首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 780 毫秒
1.
The objectives of this study was to provide a quantitative analysis of calcium-binding proteins, calbindin (CB), parvalbumin (PA), substance P (SP), calcitonin gene-related peptide (CGRP) and galanin (GAL), in trigeminal ganglia of goats, to establish whether they exhibit coexistence relationships between each other, and to examine possible colocalization with SP, CGRP and GAL, which have been well characterized according to their distributions in an abundance of large and/or small neurones. CB (12.78%), PA (31.91%), SP (24.63%), CGRP (44.44%) and GAL (3.29%) immunoreactive (IR) cells were observed. About 38.37, 8.7 and 0.73% of CGRP-IR neurones in the trigeminal ganglion were also immunoreacted with SP, GAL and CB, respectively. Almost all SP-IR cells are labelled with CGRP (approximately 92.52%), whereas only 16.02 and 0.44% of SP-IR neurones colocalized with GAL and CB. Approximately 4.65 and 1.10% of the CB-IR cells were found to contain CGRP and SP immunoreactivity, respectively. Conversely, no CB-IR cell exhibited GAL immunoreactivity. In addition, all the GAL-IR cells showed CGRP and SP immunoreactivity. The number of CB-, PA-, SP-, CGRP- and GAL-IR neurones in goat trigeminal ganglion are abundant than that of other animals. These results elucidate that the goat differs from other mammalian species in the distribution and localization of neurochemical substances in trigeminal ganglia, and suggest that this difference may be relevant to the morphological characteristics of cerebral vasculatures such as epidural rete mirabile of goat.  相似文献   

2.
Retrograde tracing technique combined with the double-fluorescent immunohistochemistry were used to investigate the distribution and chemical coding of primary afferent neurones supplying the canine prostate. After the injection of Fast Blue (FB) into the prostatic tissue retrogradely-labelled (FB(+)) primary afferent neurones were localized in bilateral L(1)-Ca(1) dorsal root ganglia (DRG). Statistical analysis using anova test showed that there are two major sources of afferent prostate innervation. The vast majority of prostate-supplying primary afferent neurones were located in bilateral L(2)-L(4) DRG (56.9 +/- 0.6%). The second source of the afferent innervation of canine prostate were bilateral S(1)-Ca(1) DRG (40.6 +/- 1.0%). No statistically significant differences were found between average number of FB(+) neurones localized in the left and right DRG (49.5 +/- 1.7 and 50.5 +/- 1.7%, respectively). Immunohistochemistry revealed that FB(+) primary afferent neurones contain several neuropeptides in various combinations. In the prostate-supplying neurones of lumbar and sacro-caudal DRG the immunoreactivity to substance P (SP) and calcitonin gene-related peptide (CGRP) was found most frequently (50 +/- 3.7 and 37.3 +/- 1.9%, respectively). Both in the lumbar and sacro-caudal DRG, considerable population of FB(+) neurones immunoreactive neither to SP nor CGRP were also found (23 +/- 2.6 and 32.8 +/- 2.3%, respectively). In the lumbar DRG 10.7 +/- 1.1% of SP-immunoreactive FB(+) neurones also contained galanin (GAL). In 9.2 +/- 2.2% of the prostate-supplying primary afferent neurones located in the sacro-caudal DRG the co-localization of SP and GAL was also reported. Results of the retrograde tracing experiment demonstrated for the first time sources of afferent innervation of the canine prostate. Double immunohistochemistry revealed that many of the prostate-supplying primary afferent neurones express some of sensory neuropeptides which presumably may be involved in nociception and some pathological processes like inflammation or nerve injury.  相似文献   

3.
The presence of choline acetyltransferase (ChAT), vesicular acetylcholine transporter (VAChT), neuropeptide Y (NPY), vasoactive intestinal polypeptide (VIP), somatostatin (SOM), galanin (GAL), substance P (SP) and calcitonin gene-related peptide (CGRP) was studied in neurons and nerve fibers of the porcine otic ganglion. ChAT-positive neurons were very numerous while VAChT-positive nerve cells were moderate in number. The number of neurons containing NPY and VIP was lower and those containing SOM, GAL, SP or CGRP were observed as scarce, or single nerve cells. The above mentioned substances (except SOM) were present in nerve fibers of the ganglion. ChAT- and VAChT-positive nerve fibers were numerous, while the number of nerve terminals containing NPY, VIP and SP was lower. GAL- and CGRP-positive nerve fibers were scarce.  相似文献   

4.
The present study was designed to investigate the expression of biologically active substances by intramural neurons supplying the stomach in normal (control) pigs and in pigs suffering from dysentery. Eight juvenile female pigs were used. Both dysenteric (n = 4; inoculated with Brachyspira hyodysenteriae) and control (n = 4) animals were deeply anaesthetized, transcardially perfused with buffered paraformalehyde, and tissue samples comprising all layers of the wall of the ventricular fundus were collected. The cryostat sections were processed for double-labelling immunofluorescence to study the distribution of the intramural nerve structures (visualized with antibodies against protein gene-product 9.5) and their chemical coding using antibodies against vesicular acetylcholine (ACh) transporter (VAChT), nitric oxide synthase (NOS), galanin (GAL), vasoactive intestinal polypeptide (VIP), somatostatin (SOM), Leu(5)-enkephalin (LENK), substance P (SP) and calcitonin gene-related peptide (CGRP). In both inner and outer submucosal plexuses of the control pigs, the majority of neurons were SP (55% and 58%, respectively)- or VAChT (54%)-positive. Many neurons stained also for CGRP (43 and 45%) or GAL (20% and 18%) and solitary perikarya were NOS-, SOM- or VIP-positive. The myenteric plexus neurons stained for NOS (20%), VAChT (15%), GAL (10%), VIP (7%), SP (6%) or CGRP (solitary neurons), but they were SOM-negative. No intramural neurons immunoreactive to LENK were found. The most remarkable difference in the chemical coding of enteric neurons between the control and dysenteric pigs was a very increased number of GAL- and VAChT-positive nerve cells (up to 61% and 85%, respectively) in submucosal plexuses of the infected animals. The present results suggest that GAL and ACh have a specific role in local neural circuits of the inflamed porcine stomach in the course of swine dysentery.  相似文献   

5.
This study was performed to investigate the neurochemical characteristics of the vagal ganglia of the goat by immunohistochemical methods using calbindin D-28k (CB), calretinin (CR). parvalbumin (PA), substance P (SP). calcitonin generelated peptide (CGRP) and galanin (GAL) antibodies. In the proximal vagal ganglia (jugular ganglia), CGRP- (57.1%), SP- (48.2%), GAL- (8.6%), PA- (8.7%), CB- (8.5%) and CR-like (5.3%) immunoreactive cells were observed. In the distal vagal ganglia (nodose ganglia), CGRP- (40.5%), SP- (30.20%), CB- (22.0%) and CR-like (18.10%) immunoreactive cells were present. The double immunohistochemical study showed, that in the proximal vagal ganglia, CGRP immunoreactivity was co-localized in SP- (84.8%), GAL-(100%), CB- (5.6%) and CR- (5.7%) immunoreactive cells: SP immunoreactivity was co-localized in the CGRP- (80.0%), GAL- (100%). CB- (5.3%) and CR- (5.6%) immunoreactive cells; GAL immunoreactivity coexisted in the CGRP- (4.4%) and SP- (19.8%) immunoreactive cells, but not in calcium-binding proteins (CBP)-immunoreactive cells; PA immunoreactivity was absent in the CGRP- and SP-immunoreactive cells; CB and CR immunoreactivities were seen in the CGRP-(0.8%) and SP-immunoreactive (0.9%) cells. On the other hand, in the distal vagal ganglia, CGRP immunoreactivity appeared in SP- (66.6%), CB- (1.0%) and CR- (1.2%) immunoreactive cells; SP immunoreactivities were observed in the CGRP- (44.1%), CB- (1.0%) and CR- (1.2%) immunoreactive cells; CB immunoreactivities were present in the CGRP- (0.5%) and SP- (0.8%) immunoreactive cells; CR immunoreactivities were contained in the CGRP- (0.5%) and SP- (0.8%) immunoreactive cells. These findings indicate that the goat is distinct from other mammalian species in the distribution and localization of neurochemical substances in the vagal ganglia. and suggest that these differences may be related to physiological characteristics, particular those of the ruminant digestive system.  相似文献   

6.
The occurrence and density of distribution of nerves and endocrine cells that are immunoreactive for neuropeptides in the bovine pancreas were studied by immunohistochemistry. The six neuropeptides localized were galanin (GAL), substance P (SP), methionine-enkephalin (MENK), neuropeptide Y (NPY), calcitonin gene-related peptide (CGRP) and vasoactive intestinal polypeptide (VIP). The exocrine pancreas was shown to have an appreciable number of GAL- and SP-immunoreactive nerve fibres but few fibres showing immunoreactivity for VIP and CGRP. Numerous MENK-, GAL-, SP-, and NPY-immunoreactive nerve fibres were seen in the endocrine portion of the pancreas. Nerve cell bodies in the intrapancreatic ganglia showed immunoreactivity for all of the neuropeptides except CGRP. Endocrine cells showing immunoreactivity for GAL and SP were observed in the large islets and islets of Langerhans, respectively. The present results indicate a characteristic distribution of neuropeptides in the bovine pancreas, which may regulate both exocrine and endocrine secretions of pancreas.  相似文献   

7.
The present study investigated the arrangement and chemical coding of intramural nerve structures supplying the porcine stomach. Tissue samples comprising all layers of the wall of the ventricular fundus were collected from juvenile female pigs (n = 4), which were first deeply anaesthetized and then transcardially perfused with buffered paraformaldehyde. The cryostat sections were processed for double‐labelling immunofluorescence to study the distribution of the intramural nerve structures (visualized with antibodies against protein gene‐product 9.5) and their neurochemical characteristics using antibodies against vesicular acetylcholine transporter (VAChT), nitric oxide synthase (NOS), galanin (GAL), vasoactive intestinal‐polypeptide (VIP), somatostatin (SOM) and substance P (SP). The study confirmed the presence of three distinct nerve plexuses within the wall of the porcine stomach including one myenteric plexus and two, outer and inner, submucous plexuses. The outer and inner submucous plexuses (OSP and ISP, respectively) were similar in respect to the chemical coding of neurons they contained. Most of the neurons expressed immunoreactivity to SP (ISP 58%; OSP 60%) or to VAChT (ISP 56%; OSP 56%), some of them stained for GAL (ISP 18%; OSP 15%) and solitary nerve cells were SOM‐positive (in ISP only). No neurons in the submucous plexuses displayed immunoreactivity to VIP or NOS. In the myenteric plexus, some neurons stained for NOS (20%), VAChT (15%), GAL (10%), VIP (8%) or SP (8%) while no neurons immunoreactive for SOM were encountered. In both submucous and myenteric plexuses, many varicose nerve fibres expressed immunoreactivity to VAChT, GAL or SP, while VIP‐, SOM‐ or NOS‐positive nerve terminals were less numerous. The comparison of the present results with those obtained by other authors has revealed distinct inter‐species differences regarding the arrangement and chemical coding of nerve structures supplying the mammalian stomach.  相似文献   

8.
Immunohistochemical properties of nerve fibres supplying the joint capsule were previously described in many mammalian species, but the localization of sensory neurons supplying this structure was studied only in laboratory animals, the rat and rabbit. However, there is no comprehensive data on the chemical coding of sensory neurons projecting to the hip joint capsule (HJC). The aim of this study was to establish immunohistochemical properties of sensory neurons supplying HJC in the sheep. The study was carried out on 10 sheep, weighing about 30–40 kg. The animals were injected with a retrograde neural tracer Fast Blue (FB) into HJC. Sections of the spinal ganglia (SpG) with FB‐positive (FB+) neurons were stained using antibodies against calcitonin gene‐related peptide (CGRP) substance P (SP), pituitary adenylate cyclase‐activating peptide (PACAP), nitric oxide synthase (n‐NOS), neuropeptide Y (NPY), vasoactive intestinal polypeptide (VIP), Leu‐5‐enkephalin (Leu‐Enk), galanin (GAL) and vesicular acetylcholine transporter (VACHT). The vast majority of FB+ neurons supplying HJC was found in the ganglia from the 5th lumbar to the 2nd sacral. Immunohistochemistry revealed that most of these neurons were immunoreactive to CGRP or SP (80.7 ± 8.0% or 56.4 ± 4.8%, respectively) and many of them stained for PACAP or GAL (52.9 ± 2.9% or 50.6 ± 19.7%, respectively). Other populations of FB+ neurons were those immunoreactive to n‐NOS (37.8 ± 9.7%), NPY (34.6 ± 6.7%), VIP (28.7 ± 4.8%), Leu‐Enk (27.1 ± 14.6) and VACHT (16.7 ± 9.6).  相似文献   

9.
Pericellular arborization is reported to be the self-regulating structure in sensory ganglia. Although the calcitonin gene-related peptide (CGRP) or substance P (SP) immunoreactive pericellular arborization appeared in the sensory ganglia, there was no available information that CGRP and SP colocalize in this structure. As the attempts to resolve the question described above, the present study was undertaken to identify the coexistence of CGRP and SP in pericellular arborizations of the goat nodose and trigeminal ganglia by double immunohistochemistry. As the results show, CGRP immunoreactivity was present in every pericellular arborization containing SP immunoreactivity in trigeminal ganglia, however, pericellular network containing CGRP or SP immunoreactivity was not present in nodose ganglia. Unexpectedly, a few small satellite elements were observed to contain intense CGRP and SP immunoreactivity at the periphery of CGRP and SP immunoreactive neurones in nodose ganglia. Therefore, these results suggest that CGRP and SP coexist in pericellular arborizations, and that satellite cell as well as pericellular arborization may be involved in intraganglionic regulation of goat sensory ganglia.  相似文献   

10.
In the present study, both the ELISA test and immunohistochemical staining were used to investigate the influence of artificially induced ileitis on the chemical coding of enteric neurons in the pig. The ileum wall in experimental (E) pigs was injected in multiple sites with 4% paraformaldehyde to induce inflammation, while in the control (C) animals, the organ was injected with 0.1M phosphate buffer (pH 7.4). Three days after ileitis induction, samples of ileum wall from all the animals were evaluated for VIP, SP, CGRP, NPY, GAL and SOM concentration (ELISA test) and the expression of these biologically active substances by the enteric neurons (immunohistochemical staining). Quantitative results showed that ileitis decreased tissue concentration of VIP, CGRP and SOM but increased tissue concentration of SP, NPY and GAL. Immunochemistry revealed that in both the experimental and control pigs, VIP-positive (VIP+) nerve fibers supplied mainly ileal blood vessels, and the labeled pericarya were located in the inner (ISP) and outer submucous plexus (OSP). SP+ and CGRP+ nerve terminals were found in both the mucous and muscular membrane, while the labeled pericarya were found in ISP, OSP and myenteric plexus (MP). In both C and E pigs, the very few nerve terminals containing NPY and SOM were located mainly in the mucous membrane. NPY- or/and SOM-immunopositive nerve cell bodies were found in ISP, OSP and MP. GAL+ nerve fibers supplied all layers of the ileum and were most numerous in the muscular membrane, while the labeled pericarya were present in all the enteric plexuses. The present results suggest that enteric neurons are highly plastic in their response to inflammation.  相似文献   

11.
In the male pig, the bulbourethral gland (BG) is a particulary well developed accessory genital gland (AGG) which produces complex secretion contributing to the fluid component of semen. The secretory and motor function of AGGs is thought to be under the autonomic nervous system control. Although relatively much is known about the innervation of the prostate gland and, to a lesser degree, of the seminal vesicle, the paucity of data dealing with the innervation of BG is striking. Therefore, combined retrograde tracing and double-labelling immunofluorescence have been used to investigate the distribution and immunohistochemical properties of autonomic and primary afferent neurons projecting to this gland in the pig. BG-projecting neurons were found in some ipsilateral (I) and contralateral (C) sympathetic chain ganglia (SChG), the caudal mesenteric ganglion (CaMG), pelvic ganglia (PG) and some dorsal root ganglia (DRG). Immunohistochemistry revealed that the vast majority of CaMG and SChG BG-projecting neurons contained tyrosine hydroxylase (TH) and dopaminebeta-hydroxylase (DbetaH), and some neuropeptides including neuropeptide Y (NPY), somatostatin (SOM) and galanin (GAL). Three subpopulations of PG neurons supplying BG could be distinguished: 1) cholinergic neurons [vesicular acetylcholine transporter (VAChT)-positive] which also contained vasoactive intestinal polypeptide (VIP), nitric oxide synthase (NOS), SOM and NPY, 2) adrenergic neurons (TH-positive) which also stained for NPY, GAL or leu5-enkephalin (LEU), and 3) non-adrenergic, non-cholinergic neurons (NANC). DRG BG-projecting neurons contained mostly substance P (SP) and/or calcitonin gene-related peptide (CGRP) which sometimes colocalized with GAL. The possible functional significance of the substances found within the neurons is discussed.  相似文献   

12.
The present study investigated the arrangement and chemical coding of intramural nerve structures supplying the porcine stomach. Tissue samples comprising all layers of the wall of the ventricular fundus were collected from juvenile female pigs ( n  = 4), which were first deeply anaesthetized and then transcardially perfused with buffered paraformaldehyde. The cryostat sections were processed for double-labelling immunofluorescence to study the distribution of the intramural nerve structures (visualized with antibodies against protein gene-product 9.5) and their neurochemical characteristics using antibodies against vesicular acetylcholine transporter (VAChT), nitric oxide synthase (NOS), galanin (GAL), vasoactive intestinal-polypeptide (VIP), somatostatin (SOM) and substance P (SP). The study confirmed the presence of three distinct nerve plexuses within the wall of the porcine stomach including one myenteric plexus and two, outer and inner, submucous plexuses. The outer and inner submucous plexuses (OSP and ISP, respectively) were similar in respect to the chemical coding of neurons they contained. Most of the neurons expressed immunoreactivity to SP (ISP 58%; OSP 60%) or to VAChT (ISP 56%; OSP 56%), some of them stained for GAL (ISP 18%; OSP 15%) and solitary nerve cells were SOM-positive (in ISP only). No neurons in the submucous plexuses displayed immunoreactivity to VIP or NOS. In the myenteric plexus, some neurons stained for NOS (20%), VAChT (15%), GAL (10%), VIP (8%) or SP (8%) while no neurons immunoreactive for SOM were encountered. In both submucous and myenteric plexuses, many varicose nerve fibres expressed immunoreactivity to VAChT, GAL or SP, while VIP-, SOM- or NOS-positive nerve terminals were less numerous. The comparison of the present results with those obtained by other authors has revealed distinct inter-species differences regarding the arrangement and chemical coding of nerve structures supplying the mammalian stomach.  相似文献   

13.
The vagina, uterus and oviduct were shown to receive galanin immunoreactive (GAL-IR) nerve fibres, the number of which varied between particular organs. In the ovary, GAL-IR nerves were absent. A small number of these nerves were located in the layers of the oviduct. A moderate number of GAL-IR nerves were situated in the body and uterine horns, whereas the uterine cervix and vagina wall contained a large number of GAL-IR nerve fibres, evenly distributed throughout particular membranes of the organs. GAL-IR nerves were found to contain, simultaneously, either vasoactive intestinal polypeptide (VIP), substance P (SP) or Leu5-enkephalin (ENK). Many of the GAL-IR nerves contained tyrosine hydroxylase (TH). A group of GAL-IR nerves that did not possess immunoreactivity to VIP, SP, ENK or TH was also observed.  相似文献   

14.
Our previous study revealed the expression of substance P (SP) and calcitonin gene‐related peptide (CGRP) in sensory distal ganglion of the vagus (nodose ganglion) neurons in the pig. As these neuropeptides may be involved in nociception, the goal of these investigations was to determine possible expression of vasoactive intestinal polypeptide (VIP), SP and CGRP in the pituitary adenylate cyclase‐activating polypeptide‐immunoreactive (PACAP‐IR) porcine nodose perikarya. Co‐expression of these substances was examined using a double‐labelling immunofluorescence technique. To reveal the ganglionic cell bodies, the pan‐neuronal marker protein gene product 9.5 (PGP 9.5) was used. Quantitative analysis of the neurons revealed that 67.25% of the PGP 9.5+ somata in the right‐side ganglion and 66.5% in the left side, respectively, co‐expressed PACAP‐IR. Moreover, 60.6% of the PACAP‐IR cells in the right‐side ganglion and 62.1% in the left, respectively, co‐expressed VIP. SP‐IR was observed in 52.2 and 39.9% of the right and left ganglia, respectively. CGRP was found in 27.7 and 34.1% of the right and left distal ganglion of the vagus, respectively. High level of co‐expression of PACAP with VIP, SP and CGRP in the distal ganglia of the vagus sensory perikarya directly implicates studied peptides in their functional interaction during nociceptive vagal transduction.  相似文献   

15.
The pig has been widely used as a model in cardiovascular research. A unique feature of the porcine extrinsic sympathetic cardiac nerves is that they arise from intermediate ganglia in the thoracic cavity. The localization and pattern of distribution of nerve cell bodies and fibers containing tyrosine hydroxylase (TH), dopamine B-hydroxylase (DBH), neuropeptide Y (NPY), vasoactive intestinal polypeptide (VIP), somatostatin (SOM), galanin (GAL), methionine-enkephalin (MET) as well as calcitonin gene-related peptide (CGRP), substance P (SP) and pituitary adenylate cyclase-activating peptide (PACAP) was studied with immunohistochemistry. Almost all the neurons showed immunoreactivity to TH. Immunoreactivity to NPY, VIP, SOM, GAL, MET and PACAP was displayed by nerve cell bodies while nerve fibers exhibited immunoreactivity to all the neuropeptides studied. Therefore, it seems that the chemical coding of neurons and especially nerve fibers in the porcine intermediate ganglion share general similarities (with certain neurochemical variability), with porcine prevertebral ganglia (e.g., celiacomesenteric and caudal mesenteric ganglia).  相似文献   

16.
With 4 figures and 1 table In this study, the presence of several neurotransmitters and transmitter synthesizing enzymes was studied in hypoglossal nucleus (HN) of the juvenile (4 months old) female pigs (n = 3). Double‐labeling immunofluorescence revealed neurones expressing cholinacetyltranspherase (ChAT), calcitonin gene‐related peptide (CGRP), nitric oxide synthase (NOS), and somatostatin (SOM). Nerve fibers within HN were ChAT, CGRP, NOS, SOM, substance P (SP), Leu‐5‐enkephalin (Leu‐5‐Enk), ß‐dopamine hydroxylase (DßH), neuropeptide Y (NPY) positive. Virtually all the perikarya contained ChAT, whereas CGRP was present in 47% of the neurones. Nerve cell bodies containing NOS or SOM were only occasionally observed. Immunoreactive nerve fibers were found in a close vicinity of the perikarya, often forming baskets around nerve cell bodies. The results obtained were compared with similar data obtained in other species. The presence of immunoreactive structures, origin of the nerve fibers, and functional significance of the findings are discussed.  相似文献   

17.
Immunohistochemical studies were performed on male and female bladder and urethra collected from 4 adults dogs and 10 foetal specimens with crown-rump length from 53 to 155 mm (medium-sized breeds, presumptive 38 days of gestation to term). A panel of antisera was tested, including PGP 9.5 to describe the general intramural innervation, ChAT and TH to depict the cholinergic and nor-adrenergic components and NOS1, CGRP, SP, NPY, VIP, SOM, GAL, 5-HT to investigate the possible nitrergic, peptidergic and aminergic ones. A rich cholinergic innervation was present in adult bladder and urethra, along with a lesser number of adrenergic nerves and a small number of nitrergic ones. Either bladder or urethra received numerous CGRP-, SP-, NPY-, VIP-containing nerve fibres which were distributed throughout the muscle layers. All over the lower urinary tract strong to weak ChAT-, CGRP-, SP- and NPY-immunoreactivity was detected in intramural ganglia, in peripheral nerve bundles and around blood vessels. 5-HT-immunoreactive endocrine cells were present in the urethral epithelium. Early foetal organs were supplied only by cholinergic nerve fibres. Few NOS-, CGRP- and SP-ergic components appeared at the end of pregnancy. It can be guessed that sensory mediators such as CGRP and SP increase in postnatal ages while other neuropeptides, such as NPY and VIP, appear only after birth, as the urinary reflex consolidates.  相似文献   

18.
The ileocaecal junctions of 5 horses and 2 donkeys were examined by using antisera to the following peptides: somatostatin, glucagon, gastrin, neurotensin, vasoactive intestinal peptide (VIP), peptide histidine isoleucine (PHI), calcitonin gene-related peptide (CGRP), substance P (SP) and neuropeptide Y (NPY). Antisera to somatostatin, neurotensin and NPY demonstrated endocrine cells in the ileal- and caecal parts of the ileocaecal junction, while immunoreactivity for glucagon was demonstrated in endocrine cells of the ileal part only. Nerve cell bodies showing immunoreactivity to SP, VIP, CGRP and PHI were demonstrated in the myenteric and submucosal plexuses and were associated with small blood vessels in the submucosa of all the regions tested. Ramified nerve fibres in the submucosa immunoreactive to SP, VIP, CGRP and PHI extended to the mucosa and to small blood vessels in the submucosa. Nerve fibres showing immunoreactivity to SP, VIP and PHI extended to the circular smooth muscle layer of the ileocaecal junction.  相似文献   

19.
The autonomic innervation of the mammalian respiratory system is complex, and involves a wide variety of peptide and non-peptide neurotransmitters which will have an important role in normal laryngeal function and the response to disease. This innervation has been partially described in the horse airway and lung, but there is no information on the equine larynx. This paper describes the expression and distribution of nerve fibres immunoreactive for vasoactive intestinal peptide (VIP), calcitonin gene-related peptide (CGRP), substance P (SP) and the adrenergic enzymatic marker dopamine beta-hydroxylase (DBetaH) in the mucosa of the equine larynx. The overall relative density of nerve fibres immunoreactive for the different antigens was VIP>CGRP>SP>DBetaH. There were differences in the distribution of nerve fibre types, although each antigen was found in nerve fibres adjacent to blood vessels and mucous glands. VIP -like immunoreactivity (VIP -Li) was particularly extensive in association with mucous glands. SP - and CGRP -like immunoreactivity (SP -Li, CGRP -Li) were also seen close to the epithelium, with occasional nerve fibres coursing beneath and between the epithelial cells. Fragments of SP -Li and CGRP -Li fibres were also present in large nerve fibre bundles and ganglionic cell clusters, but not in the neurons themselves. The density of nerve fibres immunoreactive for DBetaH was very low and restricted to blood vessels and mucous glands. There was marked variation in the density of nerve fibres at the different sites, with the greatest density, particularly for VIP, over the arytenoid cartilage. Immunoreactive nerve fibres were less plentiful over the epiglottis, and the density of all types of nerve fibres was low over the cricoid cartilage. Overall VIP -Li nerve fibres were the most plentiful.  相似文献   

20.
To discuss the significance of laryngeal sensation on various disorders of the horse, we studied the morphological and topographical characteristics of sensory structures in the laryngeal mucosa using immunohistochemistry and immunoelectron microscopy. Various sensory structures, i.e. glomerular endings, taste buds and intraepithelial free nerve endings, were found in the laryngeal mucosa by immunohistochemistry for protein gene product 9.5 (PGP 9.5) and neurofilament 200kD (NF200). Glomerular nerve endings were distributed mainly in the epiglottic mucosa; some endings were also found in the arytenoid region arising from thick nerve fibres running through the subepithelial connective tissue. Some terminals directly contacted the epithelial cells. Taste buds were distributed in the epithelium of the epiglottis and aryepiglottic fold. In the whole mount preparation, the taste buds were supplied by the terminal branching of the thick nerve fibres. In some cases, the taste buds were arranged around the opening of the duct of the epiglottic glands. The intraepithelial free nerve endings were found to be immunoreactive for substance P (SP) and calcitonin gene-related peptide (CGRP). These nerve endings were surrounded by the polygonal stratified epithelial cells in the supraglottic region, and by the ciliated cells in the subglottic region. The density of the intraepithelial free nerve endings was highest in the corniculate process of the arytenoid region and lowest in the vocal cord mucosa. The densities of CGRP- and SP-immunoreactive nerve endings in the arytenoid region were (mean +/- s.d.) 30.6+/-12.0 and 10.0+/-4.9 per unit epithelial length (1 mm), respectively and in the vocal fold mucosa, 1.1+/-0.9 and 0.8+/-0.7, respectively. Approximately one half of the CGRP immunoreactive nerve endings were immunoreactive for SP, and most SP-immunoreactive nerve endings were also immunoreactive for CGRP. Well-developed subepithelial plexus with numerous intraepithelial fibres were observed in flat or round mucosal projections that existed on the corniculate process of the arytenoid region. In conclusion, the laryngeal mucosa of the horse seems to have morphology- and/or location-dependent sensory mechanisms against various endo-and exogenious stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号