首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Properties of organic farming composts were examined during the composting process: pH, electrical conductivity, C/N ratio, total N content, NH4+ content, NO3?content, ash content, and organic matter content. In addition to these properties the respiration rate, microbial population counts, hydrolysis of Fluorescein Diacetate (FDA) and the activity of the enzyme amidase were studied. Composts at several stages of maturity were incubated in soil, and their N mineralization rates were measured. The end of the thermophilic stage was characterized by irreversible decrease in pile temperature to under 55°C, followed by stabilization of the chemical properties. This stage in the composting process is also characterized by decrease in CO2 evolution rate, changes in microbial populations and specific patterns in FDA hydrolysis and amidase activity. Based on this evidence, we suggest that biological parameters can be considered as indicators for compost maturity.  相似文献   

2.
Manures lose N through volatilization almost immediately after deposit. Attempts to control losses include the addition of a C source to stimulate nitrogen immobilization. Composting is a treatment process that recommends the addition of carbonaceous materials to achieve a C:N ratio of 30:1 to stimulate degradation and immobilize nitrogen. Dairies near cities may be able to reduce N loss from manures by composting with urban carbonaceous residues such as municipal solid waste (MSW) or MSW compost that, by themselves, have little agronomic value. Studies were conducted using a self-heating laboratory composter where dairy solids were mixed with MSW compost to determine the reduction of N loss during composting. One-to-one mixtures (v/v) of dairy manure solids and MSW compost were composted and NH3 volatilization, CO2 evolution and temperatures were compared to composting of manure alone. Addition of MSW compost resulted in increased CO2 evolution and reduced N loss. Nitrogen loss from composting dairy manure alone was four to ten times greater than that from composting dairy manure mixed with MSW compost. Adjustment of the C:N ratio to 25 by adding MSW compost to manure appeared to be the major factor in reducing N losses.  相似文献   

3.
Two types of compost, consisting of sweet sorghum bagasse with either sewage sludge or a mixture of pig slurry and poultry manure, were studied in a pilot plant using the Rutgers system. The total degradation of the piles as determined by the weight loss of organic matter during the bio-oxidative and maturation phases accounted for 64% of the organic matter applied and followed a first-order kinetic function. Concentrations of total and organic N increased during the composting process as the degradation of organic C compounds reduced the compost weight. Losses of N through NH3 volatilization were low, particularly in the compost with sewage sludge due to pH values of <7.0 and the low temperatures reached in the compost during the first 2 weeks. The C:N ratio in the two composts decreased from 24.0 and 15.4 to values between 12 and 10. Increases in cation exchange capacity and in fulvic and humic acid-like C revealed that the organic matter had been humified during composting. The humification index, the C:N ratio, fulvic:humic acid-like C, and cation exchange capacity proved to be the most suitable parameters for assessing the maturity of these composts.  相似文献   

4.
This study investigated the cocomposting of pine bark with goat manure or sewage sludge, with or without inoculated effective microorganisms (EM). Composting was done for 90 days and parameters monitored over this period included temperature, pH, electrical conductivity (EC), C/N ratio, inorganic N, as well as tannin content. Changes in temperature, pH and EC during composting were consistent with those generally observed with other composting systems. The parameters were influenced by the feedstock materials used but were not affected by inoculation with effective microorganisms. The highest temperature measured from pine bark-goat manure composts was 60°C but much lower maximum temperatures of 40°C and 30°C were observed for pine bark sewage sludge and pine bark alone composts, respectively. The C/N ratios of the composts decreased with composting time. Ammonium levels decreased while nitrate levels increased with composting time. Tannin levels generally decreased with composting time but the extent of decrease depended on the contents of the composting mixtures. The trends observed showed that temperature, pH, EC, C/N ratio, tannin levels, and inorganic NH4-N and NO3-N were reliable parameters for monitoring the co-composting of pine bark with goat manure or sewage sludge. The pine bark-goat manure compost had more desirable nutritional properties than the pine bark and pine bark-sewage sludge composts. It had high CEC, near neutral pH, low C/N ratio, and high amounts of inorganic N and bases (K, Ca, and Mg) while pine bark compost had the least amounts of nutrients, was acidic, and had high C/N ratio and low CEC. The final tannin content of the pine bark-goat manure compost was below the 20 g/kg upper threshold level for horticultural potting media, implying that its use as a growing medium would not cause toxicity to plants.  相似文献   

5.
The fate of organic matter during composting is poorly understood. Therefore, we analysed composts of sewage sludges and green wastes (44 samples representative of 11 stages of biodegradation) by conventional chemical methods: pH, humic (HA) and fulvic acid (FA) content, C, N and organic matter (OM) content, and by 13C CPMAS NMR to assess the decomposition process of the organic matter. Chemical changes clearly occurred in two phases: first, decomposition of OM during the first 2 months was characterized by decreased C/N ratios, OM content and increased pH; and second, a humification process with increased HA/FA ratios. NMR spectrum changes confirmed this pattern, with an increase in aromaticity and a decrease in alkyl C. A decrease of syringyl to guaiacyl ratio (S/G), a sign of lignin transformation, also indicated humification during composting. NMR spectroscopic properties of composts were also studied by means of principal components analysis (PCA) and revealed changes according to the degree of compost maturation. The factorial map presents a chronological distribution of composts on the two first principal components. The influences of eight chemical factors on the PCA ordination of composts as monitored by their evolution by NMR were also studied by multivariate analyses. PCA clearly indicated two phases: the rapid decomposition of organic matter followed by the formation of humic‐like substances. The first phase, that is ‘new’ composts, was strongly correlated with OM contents, pH and C/N ratios whereas the second phase, corresponding to ‘old’ compost, was correlated with pH, HA content and HA/FA ratio. These results confirm that knowledge of the formation of humic substances is indispensable to suitable monitoring of the composting process.  相似文献   

6.
Composting of pruning waste, leaves and grass clippings was monitored by different parameters. A windrow composting pile, having the dimensions 2.5 m (height) x 30 m (length) was establish. The maturation of pruning waste compost was accompanied by a decline in NH4 +-N concentration, water soluble C (WSC) and an increase in NO3 -N content. Both organic matter (OM) content and total N (TN) losses during composting followed a first-order kinetic equation. These results were in agreement with the microbiological activity measured either by the CO2 respiration or dehydrogenase (DH-ase) activity during the process. Statistically significant correlations were found between DH-ase activity, easily biodegradable organic C forms, NH4 +-N and NO3 -N concentrations and organic matter content and N losses. For this reason, DH-ase activity and the CO2 evolution could be used as good indicators of pruning waste compost maturity. In contrast, humification parameters data from the organic matter fractionation did not agree with the initially expected values and did not contribute to the assessment of compost maturity. Neither the cation exchange capacity nor the germination index showed a clear tendency during the composting time, suggesting that these parameters are not suitable for evaluating the dynamics of the process.  相似文献   

7.
As interest in food waste composting grows, so does the need for proven composting methods. Stability testing has been proposed as a compost quality assurance tool. We conducted this study to: (i) to evaluate the efficacy of simple outdoor composting methods in producing a compost with a low, stable decomposition rate, and (ii) to determine the reliability of simple, 4-h compost stability evaluation methods. Composting was conducted outdoors in winter and spring in Eugene, Oregon without moisture addition. Mixed food waste was combined with screened dairy solids and ground yard trimmings. Sawdust was used to cover windrows for the first 27 d of composting. Compost windrow temperatures remained above 55°C for 30+ d. Carbon dioxide evolved with several 4-h test methods was strongly correlated (r2 > 0.7) with CO2 evolved using a 48-h test. A limited-turn windrow (LTW) composting system produced compost with slightly greater stability than a passively aerated windrow (PAW) composting system. Food waste compost samples had a low CO2 evolution rate after 71 to 99 d using either composting system. Compost CO2 evolution rate at 25°C decreased with composting time, reaching approximately 1 to 4 mg CO2-C g compost C?1 d?1 for the PAW method and 0.5 to 2 mg CO2-C g compost C?1 d?1 for the LTW method. Putrescible organic matter in food waste was effectively decomposed in outdoor windrows using composting methods that did not employ forced aeration, self-propelled windrow turners, or manufactured composting vessels. Several 4-h stability tests showed promise for implementation as quality assurance tools.  相似文献   

8.
  【目的】  探究添加酸解氨基酸 (AA) 对不同植物源废弃物堆肥进程、氮素损失阻控、堆肥品质和产品效果的影响。  【方法】  分别向3种含碳量不同的植物源废弃物 (中药渣、木薯渣和蘑菇渣) 中添加5%、10%和15% (体积质量比) 的酸解氨基酸,以不添加酸解氨基酸处理作为对照,监测堆肥过程中的温度和理化指标。堆肥结束后,以辣椒和茄子作为供试作物进行盆栽和大田试验。盆栽试验以不施肥和施化肥为对照,试验处理包括9个堆肥产品及其添加促生菌 (解淀粉芽孢杆菌SQR9) 制备的生物有机肥产品,共24个,调查了不同处理辣椒和茄子的生物量和生理指标。田间试验以不施肥和施化肥为对照,以盆栽效果最佳的堆肥产品及其制备的生物有机肥单施、两个产品分别与化肥配合,共14个处理,调查了辣椒和茄子的生长状况。  【结果】  添加酸解氨基酸延长了中药渣和木薯渣堆肥的高温期持续时间,而蘑菇渣堆肥的高温期持续时间随酸解氨基酸添加量的增加而减少。酸解氨基酸加入后,3种原料堆体的pH均有所下降,且整体上酸解氨基酸添加量越多,pH下降越显著。酸解氨基酸明显促进了3种原料堆肥中纤维素、半纤维素和总碳的分解,且促进效果和氮磷钾养分积累量随着酸解氨基酸添加量的增加而提高。此外,酸解氨基酸加入后由于引入H+,使堆体的电导率有小幅上升。盆栽试验表明,3种有机物料堆肥均以添加10% AA制成的有机肥最佳,且能显著提高辣椒植株的鲜重、干重、株高、茎粗和叶绿素含量,添加促生菌后进一步提高了堆肥的效果。以10% AA处理的有机肥及其生物有机肥进行大田试验,中药渣有机肥中,生物有机肥处理为辣椒田间处理最佳,生物有机肥加化肥处理为茄子田间处理最佳;木薯渣有机肥处理中,生物有机肥处理在辣椒和茄子田间试验中均为最佳处理;蘑菇渣有机肥处理,生物有机肥加化肥处理在辣椒和茄子大田试验中各项指标均为最优;表明10% AA处理的有机肥配合功能菌株施用能促进作物生长、提高作物产量,整体效果显著优于空白和化肥处理。  【结论】  添加酸解氨基酸能够降低堆肥pH,减少堆肥过程中的氮素损失,延长堆肥高温期的持续时间,提高有机碳降解效率及氮磷钾相对含量;该堆肥与功能菌株配伍制成的生物有机肥,与等养分化肥处理相比,可以显著提高作物的生物量和产量。  相似文献   

9.
添加竹酢液和菌剂对园林废弃物堆肥理化性质的影响   总被引:14,自引:1,他引:13  
为研究不同水平竹酢液及菌剂对堆肥效果的影响,以园林废弃物为原料,通过L9(34)正交设计以竹酢液和菌剂为添加剂进行静态好氧高温堆肥试验,分析了堆肥过程中各个时期不同处理的温度、pH值、EC值、全N、全P和全K的变化趋势,并对腐熟后各处理堆肥产品中的全N、全P、全K、Mg、Fe和S的质量分数进行了方差分析与多重比较。结果表明,添加竹酢液和菌剂的处理使堆肥初期温度上升较快,有效降低了堆肥产品中的pH值和EC值;添加竹酢液和菌剂对于堆肥产品中的全N、全P、全K、Fe和S质量分数均影响极显著,可有效增加全P、全K、Fe和S质量分数,且存在交互作用;氮以氨气形式挥发损失,与空白比较,加入菌剂会加速氮的损失,而添加一定稀释倍数的竹酢液可有效保氮;将堆肥产品间各指标进行比较,稀释1 000倍竹酢液2 L+0.5%“有机废物发酵菌曲”的园林废弃物堆肥效果 最好。  相似文献   

10.
不同调控措施对葡萄冬剪枝条堆肥效果的影响   总被引:1,自引:0,他引:1  
王震  胡强  朱计谋  赵师成 《土壤通报》2021,52(3):629-634
以葡萄冬剪枝条为原料,以饼肥、尿素、碳酸氢铵为氮源,EM菌、生物菌肥发酵剂、秸秆发酵剂为接种外源微生物,设置9个处理,进行为期60天的堆肥,研究了不同调控措施堆体温度、堆肥基质物理性质、pH值、堆体腐熟程度和养分含量的变化。研究结果表明:葡萄枝屑添加不同氮源对堆温影响较大,添加饼肥的处理增加了堆体50 ℃以上高温的持续时间,且处理1(添加饼肥、C/N 20∶1、接种EM菌发酵剂)高温维持时间最长,为10天。堆肥结束时,各处理容重、总孔隙度、通气孔隙度和持水孔隙度都有所增加,且都在理想基质范围内,各处理pH值变化基本一致,均是先升高后降低;除处理6(添加碳酸氢铵、C/N 30∶1、接种生物菌肥发酵剂)外,其他处理种子发芽指数均在1以上,各处理种子发芽指数都可满足植物的生长;处理1全量氮、磷和钾含量相对较高,分别为3.160%、0.959%和1.880%,实际应用价值更大。综合考虑,添加饼肥、调整碳氮比为20∶1、接种EM菌发酵剂,为最佳葡萄枝屑基质化发酵配比。  相似文献   

11.
Assessment of compost maturity is important for successful use of composts in agricultural and horticultural production. We assessed the “maturity” of four different sawdust-based composts. We composted sawdust with either cannery waste (CW), duck manure (DM), dairy (heifer) manure (HM) or potato culls (PC) for approximately one year. Windrows were turned weekly for the first 60 days of composting, covered for four winter months and then turned monthly for six more months. We measured compost microbial respiration (CO2 loss), total C and N, C:N ratio, water soluble NO3-N and NH4-N, dissolved organic carbon (DOC), pH and electrical conductivity at selected dates over 370 days. Compost effects on ryegrass biomass and N uptake were evaluated in a greenhouse study. We related compost variables to ryegrass growth and N uptake using regression analysis. All composts maintained high respiration rates during the first 60 days of composting. Ammonium-N concentrations declined within the first 60 days of composting, while NO3-N concentrations did not increase until 200+ days. After 250+ days, DM and PC composts produced significantly more ryegrass biomass than either CW or HM composts. Total C, microbial respiration and water-extractable NO3-N were good predictors of compost stability/maturity, or compost resistance to change, while dissolved organic carbon, C:N ratio and EC were not. The compost NO3-N/CO2-C ratio was calculated as a parameter reflecting the increase in net N mineralization and the decrease in respiration rate. At ratio values >8 mg NO3-N/mg CO2-C/day, ryegrass growth and N uptake were at their maximum for three of the four composts, suggesting the ratio has potential as a useful index of compost maturity.  相似文献   

12.
Composting has become a widely used method of recycling yard wastes such as leaves and grass. However, very little information is available on the chemical changes that occur during the composting of different mixtures of leaves and grass. In this study, three different mixes of leaves and grass were composted at approximately 60% moisture in a temperature controlled laboratory scale system. The mixes, which consisted of all leaves (Mix 1); 2/3 leaves + 1/3 grass (Mix 2); and 1/3 leaves + 2/3 grass (Mix 3), had initial C:N ratios of 48, 30 and 22, respectively. The compost process was monitored by measuring the rate of CO2 evolution, pH, stability, the degree of humification and changes in polysaccharide, carbon, nitrogen and organic matter content. Results showed that the greater the grass content of the mix, the higher the initial pH and the faster the rate of CO2 evolution, organic matter loss and nitrogen loss. After 43 days of composting, Mixes 1, 2 and 3, lost, respectively 61%, 74% and 78% of the cellulose, 57%, 79% and 82% of the hemicellulose and 40%, 49% and 42% of the acid-insoluble organic matter. Humification indices and stability tests indicated that composts produced from the three mixes were well humified and stable.  相似文献   

13.
Efficacy of various compost starter cultures was tested in a bench-scale composting system utilizing a ceiling process temperature of 60°C. Variables tested with time were CO2 and NH3 evolution, conversion of carbon and the succession of microorganisms in the compost. When an initial compost pH of 7.0 was used, a laboratory produced starter culture (Culture A) was much less effective than a commercial culture (Culture B). Low activity in the experiment with Culture A was due to a low pH(<5.5) that developed within 30 h after inoculation. Inoculation of Culture A with a thermophilic strain (HA1) of Bacillus licheniformis isolated from Culture B prevented the decrease in pH and significantly increased the rate of decomposition. It also enhanced populations of other thermophilic bacterial groups during the process.  相似文献   

14.
Characteristics in composts were determined during composting of chitinous source-amended compost (Cscom) and no chitinous source-amended compost (Ncom). At the end of the composting, moisture content, organic matter (OM), total nitrogen (T-N), and carbon to nitrogen ratio (C/N ratio) decreased in both the composts, whereas the phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) content increased. pH of the compost was adversely changed with electrical conductivity (EC). Enzyme activities declined until the end of composting except phosphatase. In the final-stage, Cscom has higher number of chitinolytic bacteria than in Ncom. One bacterium predominant was isolated and identified as Bacillus licheniformis. Growth of the plant pathogens were suppressed by Cscom and Ncom water extracts, with the suppression being higher in Cscom. Paenibacillus ehmensis, known for high antifungal potential, was isolated from Cscom. From our study, it can be concluded that amendment of chitin material improves the chemical, biological properties, and disease suppression ability of compost.  相似文献   

15.
The objective of this research was to evaluate a variety of stability and maturity indices for yard trimmings compost produced in the Puget Sound region of western Washington State. Compost samples were collected periodically during a 133-d composting cycle at a commercial composting facility, showing that indices of compost respiration rate were sensitive indicators of compost quality. All respiration rate indices identified a period of high respiration rates during active composting (first 27 d), and a period of relatively stable respiration rates during the latter part of curing (70 to 133 d). Chemical tests of compost solids showed less promise as maturity indicators, but provided valuable information on final compost quality. Mature yard trimmings compost had a C:N of 12, an NH4-N to NO3-N ratio of less than 4, a cation exchange capacity (CEC) of 400 cmol per kg of compost-C, and a pH between 6.5 and Seed germination tests and sensory tests (color and odor) were of limited value in assessing compost maturity. Fully-cured compost produced with forced aeration had a Solvita CO2 test value of 6 to 7 and a respiration rate via the alkaline trap method of 2 mg CO2-C g compost-C?1 d?1. It reheated less than 2°C in an insulated Dewar flask in a 7 d incubation. Further evaluation and calibration of respiration test protocols for compost quality assurance testing programs are recommended.  相似文献   

16.
A composting experiment was carried out to study changes in physical [color, odor, temperature, organic matter (OM) loss], chemical [C:N ratio, water-soluble organic carbon (Cw):organic N (Norg) ratio, NH4 +-N and NO3 ?-N, humic acid (HA):fulvic acid (FA) ratio, humification index (HI) and cation-exchange capacity (CEC):total organic carbon (TOC) ratio)] and biological [seed germination index (GI)] parameters to assess compost maturity and stability over a period of 150 days. Five composts were prepared using a mixture of different farm wastes with or without enrichment of N, rock phosphate (RP) and microorganism (MO) inoculation. All the composts appeared to change to a granular and dark grey color without foul odor, and attained a constant temperature with no measurable changes (ambient level) at 120 days of composting. Correlation analysis showed that the optimal values of the selected parameters for our experimental conditions are as follows: organic matter loss > 42%, C:N ratio < 15, HA:FA ratio > 1.9, HI > 30%, CEC:TOC ratio > 1.7 and Cw:Norg ratio < 0.55. Composts enriched with N + RP or N + RP + MO matured at 150 and 120 days, respectively, whereas composts without any enrichment or enrichment with N or RP + MO did not mature even at 150 days of composting.  相似文献   

17.
Compost stability is an important parameter of compost quality. Among tests proposed to evaluate compost stability, microbial respiration is one of the better accepted tests. Variations in rates of CO2 evolution during composting were studied in two pilot pruning waste piles using a windrow composting system. To measure the CO2 production rate, two methods were compared: the alkaline trap test and gas detection tubes. Both respiration tests indicated increasing compost stability with processing time, but CO2 evolution rates from the alkaline trap method were higher than values from the gas detection tube method. A first-order kinetic equation was used to describe CO2 evolution over time. A linear relationship (r=0.81, p<0.01) was found between the two methods. Although both methods could distinguish unstable compost from stable compost, CO2 detection tubes were easier to use and gave results in a shorter period of time.  相似文献   

18.
ABSTRACT

Lantana camara is an evergreen, which is the most notorious toxic weed of the terrestrial ecosystem. It is native to subtropical and tropical America, but a few taxa are indigenous to tropical Asia and Africa. An enormous quantity of green foliage is produced by this weed, which cannot be used as livestock feed due to its toxic properties. Management through utilization seems the only sustainable option for this problem. In this study, the composting of Lantana biomass was done and changes in chemical characteristics of waste biomass were measured. The composting caused decreases in pH, organic carbon, C:N ratio totK and totC by 2.0-, 1.25-, 1.66-, and 19-fold, respectively, but increases in electrical conductivity (EC), ash content, totN, totP, totZn, and totMg of 2.0-, 1.11-, 3.36-, 1.76-, 1.28-, and 1.70-fold, respectively. The C/N ratio (20.1) and soil respiration rate (47.12–66.20 mg CO2-C/100 g) suggested the compost maturity at 52 days. The high bacterial (38.67 CFU × 10?7 g?1), fungal (30.0 CFU × 10?3 g?1), and actinomycetes (32.0 CFU × 10?5 g?1) population in composted material suggested the suitability of compost for agronomic purposes. Phytotoxity measured through compost:water extract and compost pot trial suggested the germination index (GI) in the ranges of 52.3%–122.3% and 74.5%–166.9%, respectively. The high ranges of chlorophyll, protein, and carotenoids in seedling than control suggested the non-toxicity of ready materials. Results suggested that composting can be a potential technology to manage Lantana biomass for sustainable land fertility management programs.  相似文献   

19.
This work is aimed at characterizing compost maturity and, organic matter transformation during this process, by the use of nondestructive spectroscopic and thermal techniques, together with some chemical analysis. Composting was conducted in a laboratory over a period of one year using the organic fraction of domestic wastes, fresh farmyard manure, spent coffee and sawdust as the raw materials. Samples were retired after different periods of composting and were analyzed by differential scanning calorimetry (DSC) and fourier transform infrared (FTIR) spectroscopy as well as by routine chemical parameters including temperature, pH, C/N, ash content and humic-like substances content. Results showed that in case of domestic wastes, spent coffee and farmyard manure, the C/N ratios, ash and humic acid content showed a typical high rate of change during the first 197 days of composting and tended to stabilize thereafter, probably as a result of the maturity of the produced composts. In contrast, sawdust underwent only a very limited transformation even after one year of composting. Thermoanalytical and spectroscopic data confirms these finding and gives useful and complementary information with respect to the structure, the heterogeneity and the relative stability of the compost products. In particular, as the decomposition proceeded, there was an increase in aromatic to aliphatic structure ratio and a decrease in the importance of peptide structures of composts. Besides, both the spectroscopic and the thermal behavior of compost samples, retired beyond 197 days of composting, tended to be regular, less dependent on the raw material and close to that characterizing mature composts, with the exception of sawdust samples. We concluded that the spectroscopic and thermal techniques used are complementary to one another and to chemical tests and could be a powerful and fast approach for the study of compost maturity.  相似文献   

20.
Empty fruit bunches (EFB), coffee grounds (CG), and palm oil mill sludge (POMS) were composted in the laboratory for 60 days in order to study the composting process of lignocellulosic food industry wastes. In the first part of the experiment, EFB, CG, and POMS were composted alone (composting of single lignocellulosic material), and in the second part, EFB was composted with CG (1EFB:1CG ratio) and POMS (1EFB:1POMS ratio). The effects of different turning frequencies on the physical and chemical properties of composting were observed and its relation with the degradation process was highlighted. Results showed that oil and grease were first degraded, followed by recalcitrant compounds like alpha-cellulose, hemicellulose, and lignin. Cellulose and hemicellulose were degraded mainly during the 60 days of composting, and the progressive reduction of the cellulose/lignin ratio proved that the main evolution of these wastes took place. It was observed that 3, 6, and 9 days of turning frequency did not affect the physicochemical properties of the compost. Composting EFB alone failed to achieve the required quality of maturity compost within 60 days, while CG and POMS recorded low in biological activity. Better results were shown in composting of EFB mixed with coffee grounds and POMS, the C/N ratio dropped to less than 20 by the 8th week of the composting period. Composting of mixed lignocellulosic materials showed larger changes compared to composting of single lignocellulosic material, reaching a C/N ratio below 20 within 8 weeks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号