inhibition was observed. Inhibitory potential did not correlate with the degree of hydrolysis. Using reversed-phase high-pressure liquid chromatography (RP-HPLC) coupled to electrospray ionization-time of flight-mass spectrometry (ESI-TOF-MS), 15 peptides known to inhibit ACE were identified. Among them, the highly potent ACE inhibitor Ile-Trp (IC 50 = 0.7 microM) was detected and quantified for the first time in the HA samples, representing the most effective ACE-inhibiting peptide that has ever been detected in food items. The overall inhibitory potential of the HA infant milk formulas could partly be explained by Ile-Trp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号