首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of water and salt stress on rate of germination and seedling growth were investigated under laboratory conditions in 46 soya bean genotypes from Central-West region of Brazil to verify how these stresses may limit crop establishment during the initial growth stage and also to identify the most tolerant genotypes to drought and salinity. Mild water and salt stresses were imposed by seed exposure to –0.20 MPa iso-osmotic solutions with polyethylene glycol—PEG 6000 (119.57 g/L) or NaCl (2.357 g/L) for 12 days at 25°C. The germination percentage, seedling length and seedling dry matter were measured, and then, salt or drought tolerance indexes were calculated. The “NS 5909 RG,” “NS 7000 IPRO,” “NS 7338IPRO,” “FPS Solimões RR,” “NS 5151 IPRO,” “SYN 13610 IPRO,” “LG 60177 IPRO,” “NS 6909 IPRO” and “BMX Desafio RR” were identified as the most drought-tolerant genotypes, whereas under salinity conditions, the genotypes “5D 615 RR,” “BMX Desafio RR,” “5D 6215 IPRO” and “BMX Ponta IPRO” were identified as tolerant. The “BMX Desafio RR” is the genotype most adapted to both stress conditions and, therefore, should be used under conditions of water shortage and excess salt in the soil at sowing time.  相似文献   

2.
Drought stress limits crop growth and yield in soya bean (Glycine max [L.] Merr.), but there are relatively few tools available to assess the ability of different genotypes to tolerate drought. Aerial infrared image analysis was evaluated as a potential tool for identifying drought tolerance in soya bean. Drought effects were evaluated from late vegetative to mid‐reproductive stages of soya bean development in an experiment with ten genotypes including five slow‐ and five fast‐wilting genotypes that were from a population derived from Benning×PI416937. There were two deficit irrigation levels for 2 years and one deficit irrigation level for the third year along with a fully irrigated control level. When the canopy was completely closed, relative canopy temperature was determined using an infrared camera taken from an aerial platform 50–75 m above the experiment. As water availability decreased, the relative canopy temperature generally increased. Moreover, slow‐wilting soya bean genotypes generally had lower canopy temperature compared to fast‐wilting genotypes, and grain yield was generally positively associated with cool canopy temperatures. The results indicate that the determination of canopy temperature is a promising tool for rapid characterization of drought‐related traits in soya bean.  相似文献   

3.
Drought is the single most important factor limiting soya bean (Glycine max L. Merr.) yields in the field. The following study was therefore undertaken to identify phenotypic markers for enhanced drought tolerance in nodulated soya beans. Leaf and nodule parameters were compared in three genotypes: Prima 2000, glyphosate‐resistant A5409RG and Jackson, which had similar shoot biomass and photosynthesis rates at the third trifoliate leaf stage under water‐replete conditions. When water was withheld at the third trifoliate leaf stage, photosynthesis, nodule numbers, nodule biomass and symbiotic nitrogen fixation (SNF) were greatly decreased. Significant cultivar–drought interactions were observed with respect to photosynthesis, which also showed a strong positive correlation with nodule SNF, particularly under drought conditions. Prima leaves had high water‐use efficiencies, and they also maintained high photosynthetic electron transport efficiencies under long‐term drought. Moreover, Prima had the highest shoot biomass under both water‐replete and drought conditions. A‐5409RG was the most drought‐sensitive genotype showing early closure of stomata and rapid inhibition of photosynthesis in response to drought. In addition to classifying the genotypes in relation to drought tolerance, the results demonstrate that the ability to sustain shoot biomass under nitrogen limitation is an important parameter, which can be easily applied in germplasm screening for drought tolerance in soya bean.  相似文献   

4.
Faba bean (Vicia faba L.) is one of the most important and drought sensitive grain legumes. Drought stress is thus one of major constraints in global faba bean production. In this study, twenty local and exotic faba bean genotypes were characterized on physiological and molecular basis. Seeds of faba bean genotypes (six per pot) were sown in poly venyl chloride pots. After seedling emergence, soil moisture was maintained at 100%, 50% and 25% of field capacity designated as well watered, moderate drought and severe drought, respectively. Drought stress significantly influenced the leaf area, leaf temperature, stomatal conductance, relative leaf water contents, grain yield and water‐use efficiency. Faba bean genotypes also differed for the leaf area, leaf temperature, relative leaf water contents, grain yield and water‐use efficiency. Faba bean genotypes Kamline and L.4 were better equipped to curtail water loss, maintain tissue water status, produce stable grain yield and had better water‐use efficiency under mild and severe drought stress, and may be used in breeding programmes. Amplified fragment length polymorphism markers showed high potential in detecting polymorphism and estimating genetic diversity among faba bean genotypes. Unweighted pair group method with arithmetic mean cluster analysis of the genotypes illustrated considerable association between molecular diversity, genetic background and geographic origin. In crux, high polymorphic rate and polymorphism information content values, together with the low genetic similarity observed among tested genotypes suggests a high level of heterogeneity, which may be used in breeding programmes to assemble different drought tolerance mechanisms in one genotype.  相似文献   

5.
Drought stress is a major limiting factor for crop production in the arid and semi‐arid regions. Here, we screened eighty barley (Hordeum vulgare L.) genotypes collected from different geographical locations contrasting in drought stress tolerance and quantified a range of physiological and agronomical indices in glasshouse trails. The experiment was conducted in large soil tanks subjected to drought treatment of eighty barley genotypes at three‐leaf stage and gradually brought to severe drought by withholding irrigation for 30 days under glasshouse conditions. Also, root length of the same genotypes was measured from stress‐affected plants growing hydroponically. Drought tolerance was scored 30 days after the drought stress commenced based on the degree of the leaf wilting, fresh and dry biomass and relative water content. These characteristics were related to stomatal conductance, stomatal density, residual transpiration and leaf sap Na, K, Cl contents measured in control (irrigated) plants. Responses to drought stress differed significantly among the genotypes. The overall drought tolerance was significantly correlated with relative water content, stomatal conductance and leaf Na+ and K+ contents. No significant correlations between drought tolerance and root length of 6‐day‐old seedling, stomatal density, residual transpiration and leaf sap Cl? content were found. Taking together, these results suggest that drought‐tolerant genotypes have lower stomatal conductance, and lower water content, Na+, K+ and Cl? contents in their tissue under control conditions than the drought‐sensitive ones. These traits make them more resilient to the forthcoming drought stress.  相似文献   

6.
Soil salinity is one of the major production constraints. Development and planting of salt‐tolerant varieties can reduce yield losses due to salinity. We screened 185 rice genotypes at germination stage in petri dishes under control, 50, 100 and 150 mm salt stress, and at seedling stage in Yoshida's hydroponic nutrient solution under control, 50 and 100 mm salt stress. At germination stage, 15 genotypes including Nona Bokra, Sonahri Kangni, 7421, 7423 and 7467, whereas at seedling stage, 28 genotypes including Nona Bokra, Jajai‐77, KSK‐133, KSK‐282, Fakhr‐e‐Malakand, Pakhal, IR‐6, Khushboo‐95, Shahkar and Shua‐92 were found salt tolerant. Basmati‐370, Mushkan, Homo‐46 and accessions 7436, 7437 and 7720 were sensitive to salinity at both germination and seedling stage. We further screened a subset of 33 salt‐tolerant and salt‐sensitive genotypes with SSR markers. Four SSR markers (RM19, RM171, RM172 and RM189) showed significant association with two or more of the studied traits under 50, 100 and 150 mm salt stress. These markers may be further tested for their potential in marker‐assisted selection. The salt‐tolerant genotypes identified in this study may prove useful in the development of salt‐tolerant rice varieties in adapted genetic background.  相似文献   

7.
Experiments were performed to evaluate seed germination and seedling growth in simulated drought as screening techniques for drought tolerance raring. Several laboratory screening tests were evaluated for ability to estimate drought resistance in 18 cultivars of legume plants (field bean, soybean, field pea, lupine). Drought was simulated by a water solution of mannitol of chemical water potential ψ= -0.3 and -0.6 MPa. Both solutions significantly affected seed germination (final germination and promptness index) and seedling growth parameters (seedling height, dry matter of shoot and root as well as leaf injury by drought and high temperature). The tested cultivars could be grouped as drought resistant and drought susceptible plants. Drought tolerance ratings of legume plants in the laboratory tests were, on the whole, consistent with the ratings based on estimation of direct effects of soil drought on seed yield in field experiments. Measurements of electroconductivity of leaf diffusate to evaluate invisible injury caused by drought or high temperature were found to be an adequate criterion for drought tolerance rating. It is concluded that tolerance to drought stress in growing seedlings can be screened for by using mannitol containing nutrient solution. According to the results collected in this research, varieties differences in seed germination, seedling growth and leaf injury affected by drought or heat temperature were evident, however, not all treatments appeared to be equally useful for screening of legume species cultivars.  相似文献   

8.
Drought tolerance is an increasingly important trait in common bean ( Phaseolus vulgaris L.) due to the reduction in water resources, a shift in production areas and increasing input costs. The objective of this study was to evaluate 29 genotypes for drought tolerance under drought stress (DS) and reduced stress treatments in Juana Diaz, Puerto Rico. The use of DS and reduced stress treatments facilitated the identification of drought tolerant germplasm that also had good yield potential under more optimal conditions. Based on the results of seed yield under DS and reduced stress conditions, and DS indices, including the geometric mean (GM), stress tolerance index (STI) and percent yield reduction (YR), genotypes were identified with greater yield potential under the tested environment. Based on average GM over the 2 years, the superior common bean genotypes identified were SEA 5, G 21212, A 686, SEN 21 and SER 21. These genotypes performed well in both years and under both treatment conditions and thus may serve as parents for DS improvement and genetic analysis.  相似文献   

9.
Common bean (Phaseolus vulgaris L.) is the most important food legume crop in Africa and Latin America where rainfall pattern is unpredictable. The objectives were to identify better yielding common bean lines with good canning quality under drought, and to identify traits that could be used as selection criteria for evaluating drought‐tolerant genotypes. In all, 35 advanced lines were developed through single seed descent and evaluated with a standard check under drought and irrigated conditions at two locations over 2 years in Ethiopia. Grain yield (GY), pod number per m2, seed number per m2 and seed weight decreased by 56%, 47%, 49% and 14%, respectively, under drought stress. Eight genotypes had better yield with good canning quality under drought compared to the check. Moderate to high proportion of genetic effects were observed under drought conditions for GY and yield components compared to genotype × environment effects. Significant positive correlations between GY and pod harvest index (PHI) in drought suggest that PHI could be used as an indirect selection criterion for common bean improvement.  相似文献   

10.
研究绿豆芽期抗旱指标,为绿豆品种抗旱性鉴定和品种筛选提供理论依据。本试验采用15%的PEG-6000高渗溶液对58份绿豆品种(系)进行干旱模拟胁迫,测定其发芽率、发芽势、发芽指数、活力指数和相对根长等指标。结果表明:在15%的PEG浓度条件下,绿豆的各指标均受到不同程度的抑制,发芽势受抑制最大,下降30.62%;而相对根长受抑制较小,仅下降5.63%。且各指标的变异系数均有增加,说明绿豆生理指标在干旱胁迫下变化更显著。利用隶属函数分析法,筛选出1份高抗和4份抗性品种。  相似文献   

11.
Soil salinity has become a serious environmental abiotic stress limiting crop productivity and quality. The root system is the first organ sensing the changes in salinity. Root development under elevated salinity is therefore an important indicator for saline tolerance in plants. Previous studies focused on varietal differences in morphological traits of quinoa under saline stresses; however, variation in root development responses to salinity remains largely unknown. To understand the genetic variation in root development responses to salt stress of quinoa, we conducted a preliminary screening for salinity response at two salinity levels of a diverse set of 52 quinoa genotypes and microsatellite markers were used to link molecular variation to that in root development responses to salt stresses of represented genotypes. The frequency distribution of saline tolerance index showed continuous variation in the quinoa collection. Cluster analysis of salinity responses divided the 52 quinoa genotypes into six major groups. Based on these results, six genotypes representative of groups I to VI including Black quinoa, 2-Want, Atlas, Riobamba, NL-6 and Sayaña, respectively, were selected to evaluate root development under four saline stress levels: 0, 100, 200 and 300 mM NaCl. Contrasts in root development responses to saline stress levels were observed in the six genotypes. At 100 mM NaCl, significant differences were not observed in root length development (RLD) and root surface development (RSAD) of most genotypes except Black quinoa; a significant reduction was observed in this genotype as compared to controls. At 200 mM NaCl, significant reduction was detected in RLD and RSAD in all genotypes showing this as the best concentration to discriminate among genotypes. The strongest inhibition of root development was found for all genotypes at 300 mM NaCl as compared to lower saline levels. Among genotypes, Atlas of group III shows as a saline-tolerant genotype confirming previous reports. Variation in root responses to salinity stresses is also discussed in relation to climate conditions of origins of the genotypes and reveal interesting guidelines for further studies exploring the mechanisms behind this aspect of saline adaptation.  相似文献   

12.
Screening of wheat genotypes as salt tolerance through seed germination and early seedling growth is crucial for their evaluation. Seeds of 20 wheat genotypes were germinated in Petri dishes on a sand bed irrigated with saline (15 dS m-1) and control solutions for 10 days and also tested at different salinity levels (control, 4, 6, 8, and 10 dS m-1) which were artificially developed in the soil for 30 days. At 10 days, germination percentage, rate of germination, co-efficient of germination, germination vigor index, shoot length, root length, and seedling dry weight were found to be affected due to salinity. Salt tolerance index (STI) for seedling dry weight maintained a significant positive correlation with rate of germination, germination vigor index, shoot length, and root length, which indicates that these parameters could be used as selection criteria for screening wheat genotypes against salt stress. Significant differences in shoot length, root length, and seedling dry weight in 30-day-old seedlings were observed among selected wheat genotypes as well. From the overall observation of germination characters and early seedling growth, it was concluded that the wheat genotypes including Gourab, Shatabdi, Bijoy, Prodip, BARI Gom 26, BAW 1186, and BAW 1189 showed better salt tolerance as compared to others.  相似文献   

13.
Common bean (Phaseolus vulgaris L.) is the most important food legume, cultivated by small farmers and is usually exposed to unfavorable conditions with minimum use of inputs. Drought and low soil fertility, especially phosphorus and nitrogen (N) deficiencies, are major limitations to bean yield in smallholder systems. Beans can derive part of their required N from the atmosphere through symbiotic nitrogen fixation (SNF). Drought stress severely limits SNF ability of plants. The main objectives of this study were to: (i) test and validate the use of 15N natural abundance in grain to quantify phenotypic differences in SNF ability for its implementation in breeding programs of common bean with bush growth habit aiming to improve SNF, and (ii) quantify phenotypic differences in SNF under drought to identify superior genotypes that could serve as parents. Field studies were conducted at CIAT-Palmira, Colombia using a set of 36 bean genotypes belonging to the Middle American gene pool for evaluation in two seasons with two levels of water supply (irrigated and drought stress). We used 15N natural abundance method to compare SNF ability estimated from shoot tissue sampled at mid-pod filling growth stage vs. grain tissue sampled at harvest. Our results showed positive and significant correlation between nitrogen derived from the atmosphere (%Ndfa) estimated using shoot tissue at mid-pod filling and %Ndfa estimated using grain tissue at harvest. Both methods showed phenotypic variability in SNF ability under both drought and irrigated conditions and a significant reduction in SNF ability was observed under drought stress. We suggest that the method of estimating Ndfa using grain tissue (Ndfa-G) could be applied in bean breeding programs to improve SNF ability. Using this method of Ndfa-G, we identified four bean lines (RCB 593, SEA 15, NCB 226 and BFS 29) that combine greater SNF ability with greater grain yield under drought stress and these could serve as potential parents to further improve SNF ability of common bean.  相似文献   

14.
Seed priming is a method to improve germination and seedling establishment under stress conditions. The effect of seed priming in chemical solutions such as urea and KNO3, on protein and proline content, germination, and seedling growth responses of four maize (Zea mays L.) hybrids under drought and salt stress conditions was studied in a controlled environment in 2010. Treatments included stress type and intensity at five levels: moderate drought (MD), severe drought (SD), moderate salt (MS), severe salt (SS), and control (C1, without stress), three seed priming types including water (C2, as control), KNO3, and urea (as chemical priming), and four maize hybrids including Maxima, SC704, Zola, and 307. The results showed that the highest germination percentage (Ger %), germination rate (GR), seedling length (SL), radical length (RL), and seedling to radical length ratio (S/R) were achieved in no stress treatments and most proline content in SD treatment. Urea priming led to more Ger%, GR, and SL compared to other primers and treatment under KNO3 priming resulted in higher RL compared to other primers. Chemical priming had no effect on S/R and proline content. Also, in terms of most traits, no difference was found among the four hybrids. Results showed that salt stress could affect GR and RL more than the drought stress. Drought stress affected germination percentage and S/R more than the salt stress. Both stresses decreased all measured parameters, except protein and proline content which were increased remarkably, and more under drought compared to salt stress. Based on proline content, hybrid 304 appeared to be more resistant to stress than other hybrids. Generally, KNO3 and urea alleviated effects of both stresses and led to increased germination and seedling growth as well as the root length. Therefore, priming could be recommended for enhancing maize growth responses under stressful conditions.  相似文献   

15.
Drought is one of the main abiotic stresses in agriculture worldwide. Drought could increase under the predicted scenario of climate change, particularly in the Mediterranean area. Breeding for drought tolerance requires screening of germplasm in order to identify sources of tolerance; therefore, were evaluated 51 diverse open-pollinated maize populations from various temperate regions under increasing levels of drought at germination, seedling establishment and early growth. There was genetic variability for drought tolerance among populations at all growth phases. Several populations from diverse origins and germplasm groups exhibited high germination across stress treatments. Some of those populations had high ability to sustain root development and showed differential performance depending on the stage of development and the phenotypic aspect considered. In general, BS17 showed high germination rate, fast seedling growth and early vigor under drought. Longlellow and Grano de trigo showed high germination and growth establishment rates, whereas AS3(HT)C3 showed high germination rate and early vigor under drought. The photosynthetic rate, stomatal conductance and transpiration of Enano Levantino/Hembrilla (ELH) and BS17 populations were not affected by drought. Water use efficiency of BS17, ELH, Northwestern Dent (NWD) and Viana was not affected by drought. Some of these populations are promising sources of drought tolerance which can provide different mechanisms of drought tolerance at different stages of plant development. Therefore, these results open new possibilities of breeding for drought tolerance by combining those mechanisms through crosses among potential donors. Furthermore, these findings indicate that it is worthwhile to study the genetic and biological basis of such mechanisms.  相似文献   

16.
Soya bean [ Glycine max (L.) Merr.] genotypes with modified unsaturated fatty acid profiles in seed oil have been developed. Higher oleic (18:1) and lower linolenic (18:3) acids are desirable for increased use of soya bean oil in food and industrial applications. The environment affects levels of unsaturated fatty acids in soya bean and it is important that desired components of seed oil are produced across a range of growing conditions. Our objective was to determine whether irrigation affects fatty acid levels in soya bean with altered fatty acid profiles. Seven modified oil genotypes which included elevated oleic acids, and/or reduced linolenic acid, along with two common soya bean varieties were evaluated with and without irrigation (rain fed) in four environments in each of 2 years. Irrigation generally had no significant influence on unsaturated fatty acid accumulation in seed oil in soya bean genotypes with altered fatty acid profiles. However, irrigation tended to show desirable effects on 18:1 and 18:3 contents in the genotypes studied. Oleic acid tended to be higher in eight of the nine genotypes and linolenic acid was lower in six of the nine genotypes under irrigation vs. rain fed treatments.  相似文献   

17.
Screening for drought tolerance is severely handicapped by the lack of a simple and reliable phenotyping technique. The objective of this study was to develop a new screening technique based on seedling survivability, drought tolerance score, root and shoot length, and fresh and dry weight of roots and shoots of lentil plants exposed to drought under hydroponic conditions. Its effectiveness was compared with two soil culture techniques. The hydroponic technique involved removing 15‐day‐old seedlings of 80 genotypes from the nutrient solution and exposing them to air for 5 h daily for 6 days. Three genotypes received from ICARDA, ‘ILL‐10700’, ‘ILL ‐ 10823’ and ‘FLIP‐96‐51’, showed maximum seedling survivability and minimum reduction in the growth parameters with a drought score of 0.0–0.2 indicating higher tolerance to drought stress, while Indian genotypes ‘JL‐3’, ‘E‐153’ and ‘VL‐507’ showed no seedling survivability and maximum reduction in growth parameters with a drought score of 4.0 indicating low drought tolerance. The results suggest that this new phenotyping technique is effective, rapid and easy for screening a large number of genotypes.  相似文献   

18.
Polyethylene glycol and cell membrane stability (CMS) assay were used to evaluate drought and heat tolerance, respectively, among 14 wheat lines based on seedling traits and molecular analysis. Significant variation was evidenced for all the investigated seedling traits. Different levels of heritability and genetic advance were found among the tested traits, indicating whether the trait is controlled by additive or non-additive gene action. Drought caused a significant reduction in root and shoot lengths. However, root/shoot ratio under drought stress was increased. Root length showed a highly significant negative correlation with drought susceptibility index (DSI) under drought conditions. Cluster analysis based on seedling traits separated lines mainly by DSI and CMS. Some lines showed drought and heat tolerance by exhibiting a low DSI with high CMS. Sequence-related amplified polymorphism (SRAP) generated a total of 135 bands, with a level of polymorphism ranging from 30 to 86% among the tested lines. SRAP showed its efficiency in discriminating wheat genotypes by gathering all high-DSIlines in one sub-cluster and generating 10 and 3 unique and specific bands for high-DSI-lines and low-DSI-lines, respectively. These bands could be used for further work as SRAP markers associated with drought tolerance in wheat.  相似文献   

19.
Brazil is the world's largest producer of common beans (Phaseolus vulgaris L.). Drought stress harms the morphological and agronomic traits of beans. This study evaluates the reaction to water deficit in five genotypes of black beans. The experiment was conducted in the IDR-IAPAR-EMATER in Londrina-PR, Brazil. A split-plot design was used, with three replications. The genotypes were included in the subplots and the treatments with or without water deficit in the plots. Water deficit was induced on the pre-flowering stage and maintained for 20 days in the plots submitted to drought stress. For the growth analysis, plants were collected at 35, 54 and 70 days after emergence. At the stage of physiological ripeness, several morphological and yield traits were evaluated. The genotypes IPR Uirapuru and BRS Esplendor can be considered tolerant and used as a tolerant source to water deficit in common bean germplasm banks. The line LP 08-90 has morphological and agronomic adaptations efficient to overcome water deficit's effects, presenting a higher grain yield in both crop conditions, which indicates the success of black beans breeding to deal with water deficit.  相似文献   

20.
Drought severely limits crop yield of peanut. Yet cultivars with enhanced root development enable the exploration of a greater volume of soil for water and nutrients, helping the plant survive. Root distribution patterns of three genotypes (ICGV 98305, ICGV 98324 and Tifton‐8) were compared when grown in well‐watered rhizoboxes and when grown in rhizoboxes where an early‐season drought was imposed using rain‐exclusion shelters. The treatments were arranged in a completely randomized design with three replications, and the experiment was conducted during two seasons at the Field Crop Research Station of Khon Kaen University, in Khon Kaen, Thailand. The root system of ICGV 98305, when grown under drought, had a significantly higher root length in the 30–110 cm deep soil layers and less roots in the 0–30 cm soil layers when under drought than when grown under well‐watered conditions. Roots of Tifton‐8 had the largest reductions in root length in upper soil layer and reduced in most soil layers. Tifton‐8 grown under drought was smaller than under well‐watered control for all root traits, showing negative response to drought. The peanut genotypes with high root traits in deeper soil layer under early‐season drought might contribute to drought avoidance mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号