首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the temperate zone of Japan, Pinus densiflora Sieb. et Zucc. bears needles of up to three age classes in the upper crown and up to five age classes in the lower crown. To elucidate the effects of leaf age on photosynthetic parameters and its relationships with leaf mass per unit area (LMA) and leaf nitrogen (N(l)) concentration on an area (N(a)) and mass (N(m)) basis, we measured seasonal variations in LMA, N(l), light-saturated photosynthetic rate (A(max)), stomatal conductance (g(s)), maximum rate of carboxylation (V(cmax)) and maximum rate of electron transport (J(max)) in leaves of all age classes in the upper and lower crown. Leaf mass per unit area increased by 27% with increasing leaf age in the lower crown, but LMA did not depend on age in the upper crown. Leaf age had a significant effect on N(m) but not on N(a) in both crown positions, indicating that decreases in N(m) resulted from dilution. Photosynthetic parameters decreased significantly with leaf age in the lower crown (39% for A(max) and 43% for V(cmax)), but the effect of leaf age was not as great in the upper crown, although these parameters exhibited seasonal variation in both crown positions. Regression analysis indicated a close relationship between LMA and N(a), regardless of age class or when each age class was pooled (r(2) = 0.57-0.86). Relationships between LMA and N(a) and among A(max), V(cmax) and J(max) were weak or not significant when all age classes were examined by regression analysis. However, compared with older leaves, relationships among LMA, N(a) and A(max) were stronger in younger leaves. These results indicate that changes in LMA and N(l) mainly reflect light acclimation during leaf development, but they are only slightly affected by irradiance in mature leaves. In conclusion, LMA and N(l) are useful parameters for estimating photosynthetic capacity, but age-related effects need to be taken into account, especially in evergreen conifers.  相似文献   

2.
To investigate whether long-term elevated carbon dioxide concentration ([CO(2)]) causes declines in photosynthetic enhancement and leaf nitrogen (N) owing to limited soil fertility, we measured photosynthesis, carboxylation capacity and area-based leaf nitrogen concentration (N(a)) in Pinus taeda L. growing in a long-term free-air CO(2) enrichment (FACE) facility at an N-limited site. We also determined how maximum rates of carboxylation (V(cmax)) and electron transport (J(max)) varied with N(a) under elevated [CO(2)]. In trees exposed to elevated [CO(2)] for 5 to 9 years, the slope of the relationship between leaf photosynthetic capacity (A(net-Ca)) and N(a) was significantly reduced by 37% in 1-year-old needles, whereas it was unaffected in current-year needles. The slope of the relationships of both V(cmax) and J(max) with N(a) decreased in 1-year-old needles after up to 9 years of growth in elevated [CO(2)], which was accompanied by a 15% reduction in N allocation to the carboxylating enzyme. Nitrogen fertilization (110 kg N ha(-1)) in the ninth year of exposure to elevated [CO(2)] restored the slopes of the relationships of V(cmax) and J(max) with N(a) to those of control trees (i.e., in ambient [CO(2)]). The J(max):V(cmax) ratio was unaffected by either [CO(2)] or N fertilization. Changes in the apparent allocation of N to photosynthetic components may be an important adjustment in pines exposed to elevated [CO(2)] on low-fertility sites. We conclude that fundamental relationships between photosynthesis or its component processes with N(a) may be altered in aging pine needles after more than 5 years of exposure to elevated atmospheric [CO(2)].  相似文献   

3.
During the summers (July and August) of 2002-2005, we measured interannual variation in maximum carboxylation rate (V(cmax)) within a Fagus crenata Blume crown in relation to climate variables such as air temperature, daytime vapor pressure deficit (VPD) and daily photosynthetic photon flux, leaf nitrogen per unit area (N(a)) and leaf mass per unit area (LMA). Climatic conditions in the summers of 2002-2004 differed markedly, with warm and dry atmospheric conditions in 2002, cool, humid and cloudy conditions in 2003, and warm clear conditions in 2004. Conditions in summer 2005 were intermediate between those of summers 2002 and 2003, and similar to recent (8-year) means. In July, marked interannual variation in V(cmax) was mainly observed in leaves in the high-light environment (relative photon flux > 50%) within the crown. At the crown top, V(cmax) was about twofold higher in 2002 than in 2003, and V(cmax) values in 2004 and 2005 were intermediate between those in 2002 and 2003. In August, although interannual variation in V(cmax) among the years 2003, 2004 and 2005 was less, marked variation between 2002 and the other study years was evident. Multiple regression analysis of V(cmax) against the climate variables revealed that VPD of the previous 10-30 days had a significant influence on variability in V(cmax). Neither N(a), LMA nor leaf CO(2) conductance from the stomata to the carboxylation site explained the variability in V(cmax). Our results indicate that the long-term climatic response of V(cmax) should be considered when estimating forest carbon gain across the year.  相似文献   

4.
The three-dimensional (3-D) architecture of a peach tree (Prunus persica L. Batsch) growing in an orchard near Avignon, France, was digitized in April 1999 and again four weeks later in May 1999 to quantify increases in leaf area and crown volume as shoots developed. A 3-D model of radiation transfer was used to determine effects of changes in leaf area density and canopy volume on the spatial distribution of absorbed quantum irradiance (PAR(a)). Effects of changes in PAR(a) on leaf morphological and physiological properties were determined. Leaf mass per unit area (M(a)) and leaf nitrogen concentration per unit leaf area (N(a)) were both nonlinearly related to PAR(a), and there was a weak linear relationship between leaf nitrogen concentration per unit leaf mass (N(m)) and PAR(a). Photosynthetic capacity, defined as maximal rates of ribulose-1,5-bisphosphate carboxylase (Rubisco) carboxylation (V(cmax)) and electron transport (J(max)), was measured on leaf samples representing sunlit and shaded micro-environments at the same time that the tree crown was digitized. Both V(cmax) and J(max) were linearly related to N(a) during May, but not in April when the range of N(a) was low. Photosynthetic capacity per unit N(a) appeared to decline between April and May. Variability in leaf nitrogen partitioning between Rubisco carboxylation and electron transport was small, and the partitioning coefficients were unrelated to N(a). Spatial variability in photosynthetic capacity resulted from acclimation to varying PAR(a) as the crown developed, and acclimation was driven principally by changes in M(a) rather than the amount or partitioning of leaf nitrogen.  相似文献   

5.
The vertical profile in leaf photosynthetic capacity was investigated in a terra firme rain forest in central Amazonia. Measurements of photosynthesis were made on leaves at five levels in the canopy, and a model was fitted to describe photosynthetic capacity for each level. In addition, vertical profiles of photosynthetic photon flux density, leaf nitrogen concentration and specific leaf area were measured. The derived parameters for maximum rate of electron transport (J(max)) and maximum rate of carboxylation by Rubisco (V(cmax)) increased significantly with canopy height (P < 0.05). The highest J(max) for a single canopy level was measured at the penultimate canopy level (20 m) and was 103.9 &mgr;mol m(-2) s(-1) +/- 24.2 (SE). The highest V(cmax) per canopy height was recorded at the top canopy level (24 m) and was 42.8 +/- 5.9 &mgr;mol m(-2) s(-1). Values of J(max) and V(cmax) at ground level were 35.8 +/- 3.3 and 20.5 +/- 1.3 &mgr;mol m(-2) s(-1), espectively. The increase in photosynthetic capacity with increasing canopy height was strongly correlated with leaf nitrogen concentration when examined on a leaf area basis, but was only weakly correlated on a mass basis. The correlation on an area basis can be largely explained by the concomitant decrease in specific leaf area with increasing height. Apparent daytime leaf respiration, on an area basis, also increased significantly with canopy height (P < 0.05). We conclude that canopy photosynthetic capacity can be represented as an average vertical profile, perturbations of which may be explained by variations in the environmental variables driving photosynthesis.  相似文献   

6.
Naturally seeded Scots pine (Pinus sylvestris L.) trees, age 25-30 years, were subjected to two soil-nitrogen-supply regimes and to elevated atmospheric CO(2) concentrations by the branch-in-bag method from April 15 to September 15 for two or three years. Gas exchange in detached shoots was measured in a diffuse radiation field. Seven parameters associated with photosynthetic performance and two describing stomatal conductance were determined to assess the effects of treatments on photosynthetic components. An elevated concentration of CO(2) did not lead to a significant downward regulation in maximum carboxylation rate (V(cmax)) or maximum electron transport rate (J(max)), but it significantly decreased light-saturated stomatal conductance (g(sat)) and increased minimum stomatal conductance (g(min)). Light-saturated rates of CO(2) assimilation were higher (24-31%) in shoots grown and measured at elevated CO(2) concentration than in shoots grown and measured at ambient CO(2) concentration, regardless of treatment time or nitrogen-supply regime. High soil-nitrogen supply significantly increased photosynthetic capacity, corresponding to significant increases in V(cmax) and J(max). However, the combined elevated CO(2) + high nitrogen-supply treatment did not enhance the photosynthetic response above that observed in the elevated CO(2) treatment alone.  相似文献   

7.
Maximum Rubisco activities (V(cmax)), rates of photosynthetic electron transport (J(max)), and leaf nitrogen and chlorophyll concentrations were studied along a light gradient in the canopies of four temperate deciduous species differing in shade tolerance according to the ranking: Populus tremula L. < Fraxinus excelsior L. < Tilia cordata Mill. = Corylus avellana L. Long-term light environment at the canopy sampling locations was characterized by the fractional penetration of irradiance in the photosynthetically active spectral region (I(sum)). We used a process-based model to distinguish among photosynthesis limitations resulting from variability in fractional nitrogen investments in Rubisco (P(R)), bioenergetics (P(B), N in rate-limiting proteins of photosynthetic electron transport) and light harvesting machinery (P(L), N in chlorophyll and thylakoid chlorophyll-protein complexes). On an area basis, V(cmax) and J(max) (V(a) (cmax) and J(a) (max)) increased with increasing growth irradiance in all species, and the span of variation within species ranged from two (T. cordata) to ten times (C. avellana). Examination of mass-based V(cmax) and J(max) (V(m) (cmax) and J(m) (max)) demonstrated that the positive relationships between area-based quantities and relative irradiance mostly resulted from the scaling of leaf dry mass per area (M(A)) with irradiance. Although V(m) (cmax) and J(m) (max) were positively related to growth irradiance in C. avellana, and J(m) (max) was positively related to irradiance in P. tremula, the variation range was only a factor of two. Moreover, V(m) (cmax) and J(m) (max) were negatively correlated with relative irradiance in T. cordata. Rubisco activity in crude leaf extracts generally paralleled the gas-exchange data, but it was independent of light in T. cordata, suggesting that declining V(m) (cmax) with increasing relative irradiance was related to increasing diffusive resistances from the intercellular air spaces to the sites of carboxylation in this species. Because irradiance had little effect on foliar nitrogen concentration, the relationships of P(B) and P(R) with irradiance were similar to those of V(m) (cmax) and J(m) (max). Shade-intolerant species tended to have greater P(B) and P(R) and also larger V(a) (cmax) and J(a) (max) than more shade-tolerant species. However, for the whole material, P(B) and P(R) varied only about 50%, whereas V(a) (cmax) and J(a) (max) varied more than 15-fold, further emphasizing the importance of leaf anatomical plasticity in determining photosynthetic acclimation to high irradiance. Leaf chlorophyll concentrations and fractional nitrogen investments in light harvesting increased hyperbolically with decreasing irradiance to improve quantum use efficiency for incident irradiance. The effect of irradiance on P(L) was of the same order as its effect in the opposite direction on M(A), leading to either a constant model estimate of leaf absorptance with I(sum) or a slightly positive correlation. We conclude that leaf morphological plasticity is a more relevant determinant of foliage adaptation to high irradiance than foliage biochemical properties, whereas biochemical adaptation to low irradiance is of the same magnitude as the anatomical adjustments. Although shade-tolerant species did not have greater chlorophyll concentrations and P(L) than shade-intolerant species, they possessed lower M(A), and could maintain a more extensive foliar display for light capture with constant biomass investment in leaves.  相似文献   

8.
Zhang S  Dang QL 《Tree physiology》2006,26(11):1457-1467
To investigate the interactive effects of atmospheric carbon dioxide concentration ([CO(2)]) and nutrition on photosynthesis and its acclimation to elevated [CO(2)], a two-way factorial experiment was carried out with two nutritional regimes (high- and low-nitrogen (N), phosphorus (P) and potassium (K)) and two CO(2) concentrations (360 and 720 ppm) with white birch seedlings (Betula papyrifera Marsh.) grown for four months in environment-controlled greenhouses. Elevated [CO(2)] enhanced maximal carboxylation rate (V(cmax)), photosynthetically active radiation-saturated electron transport rate (J(max)), actual photochemical efficiency of photosystem II (PSII) in the light (DeltaF/F(m)') and photosynthetic linear electron transport to carboxylation (J(c)) after 2.5 months of treatment, and it increased net photosynthetic rate (A(n)), photosynthetic water-use efficiency (WUE), photosynthetic nitrogen-use efficiency (NUE) and photosynthetic phosphorus-use efficiency (PUE) after 2.5 and 3.5 months of treatment, but it reduced stomatal conductance (g(s)), transpiration rate (E) and the fraction of total photosynthetic linear electron transport partitioned to oxygenation (J(o)/J(T)) after 2.5 and 3.5 months of treatment. Low nutrient availability decreased A(n), WUE, V(cmax), J(max), triose phosphate utilization (TPU), (/F(m)' - F)//F(m)' and J(c), but increased J(o)/J(T) and NUE. Generally, V(cmax) was more sensitive to nutrient availability than J(max). There were significant interactive effects of [CO(2)] and nutrition over time, e.g., the positive effects of high nutrition on A(n), V(cmax), J(max), DeltaF/F(m)' and J(c) were significantly greater in elevated [CO(2)] than in ambient [CO(2)]. In contrast, the interactive effect of [CO(2)] and nutrition on NUE was significant after 2.5 months of treatment, but not after 3.5 months. High nutrient availability generally increased PUE after 3.5 months of treatment. There was evidence for photosynthetic up-regulation in response to elevated [CO(2)], particularly in seedlings receiving high nutrition. Photosynthetic depression in response to low nutrient availability was attributed to biochemical limitation (or increased mesophyll resistance) rather than stomatal limitation. Elevated [CO(2)] reduced leaf N concentration, particularly in seedlings receiving low nutrition, but had no significant effect on leaf P or K concentration. High nutrient availability generally increased area-based leaf N, P and K concentrations, but had negligible effects on K after 2.5 months of treatment.  相似文献   

9.
Canopy photosynthetic capacity, measured as leaf maximum carboxylation rate (V (cmax)), is a key factor in ecosystem gas exchange models applied at different scales. We report seasonal and interannual variations in V(cmax) of natural beech stands (Fagus crenata Blume) along an altitudinal gradient in the temperate climate zone of Japan. Estimates are based on 6 years of gas exchange measurements. Pronounced seasonal and interannual variations in V(cmax) normalized to 25 degrees C (V(c,25)) were found for sun leaves. The seasonal pattern of V(c,25) generally followed an inverse parabolic curve, with an increase in spring, peak values in the middle of the growth period and a decline in autumn. Leaf nitrogen concentration (N(l)) and leaf mass per area were significantly related to V(c,25) during spring and summer, but were unrelated in autumn when V(c,25) declined. Annual peak V(c,25) ranged from 40.1 to 97.0 micromol m(-2) s(-1) and varied over as much as a twofold range at a particular site. Annual peak V(c,25) occurred about 28 days before annual peak N(l), with which it was poorly related. Our results show that it can be inappropriate to include constant values of photosynthetic parameters in ecosystem gas exchange models.  相似文献   

10.
A significant and well-supported hypothesis is that increased growth following nitrogen (N) fertilization is a function of the relationships among photosynthesis, tissue N content and the light environment-specifically, the within-canopy allocation of N among leaves and the within-leaf allocation of N between Rubisco and chlorophyll. We tested this hypothesis in a field trial that included annual applications of N,P,K fertilizer (from planting) to a Eucalyptus globulus Labill. plantation growing on uniform leached sands. Growth of 4-year-old E. globulus increased significantly in response to fertilization. Leaf N and phosphorus concentrations were 0.1-0.5 g m(-2) and 0.4-0.5 g m(-2) higher in fertilized trees compared to unfertilized trees, respectively. Stomatal conductance (g(s)) at the maximum photosynthetic rate (A(max)) was between 0.2 and 0.4 mol m(-2) s(-1) higher in fertilized trees, but A(max) and the concentration of Rubisco (Rub(a)) were unaffected by fertilization. This seeming paradox, where there was no response of A(max) to fertilization despite increases in g(s) and leaf N concentration, was explained by reduced in vivo specific activity of Rubisco in fertilized trees. Acclimation to light, measured by redistribution of N between Rubisco and chlorophyll, was unaffected by fertilization. Distribution of leaf N followed irradiance gradients, but A(max) did not. Maximum photosynthetic rate was correlated with leaf N concentration only in unfertilized trees. These findings indicate that the relationships among photosynthesis, N and the light environment in E. globulus are affected by N,P,K fertilization.  相似文献   

11.
Mesophyll conductance, g(m), was estimated from measurements of stomatal conductance to carbon dioxide transfer, g(s), photosynthesis, A, and chlorophyll fluorescence for Year 0 (current-year) and Year 1 (1-year-old) fully sunlit leaves from short (2 m tall, 10-year-old) and tall (15 m tall, 120-year-old) Nothofagus solandrii var. cliffortiodes trees growing in adjacent stands. Rates of photosynthesis at saturating irradiance and ambient CO(2) partial pressure, A(satQ), were 25% lower and maximum rates of carboxylation, V(cmax), were 44% lower in Year 1 leaves compared with Year 0 leaves across both tree sizes. Although g(s) and g(m) were not significantly different between Year 0 and Year 1 leaves and g(s) was not significantly different between tree heights, g(m) was significantly (19%) lower for leaves on tall trees compared with leaves on short trees. Overall, V(cmax) was 60% higher when expressed on the basis of CO(2) partial pressure at the chloroplasts, C(c), compared with V(cmax) on the basis of intercellular CO(2) partial pressure, C(i), but this varied with leaf age and tree size. To interpret the relative stomatal and mesophyll limitations to photosynthesis, we used a model of carbon isotopic composition for whole leaves incorporating g(m) effects to generate a surface of 'operating values' of A over the growing season for all leaf classes. Our analysis showed that A was slightly higher for leaves on short compared with tall trees, but lower g(m) apparently reduced actual A substantially compared with A(satQ). Our findings showed that lower rates of photosynthesis in Year 1 leaves compared with Year 0 leaves were attributable more to increased biochemical limitation to photosynthesis in Year 1 leaves than differences in g(m). However, lower A in leaves on tall trees compared with those on short trees could be attributed in part to lower g(m) and higher stomatal, L(s), and mesophyll, L(m), limitations to photosynthesis, consistent with steeper hydraulic gradients in tall trees.  相似文献   

12.
We used gas exchange techniques to estimate maximum rate of carboxylation (V(cmax)), a measure of photosynthetic capacity, in the understory and upper crown of a closed deciduous forest over two seasons. There was extensive variability in photosynthetic capacity as a result of vertical canopy position, species type, leaf age and drought. Photosynthetic capacity was greater in oaks than in maples and greater in the overstory than in the understory. Parameter V(cmax) was maximal early in the season but declined slowly throughout most of the summer, and then more rapidly during senescence. There was also an apparent decline during drought in some trees. Variability in V(cmax) as a result of species or vertical canopy gradients was described well by changes in leaf nitrogen per unit area (N(a)). However, temporal changes in V(cmax) were often poorly correlated with leaf nitrogen, especially in spring and summer and during drought. This poor correlation may be the result of a seasonally dependent fractional allocation of leaf nitrogen to Rubisco; however, we could not discount Rubisco inactivation, patchy stomatal closure or changes in mesophyll resistance. Consequently, when a single annual regression equation of V(cmax) versus N(a) was used for this site, there were substantial errors in the temporal patterns in V(cmax) that will inevitably result in modeling errors.  相似文献   

13.
Sitka spruce (Picea sitchensis (Bong.) Carr.) seedlings were supplied with solutions containing nitrogen (N) at 0.1 x or 2 x the optimum rate (low-N and high-N supply, respectively) and grown either outside in a control plot or inside open-top chambers and exposed to ambient (355 &mgr;mol mol(-1)) or elevated (700 &mgr;mol mol(-1)) CO(2) concentration ([CO(2)]). Gas exchange measurements, chlorophyll determinations and nutrient analysis were made on current-year (< 1-year-old) shoots of the upper whorl after the seedlings had been growing in the [CO(2)] treatments for 17 months and the nutrient treatments for 6 months. Total seedling biomass and biomass allocation were assessed at the end of the experiment. Nutrient treatment had a significant effect on the light response curves, irrespective of [CO(2)] or chamber treatment; seedlings supplied with high-N rates had higher net photosynthetic rates than seedlings supplied with low-N rates. The degree of photosynthetic stimulation in response to elevated [CO(2)] was larger in seedlings receiving high-N rates than in seedlings receiving low-N rates. Light-saturated net photosynthesis of seedlings grown and measured in elevated [CO(2)] was 26% higher than that of seedlings grown and measured in ambient [CO(2)]. There was no significant effect of [CO(2)] or chamber treatment on the CO(2) response curves of seedlings receiving High-N supply rates. In contrast, analysis of the CO(2) response curves of seedlings receiving Low-N supply rates showed acclimation to elevated [CO(2)]. Both maximum rate of carboxylation (V(cmax)) and maximum electron transport capacity (J(max)) were lower and J(max)/V(cmax) higher in seedlings in the elevated [CO(2)] treatment. There was no effect of elevated [CO(2)] on stomatal conductance, although it was highly dependent on foliar [N], ranging from ~60 mmol m(-2) s(-1) at ~1.5 g N m(-2) to 200 mmol m(-2) s(-1) at ~5 g N m(-2). In the high-N and low-N treatments, foliar N concentration was 10 and 28% lower in seedlings grown in elevated [CO(2)] than in seedlings grown in ambient [CO(2)], respectively. There was no [CO(2)] effect on foliar phosphorus concentration ([P]). Chlorophyll concentration increased with increasing N supply in all treatments. There was no significant effect of elevated [CO(2)] on specific leaf area. Chlorophyll concentration expressed either on an area or dry mass basis for a given foliar [N] was higher in seedlings grown in elevated [CO(2)] than in seedings grown in ambient [CO(2)]. Elevated [CO(2)] increased total biomass accumulation by 37% in seedlings in the high-N treatment but had no effect in seedlings in the low-N treatment. There was a proportionally bigger allocation of biomass to roots of seedlings in the elevated [CO(2)] + low-N supply rate treatment compared with seedlings in other treatments. This resulted in a reduction in aboveground biomass compared with corresponding seedlings grown in ambient [CO(2)].  相似文献   

14.
We examined the vertical profiles of leaf characteristics within the crowns of two late-successional (Fagus crenata Blume and Fagus japonica Maxim.) and one early-successional tree species (Betula grossa Sieb. et Zucc.) in a Japanese forest. We also assessed the contributions of the leaves in each crown layer to whole-crown instantaneous carbon gain at midday. Carbon gain was estimated from the relationship between electron transport and photosynthetic rates. We hypothesized that more irradiance can penetrate into the middle of the crown if the upper crown layers have steep leaf inclination angles. We found that such a crown has a high whole-crown carbon gain, even if leaf traits do not change greatly with decreasing crown height. Leaf area indices (LAIs) of the two Fagus trees (5.26-5.52) were higher than the LAI of the B. grossa tree (4.50) and the leaves of the F. crenata tree were more concentrated in the top crown layers than were leaves of the other trees. Whole-crown carbon gain per unit ground area (micromol m(-2) ground s(-1)) at midday on fine days in summer was 16.3 for F. crenata, 11.0 for F. japonica, and 20.4 for B. grossa. In all study trees, leaf dry mass (LMA) and leaf nitrogen content (N) per unit area decreased with decreasing height in the crown, but leaf N per unit mass increased. Variations (plasticity) between the uppermost and lowermost crown layers in LMA, leaf N, the ratio of chlorophyll to N and the ratio of chlorophyll a to b were smaller for F. japonica and B. grossa than for F. crenata. The light extinction coefficients in the crowns were lower for the F. japonica and B. grossa trees than for the F. crenata tree. The leaf carbon isotope ratio (delta(13)C) was higher for F. japonica and B. grossa than for F. crenata, especially in the mid-crown. These results suggest that, in crowns with low leaf plasticity but steep leaf inclination angles, such as those of F. japonica and B. grossa trees, irradiance can penetrate into the middle of the crowns, thereby enhancing whole-crown carbon gain.  相似文献   

15.
Foliar light-saturated net assimilation rates (A) generally decrease with increasing tree height (H) and tree age (Y), but it is unclear whether the decline in A is attributable to size- and age-related modifications in foliage morphology (needle dry mass per unit projected area; M(A)), nitrogen concentration, stomatal conductance to water vapor (G), or biochemical foliage potentials for photosynthesis (maximum carboxylase activity of Rubisco; V(cmax)). I studied the influences of H and Y on foliage structure and function in a data set consisting of 114 published studies reporting observations on more than 200 specimens of various height and age of Picea abies (L.) Karst. and Pinus sylvestris L. In this data set, foliar nitrogen concentrations were independent of H and Y, but net assimilation rates per unit needle dry mass (A(M)) decreased strongly with increasing H and Y. Although M(A) scaled positively with H and Y, net assimilation rates per unit area (A(A) = M(A) x A(M)) were strongly and negatively related to H, indicating that the structural adjustment of needles did not compensate for the decline in mass-based needle photosynthetic rates. A relevant determinant of tree height- and age-dependent modifications of A was the decrease in G. This led to lower needle intercellular CO2 concentrations and thereby to lower efficiency with which the biochemical photosynthetic apparatus functioned. However, V(cmax) per unit needle dry mass and area strongly decreased with increasing H, indicating that foliar photosynthetic potentials were lower in larger trees at a common intercellular CO2 concentration. Given the constancy of foliar nitrogen concentrations, but the large decline in apparent V(cmax) with tree size and age, I hypothesize that the decline in Vcmax results from increasing diffusive resistances between the needle intercellular air space and carboxylation sites in chloroplasts. Increased diffusive limitations may be the inevitable consequence of morphological adaptation (changes in M(A) and needle density) to greater water stress in needles of larger trees. Foliage structural and physiological variables were nonlinearly related to H and Y, possibly because of hyperbolic decreases in shoot hydraulic conductances with increasing tree height and age. Although H and Y were correlated, foliar characteristics were generally more strongly related to H than to Y, suggesting that increases in height rather than age are responsible for declines in foliar net assimilation capacities.  相似文献   

16.
Jin SH  Huang JQ  Li XQ  Zheng BS  Wu JS  Wang ZJ  Liu GH  Chen M 《Tree physiology》2011,31(10):1142-1151
Potassium (K) influences the photosynthesis process in a number of ways; however, the mechanisms underlying the photosynthetic response to differences in K supply are not well understood. Concurrent measurements of gas exchange and chlorophyll fluorescence were made to investigate the effect of K nutrition on photosynthetic efficiency and mesophyll conductance (g(m)) in hickory seedlings (Carya cathayensis Sarg.) in a greenhouse. The results show that leaf K concentrations < 0.7-0.8% appeared to limit the leaf net CO2 assimilation rate (A), and that the relative limitation of photosynthesis due to g(m) and stomatal conductance (g(s)) decreased with increasing supplies of K. However, a sensitivity analysis indicated that A was most sensitive to the maximum carboxylation rate of Rubisco (V(c,max)) and the maximum rate of electron transport (J(max)). These results indicate that the photosynthetic rate is primarily limited by the biochemical processes of photosynthesis (V(c,max) and J(max)), rather than by g(m) and g(s) in K-deficient plants. Additionally, g(m) was closely correlated with g(s) and the leaf dry mass per unit area (M(A)) in hickory seedlings, which indicates that decreased g(m) and g(s) may be a consequence of leaf anatomical adaptation.  相似文献   

17.
Temperature effects on photosynthesis were studied in seedlings of evergreen Mediterranean cork oak (Quercus suber L.). Responses to changes in temperature and the temperature optima of maximal carboxylation rate (V(cmax)) and maximal light-driven electron flux (J(max)) were estimated from gas exchange measurements and a leaf-level photosynthesis model. The estimated temperature optima were approximately 34 and 33 degrees C for V(cmax) and J(max), respectively, which fall within the lower range of temperature optima previously observed in deciduous tree species. The thermostability of the photosynthetic apparatus was estimated according to the temperature at which basal chlorophyll a fluorescence begins to increase (T(c)). The T(c) was highly variable, increasing from 42 to 51 degrees C when ambient temperature rose from 10 to 40 degrees C, and increasing from 44 to 54 degrees C with decreasing soil water availability while net CO(2) assimilation rate dropped to almost zero. When a heat shock was imposed, an additional small increase in T(c) was observed in drought-stressed and control seedlings. Maximal T(c) values following heat shock were about 56 degrees C, which, to our knowledge, are the highest values that have been observed in tree species. In conclusion, the intrinsic temperature responses of cork oak did not differ from those of other species (similar T(c) under ambient temperature and water availability, and relatively low thermal optima for photosynthetic capacity in seedlings grown at cool temperatures). However, the large ability of cork oak to acclimate to drought and elevated temperature may be an important factor in the tolerance of this evergreen Mediterranean species to summer drought and high temperatures.  相似文献   

18.
Photosynthetic acclimation to highly variable local irradiance within the tree crown plays a primary role in determining tree carbon uptake. This study explores the plasticity of leaf structural and physiological traits in response to the interactive effects of ontogeny, water stress and irradiance in adult almond trees that have been subjected to three water regimes (full irrigation, deficit irrigation and rain-fed) for a 3-year period (2006-08) in a semiarid climate. Leaf structural (dry mass per unit area, N and chlorophyll content) and photosynthetic (maximum net CO(2) assimilation, A(max), maximum stomatal conductance, g(s,max), and mesophyll conductance, g(m)) traits and stem-to-leaf hydraulic conductance (K(s-l)) were determined throughout the 2008 growing season in leaves of outer south-facing (S-leaves) and inner northwest-facing (NW-leaves) shoots. Leaf plasticity was quantified by means of an exposure adjustment coefficient (ε=1-X(NW)/X(S)) for each trait (X) of S- and NW-leaves. Photosynthetic traits and K(s-l) exhibited higher irradiance-elicited plasticity (higher ε) than structural traits in all treatments, with the highest and lowest plasticity being observed in the fully irrigated and rain-fed trees, respectively. Our results suggest that water stress modulates the irradiance-elicited plasticity of almond leaves through changes in crown architecture. Such changes lead to a more even distribution of within-crown irradiance, and hence of the photosynthetic capacity, as water stress intensifies. Ontogeny drove seasonal changes only in the ε of area- and mass-based N content and mass-based chlorophyll content, while no leaf age-dependent effect was observed on ε as regards the physiological traits. Our results also indicate that the irradiance-elicited plasticity of A(max) is mainly driven by changes in leaf dry mass per unit area, in g(m) and, most likely, in the partitioning of the leaf N content.  相似文献   

19.
Responses of photosynthesis (A) to intercellular CO(2) concentration (C(i)) were measured in a fast- and a slow-growing clone of Pinus radiata D. Don cultivated in a greenhouse with a factorial combination of nitrogen and phosphorus supply. Stomatal limitations scaled with nitrogen and phosphorus supply as a fixed proportion of the light-saturated photosynthetic rate (18.5%) independent of clone. Photosynthetic rates at ambient CO(2) concentration were mainly in the V(cmax)-limited portion of the CO(2) response curve at low-nitrogen supply and at the transition between V(cmax) and J(max) at high-nitrogen supply. Nutrient limitations to photosynthesis were partitioned based on the ratio of foliage nitrogen to phosphorus expressed on a leaf area basis (N(a)/P(a)), by minimizing the mean square error of segmented linear models relating photosynthetic parameters (V(cmax), J(max), T(p)) to foliar nitrogen and phosphorus concentrations. A value of N(a)/P(a) equal to 23 (mole basis) was identified as the threshold separating nitrogen (N(a)/P(a) < or = 23) from phosphorus (N(a)/P(a) > 23) limitations independent of clones. On an area basis, there were significant positive linear relationships between the parameters, V(cmax), J(max), T(p) and N(a) and P(a), but only the relationships between T(p) and N(a) and P(a) differed significantly between clones. These findings suggest that, in genotypes with contrasting growth, the responses of V(cmax) and J(max) to nutrient limitation are equivalent. The relationships between the parameters V(cmax), J(max), T(p) and foliage nutrient concentration on a mass basis were unaffected by clone, because the slow-growing clone had a significantly greater leaf area to mass ratio than the fast-growing clone. These results may be useful in discriminating nitrogen-limited photosynthesis from phosphorus-limited photosynthesis.  相似文献   

20.
Gas exchange was measured in a forest plantation dominated by Fraxinus angustifolia Vahl. and Quercus robur L. in northern Italy, over three growing seasons that differed in water availability (2001, 2002 and 2003). The objectives were to: (1) determine variability in the photosynthetic parameters V(cmax) (maximum carboxylation capacity) and J(max) (maximum rate of electron transport) in relation to species, leaf ontogeny and drought; and (2) assess the potential of the photosynthesis-nitrogen relationship for estimating leaf photosynthetic capacity. Marked seasonal and interannual variability in photosynthetic capacity was observed, primarily caused by changes in leaf ontogeny and water stress. Relatively small differences were apparent between species. In the absence of water stress (year 2002), the seasonal patterns of V(cmax) and J(max) were characterized by a rapid increase during spring, a relatively steady state during summer and a rapid decline during autumn. In years with a moderate (year 2001) or a severe (year 2003) water stress, photosynthetic capacity decreased during the summer in proportion to drought intensity, without a parallel decline in leaf nitrogen content. The V(cmax)-nitrogen relationship was significantly affected by both leaf ontogeny and drought. As a consequence, the use of a single annual regression to predict V(cmax) from leaf nitrogen yielded good estimates only during the summer and in the absence of water stress. Irrespective of the mechanisms by which photosynthetic capacity is affected by water stress, its large seasonal and interannual variability is of great relevance for modeling the forest carbon cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号