首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 250 毫秒
1.
在水温为16-18℃时,将平均体重为(60.75±0.32)g的仿刺参(Apostichhopus japonicus)饲养在150 cm×120 cm×60 cm的水箱中,通过在基础饲料中添加富硒酵母,使7组饲料中硒的浓度分别为0、0.20、0.40、0.80、1.60、3.20和6.40 mg/kg,进行为期28 d的生长实验,并对其体壁、消化道、呼吸树、肌肉等不同组织消化酶活力、免疫酶活力进行测定,探讨不同水平的外源硒对仿刺参生长、相关酶及体内硒含量的影响,并用氢化物发生-原子荧光光谱法进行仿刺参体内硒含量分析。结果显示,添加适宜浓度的硒提高了仿刺参的成活率(最高达100%)、消化酶和免疫酶的活性,蛋白酶(35.13 U/mg prot)和淀粉酶(0.51 U/mg prot)的最高活性分别为对照组的2.45倍和2.07倍。硒浓度为0.80-1.60 mg/kg时,仿刺参各组中的超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)、碱性磷酸酶(AKP)和酸性磷酸酶(ACP)活性最高,显著高于其他组;仿刺参各组中的硒含量均有不同程度的上升,有机硒的提高倍数大于无机硒,说明富集到体内的硒以有机硒为主。研究表明,硒浓度为0.80–1.60 mg/kg时,仿刺参的养殖效果最佳。本研究丰富了仿刺参的营养学内容,为仿刺参健康、高效、可持续养殖提供了一定的参考依据。  相似文献   

2.
在水温为16-18℃时,将平均体重为(60.75±0.32)g的仿刺参(Apostichhopus japonicus)饲养在150 cm×120 cm×60 cm的水箱中,通过在基础饲料中添加富硒酵母,使7组饲料中硒的浓度分别为0、0.20、0.40、0.80、1.60、3.20和6.40 mg/kg,进行为期28 d的生长实验,并对其体壁、消化道、呼吸树、肌肉等不同组织消化酶活力、免疫酶活力进行测定,探讨不同水平的外源硒对仿刺参生长、相关酶及体内硒含量的影响,并用氢化物发生-原子荧光光谱法进行仿刺参体内硒含量分析.结果显示,添加适宜浓度的硒提高了仿刺参的成活率(最高达100%)、消化酶和免疫酶的活性,蛋白酶(35.13 U/mg prot)和淀粉酶(0.51 U/mg prot)的最高活性分别为对照组的2.45倍和2.07倍.硒浓度为0.80-1.60 mg/kg时,仿刺参各组中的超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)、碱性磷酸酶(AKP)和酸性磷酸酶(ACP)活性最高,显著高于其他组;仿刺参各组中的硒含量均有不同程度的上升,有机硒的提高倍数大于无机硒,说明富集到体内的硒以有机硒为主.研究表明,硒浓度为0.80-1.60 mg/kg时,仿刺参的养殖效果最佳.本研究丰富了仿刺参的营养学内容,为仿刺参健康、高效、可持续养殖提供了一定的参考依据.  相似文献   

3.
采用硝酸、双氧水将水产样品中的有机硒氧化成无机硒后测定总硒含量;用50%盐酸提取样品中的无机硒并用硝酸、双氧水消解,测定无机硒含量,再通过差减法获得有机硒的含量。研究结果表明,在优化的工作条件下,硒的检出限为7.1 ng/mL,线性范围为0~20μg/L。经回收实验和实际样品检测,总硒加标回收率为93.88%~107.65%,相对标准偏差(RSD)为0.82%~4.97%;无机硒加标回收率为82.88%~90.10%,RSD为2.33%~7.73%。用标准物质对照,其测定数据完全在标准值范围内。实验表明,该方法线性范围宽,相关性好,精密度和准确度高,可操作性强,应用范围广,适合水产品中有机硒和无机硒测定。  相似文献   

4.
本研究根据固相吸附毒素跟踪技术(Solid phase adsorbent and toxin tracking,SPATT)原理,在牡蛎养殖区内,利用HP20大孔吸附树脂对海水中常见的4种腹泻贝类毒素:大田软海绵酸(Okadaic acid,OA)及其衍生物鳍藻毒素(Dinophysistoxin-1,DTX-1和Dinophysistoxin-2,DTX-2)、米氏螺环毒素(Gymnodimine toxins,GYM)进行吸附,对其吸附效率进行评价;建立了从海水中富集与检测4种常见腹泻性贝类毒素的方法;在养殖区内,选取5个采样点,每隔7d,同步采集海水与牡蛎样品,对牡蛎养殖区海水中和牡蛎体内的腹泻性贝类毒素分布情况进行了检测,分析海水中与牡蛎体内毒素含量的关系.结果显示,HP20树脂对4种腹泻性毒素吸附回收率良好,OA为98.9%,DTX-1为103.3%,DTX-2为93.5%,GYM为76.6%.在整个监控期内,除DTX-2外,其他3种毒素均有检出,OA浓度为20.451-422.352 μg/kg,DTX-1浓度为15.954-368.678 μg/kg,GYM浓度为20.452-282.231 μg/kg.在整个监控期内,海水样品中3种毒素含量随时间的变化呈现同一分布特征,牡蛎体内毒素含量随着海水中毒素含量的升高而升高,且峰值出现延后现象.研究表明,该技术能有效对养殖区水环境进行时空监控,为海水中和海洋贝类体内毒素的监控提供有力的支持,同时也为贝类毒素预警体系的建立提供方法支持.  相似文献   

5.
为了解乳山湾近岸海域重金属污染情况及养殖贝类对重金属富集情况,按春、夏、秋、冬四个航次采集湾内和湾外的表层海水,并于秋季采集湾内养殖的太平洋牡蛎(Crassostrea gigas)分析海水及牡蛎体内Cu、Pb、Zn、Cr、Cd、As、Hg等7种重金属含量,评价海水质量与养殖贝类的食用安全。结果表明:乳山湾湾内湾外海域水质较好,除冬季Zn以及春、秋两季的Hg符合二类海水水质标准,其余点位均符合一类海水水质标准,海水水质为"清洁"。乳山湾湾内和湾外沉积物中各重金属的含量均低于第一类海洋沉积物标准,没有受到明显的污染。乳山湾内养殖牡蛎体内Cd和Zn的浓度远远高于湾内水体中重金属的浓度,表明太平洋牡蛎对重金属具有较强的富集作用,但仍符合二类海洋生物质量标准。  相似文献   

6.
采用半静态水质接触染毒法,研究了菲律宾蛤仔对养殖海水中阿特拉津的富集和消除规律。在水温(20±1)℃,阿特拉津暴露浓度分别为1.0、10.0和200μg/L的养殖海水中,菲律宾蛤仔中阿特拉津含量随暴露浓度的升高而逐步增加,二者之间呈显著正相关关系。在3个暴露组中,菲律宾蛤仔对阿特拉津的富集表现为随着时间的推移先增加后降低,而后维持在某一含量水平(分别为5.2、30.5和420.1μg/kg),仅产生小幅波动。3个暴露浓度下,菲律宾蛤仔中阿特拉津含量分别在第4天、第4天和第2天达到富集最大值,最大富集系数分别为15.4、6.15、3.56。在消除实验中,菲律宾蛤仔中阿特拉津含量迅速下降,3个实验浓度下降到低于检出限的时间分别为1、4和8 d。结果表明,菲律宾蛤仔对阿特拉津具有快速富集和快速消除能力,本研究可为海水贝类食品安全和海洋环境保护提供理论依据。  相似文献   

7.
通过观察贝类在海水中对大肠杆菌的富集情况分析养殖水体与贝类中大肠杆菌含量的关系,发现海水中的大肠杆菌含量在<1.4×101个/100ml的条件下贝类体内富集的大肠杆菌<3.0×102个/100g,符合欧盟和美国一类养殖水域要求,可直接上市;海水中的大肠杆菌含量在1.4×101~7.0×101/100m1之间的条件下贝类体内富集的大肠杆菌为4.2×103个/100g,符合欧盟二类养殖水域要求。  相似文献   

8.
为确定卵形鲳鲹(Trachinotus ovatus)对饲料中硒的需求量,选取初始体重为(15.04±0.20)g的卵形鲳鲹450尾,随机分成6组,每组3个重复,每个重复25尾。分别投喂以亚硒酸钠(Na2SeO3)为硒源,硒含量分别为0.41、0.60、0.73、0.80、0.90和1.12mg/kg的等氮等脂饲料50d。结果显示,随着饲料中硒含量的增加,卵形鲳鲹的增重率和特定生长率先升高后趋于稳定,饲料系数变化趋势与之相反。饲料中硒含量对全鱼体成分无显著影响(P>0.05)。血清白蛋白和高密度脂蛋白胆固醇含量随饲料中硒含量的增加呈先升高后降低的趋势,而血清碱性磷酸酶活性先升高后保持稳定。饲料中添加硒可以显著提高血清谷胱甘肽过氧化物酶、超氧化物歧化酶和肝脏谷胱甘肽过氧化物酶、谷胱甘肽硫转移酶、谷胱甘肽还原酶、过氧化氢酶活性(P<0.05),随着饲料中硒含量的增加,其谷胱甘肽过氧化物酶、谷胱甘肽硫转移酶和过氧化氢酶活性呈先升高后稳定的趋势,而超氧化物歧化酶和谷胱甘肽还原酶活性呈先上升后下降的趋势。饲料中不同硒水平显著影响了卵形鲳鲹全鱼中的硒含量(P<0.05),且随着饲料中硒含量的增加先上升后趋于稳定。折线回归分析表明,以增重率、血清谷胱甘肽过氧化物酶活性和全鱼中硒含量为评价指标,卵形鲳鲹对饲料中硒的需求量分别为0.66、0.82和0.76 mg/kg。  相似文献   

9.
为了解微囊藻毒素MC-LR在鲤各组织器官中的生物富集作用,采用腹腔注射法将MC-LR纯品稀释液(0.215μg/g)注射到鲤体内,酶联免疫吸附法(ELISA)检测0、1、3、12、24和48 h时肾脏、肝脏、肌肉、胆囊、空肠和卵巢中MC-LR含量分布和积累规律.结果显示,MC-LR在肾脏含量最高,均值为(1.007±0.120)μg/g(各器官均按干重计),其次是肝脏(0.490±0.060)μg/g、胆囊(0.355 ±0.011) μg/g、空肠(0.210±0.005)μg/g、卵巢(0.082±0.021)μg/g和肌肉(0.047±0.003) μg/g.鲤不同组织器官对MC-LR的富集能力存在较大差异,肾脏是MC-LR的主要靶器官,卵巢中也存在少量MC-LR富集,肌肉对MC-LR的生物富集量远低于其他组织器官.试验48 h时,鲤体内各组织器官中和鱼缸水中MC-LR含量均有一定程度的下降,表明鲤体内对MC-LR有较强的解毒机制.  相似文献   

10.
鉴于蓝藻"水华"能产生新型神经毒素-β-N-甲氨基-L-丙氨酸(β-N-methylamino-L-alanine,BMAA),并通过生物富集作用在水生态系统的各营养级进行传递;选取武汉东湖子湖—官桥湖,采用HPLC-MS/MS分析方法,在蓝藻水华暴发期间,测定湖水、蓝藻及鱼体内游离态和蛋白结合态BMAA毒素的含量。结果表明,在水体中未检测到溶解态BMAA(在检测限0.05μg/L以下),但在微囊藻细胞及鱼体内(干重)均能检测到,含量均值分别为(0.040±0.002)μg/g和(0.32±0.317)μg/g,说明官桥湖在暴发水华后,蓝藻产生了BMAA毒素且被鱼类吸收和放大;不同鱼体(干重)累积BMAA的程度不同,总BMAA含量(干重)分别为鳑鲏(0.243±0.205)μg/g,鲫(0.126±0.040)μg/g,鲤(0.613±0.120)μg/g,鲢(0.028±0.018)μg/g,鳙(0.039±0.021)μg/g,鳊(0.879±0.243)μg/g;鲤和鳊的富集浓度较高,且与其它几种鱼有显著性差异(P0.05)。按照WHO生活饮用水安全标准的建议进行推算,官桥湖鱼肉EDI值(估算的每天摄入量)为1.015μg/(kg·d),显著低于估算出的TDI值(日容许摄入量)0.5mg/(kg·d),基本不会对人造成急性中毒,但由于BMAA毒素为慢性毒素,不能忽视经常食用鱼肉后的累积风险。建议有关部门将东湖水产品的BMAA毒素纳入长期监测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号