首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated the effects of nitrogen (N) source, rate, and timing of application on dry-matter yield (DMY), N responses, N uptake and N-use efficiency (NUE) in a grass crop. The experiment used three fertilizer treatments: calcium ammonium nitrate (CAN), urea, and urea treated with N-(n-butyl) thiophosphoric triamide (NBTPT), applied at 0 (control), 25, 50, and 75 kg ha?1 of N over eighteen application timings. Results showed relatively lower agronomic performance of urea compared with CAN when applied in early spring. Urea reported lower N responses, lower relative DMY (90 percent), and relative N uptake (85 percent), which translated in lower NUE (0.45 kg kg?1) compared with CAN (0.70 kg kg?1). In spring fertilizer applications, urea and NBTPT showed DMY and NUE values comparable to those obtained with CAN. However, NBTPT enhanced overall performance of urea, which was shown with increasing temperatures toward summer or increasing N application rates. For summer applications, the efficiency of urea was less (P < 0.05) than that of CAN or NBTPT in all measured parameters, suggesting greater ammonia volatilization loss in urea-treated grass. Nitrogen saved in volatilization improved uptake and responses in NBTPT-treated grass, and hence DMY was not affected compared with CAN in summer fertilizer applications. The results of this study are supportive of increased usage of urea-based fertilizers treated with NBTPT.  相似文献   

2.
氨挥发是肥料氮素损失的重要途径之一,损失率因土壤类型、气候条件、肥料用量、施肥时间和方式等不同而存在很大差异。为了筛选提高氮肥利用率的肥料运筹方式,本文利用长期定位试验平台,采用间歇密闭通气法,研究了有机无机肥长期施用条件下小麦季土壤氨挥发损失及其影响因素。结果表明,不同肥料种类和配施强烈地影响着土壤氨挥发,在150kgN·hm^-2用量下小麦季氨挥发损失量以NK和有机肥处理为最高,分别达到17.89和15.70kgN·hm^-2,占氮肥用量的10.47%-11.93%,显著高于NPK、NP和有机无机肥配施(1/20M)处理。土壤氨挥发速率与气温呈显著正相关,基肥施用后灌水可以有效地降低氨挥发损失。NPK肥料平衡施用或者有机无机肥配施可以减少氨挥发损失。  相似文献   

3.
ABSTRACT

In the developing world, fertilizer application is commonly achieved by broadcasting nutrients to the soil surface without incorporation. A commonly used nitrogen (N) source is urea and if not incorporated, can sustain N losses via ammonia volatilization and lower crop yields. This study evaluated the effect of planting, N rate and application methods on maize (Zea mays L.) grain yield. An experiment with a randomized complete block design (nine treatments and three replications) was established in 2013 and 2018 in Oklahoma. The planting methods included; farmer practice (FP), Oklahoma State University hand planter (OSU-HP), and John Deere (JD) mechanical planter. Side-dress N application methods included; dribble surface band (DSB), broadcast (BR), and OSU-HP. Nitrogen was applied at the rate of 30 and 60 kg ha?1 as urea and UAN at V8 growth stage. On average, planting and applying N at 60 kg ha?1 using OSU-HP resulted in the highest yield (11.4 Mg ha?1). This exceeded check plot yield (5.59 Mg ha?1) by 104%. Nitrogen application improved grain yield by over 57% when compared to the 0-N check (8.77 Mg ha?1). Mid-season N placement below the soil surface using OSU-HP makes it a suitable alternative to improve grain yield.  相似文献   

4.
This study determined N uptake by serrano chilli pepper for two years and evaluated the effects of biochar amendment or organic N (org-N) fertilizer on N use under a Mediterranean climate. A field experiment was conducted using microplots from 2016 to 2017 in California, USA. Treatments included biochar amendment rates [0 (control), 10, 30 and 50 tons (t) ha−1] biochar, all with 100% inorganic N fertilizer (165 kg N ha−1), and org-N fertilizer applications at 50%, 75% and 100% of the total available N supply. Pepper yield, vegetative biomass, N uptake, ammonia (NH3) volatilization and changes in soil organic carbon (SOC), and nitrate were determined. Pepper yield was highest in the 50% org-N and lowest in the 50 t ha−1 biochar treatment during the first year. There were no differences in fruit yield among the organic treatments during the second year, and all were higher than that from the control. The 100% org-N treatment had less NH3 volatilization than all other treatments during the first year. The two-year results showed that chilli pepper plants sequestered 4.6‒6.1 kg N to produce one ton fresh pepper fruits. During the first year, the 50% org-N treatment resulted in the highest N productivity or yield with lowest projected N fertilizer application requirements as compared to other treatments although there were no differences among all treatments in the second year. Thus, a combination of inorganic and org-N fertilizers can be an effective strategy to improve soil N productivity in long-term management.  相似文献   

5.
ABSTRACT

Ammonia (NH3) volatilization from fertilizer applications reduces efficiency and poses environmental hazards. This study used semi-open static chambers to measure NH3 volatilization from organic fertilizers (feather meal, blood meal, fish emulsion, cyano-fertilizer) to evaluate the impacts of fertilizer source, application method, and rate on NH3 volatilization. In 2014, two application rates (28 and 56 kg N ha?1) were applied to lettuce (Lactuca sativa L.). Solid fertilizers (feather meal, blood meal) were preplant applied in a subsurface band, whereas liquid fertilizers (fish emulsion, cyano-fertilizer) were applied weekly through drip irrigation beginning two weeks after transplanting. In 2015, a single application rate (28 kg N ha?1) was applied to cucumber (Cucumis sativus L.). Solid fertilizers were applied in either subsurface or surface bands. There was a significant difference in NH3 volatilization among fertilizers, but there was little difference between application rates. Liquid fertilizers had lower NH3 emissions than solid fertilizers due to their timing and placement. In 2014, blood meal at 56 kg N ha?1 and feather meal at both rates had the highest NH3 fluxes. In 2015, surface-banded blood and feather meal had the highest NH3 fluxes. Fertilizer decisions for organic systems should consider NH3 emission losses and practices for their reduction.  相似文献   

6.
不同缓控释氮肥对连作春玉米产量及氮肥去向的影响   总被引:2,自引:0,他引:2  
在山西省连作春玉米区连续4年设置大田定位试验,设置不施氮肥(CK)、一次性基施尿素(CU1)、追施尿素(CU2)、树脂包膜尿素(PCU)、硫包衣尿素(SCU)、多酶金缓释尿素(MEU)6个施肥处理,研究施用缓控释氮肥对春玉米产量、氮肥去向及氮素平衡的影响,为春玉米氮素养分的科学管理技术提供参考。结果表明:(1)缓控释氮肥处理能够明显提高春玉米产量,促进氮素吸收。与CU1处理相比,SCU、MEU、PCU和CU2处理可分别提高春玉米产量17.51%,9.88%,9.62%,9.48%,同时氮肥农学利用效率分别提高7.5,4.2,4.1,4.1 kg/kg。(2)不同缓控释氮肥处理的作物吸收肥料氮以及肥料氮在0-100 cm土层残留量之间存在显著差异。SCU、MEU、PCU、CU2和CU1的氮肥表观利用率分别为36.1%,32.5%,26.5%,26.7%,19.5%,肥料氮在0-100 cm土层残留量分别占施氮量的28.5%,31.6%,35.7%,35.5%,39.1%。此外,与一次性基施尿素相比,缓控释氮肥能够显著降低肥料氮的损失,SCU、MEU、PCU和CU2分别降低了22.65%,18.81%,8.99%,8.47%。(3)综合分析不同氮肥处理的农田氮素平衡,SCU处理的春玉米吸氮量最高,为261.5 kg/hm^2,其次是MEU,为253.5 kg/hm^2。SCU的0-100 cm土层残留量在缓控释氮肥中最低,为124.1 kg/hm^2,MEU和PCU分别为131.04,140.09 kg/hm^2。SCU处理的氮表观损失量最低,为106.3 kg/hm^2,MEU和PCU分别为111.6,125.1 kg/hm^2。在山西省春玉米主产区土壤上,缓控释氮肥能够显著促进春玉米对氮素的吸收,减少氮素损失。硫包衣尿素和多酶金缓释尿素的效果相对较好。  相似文献   

7.
To study the effects of organic and inorganic nitrogen (N) on yield and nodulation of chickpea (Cicer arietinum L.) cv. ILC 482, a spilt-plot experiment based on randomized complete block design with four replications was conducted in 2008 at the experimental farm of the Agriculture Faculty, University of Mohaghegh, Ardabili. Experimental factors were inorganic N fertilizer at four levels (0, 50, 75, and 100 kg ha?1) in the main plots that applied in the urea form, and two levels of inoculation with Rhizobium bacteria (with and without inoculation) as subplots. Nitrogen application and Rh. inoculation continued to have positive effects on yield and its attributes. The greatest plant height, number of primary and secondary branches, number of pods per plant, number of filled and unfilled pods per plant, number of grains per plant, grain yield, and biological yield were obtained from the greatest level of N fertilizer (100 kg urea ha?1) and Rh. inoculation. Application of 75 and 100 kg ha?1 urea showed no significant difference in these traits. Furthermore, the greatest rate of N usage (100 kg urea ha?1) adversely inhibited nodulation of chickpea. Number and dry weight of nodules per plant decreased significantly with increasing N application rate. The lowest values of these traits recorded in application of 100 kg ha?1 urea. Results indicated that application of suitable amounts of N fertilizer (i.e., between 50 and 75 kg urea ha?1) as starter can be beneficial to improve nodulation, growth, and final yield of inoculated chickpea plants.  相似文献   

8.
ABSTRACT

Nutrient uptake and grain and straw yield of Egyptian winter wheat (Triticum aestivum L. Merr.) were evaluated for two site-years after the seed inoculation with two biofertilizer products, Phosphorien, containing the phosphorus (P)-solubilizing bacteria Bacillus megatherium, and Nitrobien, containing a combination of nitrogen (N)-fixing bacteria Azotobacter chroococcum and Azospirillum liposerum. Ammonium nitrate and polymer-coated urea fertilizers were applied to plots alone and together with the biofertilizers at rates of either 83 kg N ha?1 or 186 kg N ha?1 for comparison. The highest grain yield (5.76–6.74 Mg ha?1) and straw yield (11.49–13.32 Mg ha?1) occurred at the highest fertilizer rates with N fertilizer. There was a slight additional increase in grain and straw yields when a biofertilizer was applied along with N fertilizer. A slightly higher grain and straw yield was measured with the polymer-coated urea treatment than with the ammonium nitrate treatment. The biofertilizer materials were not as effective as N fertilizers in producing grain (4.02–4.09 Mg ha?1) or straw (7.71–8.11 Mg ha?1) for either year, although the Nitrobien + Phosphorien combination increased these parameters over the N-fertilizer control. The effect of the Nitrobien biofertilizer in increasing grain yields was equivalent to a urea application rate of about 13 kg N ha?1. Biofertilizer inoculations increased iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) concentrations in wheat tissue (at boot stage), but these higher levels did not influence grain or straw yield.  相似文献   

9.
Micrometeorological and microplot experiments were conducted in the field of freshly harvested green cane in Queensland,Australia.Results showed that high ammonia loss of fertilizer N could occur under relatively dry conditions when urea or commercial product of mixture of urea and muriate of potash were applied to the surface of sugarcane trash.The moisture content in the trash and the pH of fertilizer were two important factors controlling the processes of urea hydrolysis and ammonia volatilization.Most of the N in the soil was transformed to the nitratel-nitrite from after 70 days of fertilizer application.No significant leaching was found.Urea-free N fertilizers had higher N recoveries compared to urea-containing fertilizers.  相似文献   

10.
Nitrogen (N) loss is one of the key problems faced by rice farmers, and Nitrogen-use efficiency in rice is often poor as a result of high N loss through volatilization, leaching, and denitrification. One of the ways to improve N efficiency is by using controlled-release urea (CRU). The CRU generally outperformed granular urea fertilizer in reducing N losses, stimulating plant growth, and increasing N concentrations. A field experiment with the flooded rice variety MR220 was conducted to compare the effect of six different types of CRU fertilizers on yield and N nutrition of a flooded rice cultivar. Bakau series soil (Typic Tropaquept) was used in this study. Rice plants were grown in a cylindrical culvert measuring 90 cm in diameter by 60 cm in height, and all culverts were filled with soil (approx. 210 kg). The soil was flooded and preincubated for 3 weeks to stabilize physiochemical properties before sowing. The experiment was carried out over two planting seasons on the same plot using a completely randomized design (CRD) and was replicated three times. The CRUs evaluated were CDU Uber-10, Meister-20, Meister-27, humate-coated urea, Duration type V, and sulfur-coated urea (gold–N). Fertilizer was applied once throughout the study. For both seasons, CRU-treated plants had significantly greater rice yields [6 t ha?1 (first planting harvest) and 6.2 t ha?1 (second planting harvest)] than urea-treated plants [3.7 t ha?1 (first planting harvest) and 2.2 t ha?1 (second planting harvest)], respectively. The N accumulations in rice straw and rice grains of the CRU-treated plot were significantly greater than in the control. It can be inferred that CRU performs significantly better than granular urea. This finding is important, considering the usually high N losses in rice-growing areas.  相似文献   

11.
应用密闭法对尿素及其二次加工产品—复合肥料、包膜尿素和包膜复合肥料在施入土壤后的氨挥发特征进行了研究。结果表明,尿素二次加工产品的氨挥发损失特征各不相同:尿素、复合肥料、包膜尿素、包膜复合肥的氨挥发分别占总施氮量的9.2%、10.4%、7.6%、9.3%;复合肥料氨挥发损失比尿素高12.9%,而包膜尿素的氨挥发损失较尿素低17.9%。包膜复合肥与尿素相比,二者氨挥发总体上接近,但在施肥后前25 d包膜复合肥降低氨挥发15.6%,降雨后25 d却增加氨挥发20.7%。尿素二次加工产品的氨挥发损失特征需结合其生产工艺进行进一步研究。  相似文献   

12.
Yang  Qinglong  Liu  Peng  Dong  Shuting  Zhang  Jiwang  Zhao  Bin 《Journal of Soils and Sediments》2019,19(5):2200-2211
Purpose

In this study, we analyzed the effects of different maize varieties with nitrogen utilization efficiency, fertilizer type, and rate on the ammonia volatilization emission of farmland. Aimed to seek the best matching method to improve grain yield and fertilizer utilization efficiency of summer maize simultaneously.

Materials and methods

In field experiments, we choose two maize varieties with different nitrogen utilization efficiency (Zhengdan958, Z and Lainong14, L) as material. Set four different fertilizer treatments (200 kg N hm?2 inorganic fertilizer (U1), 100 kg N hm?2 inorganic fertilizer (U2), 200 kg N hm?2 organic fertilizer (M1), and 100 kg N hm?2 organic fertilizer (M2) to study their effect on NH3 emission and loss, maize grain yield, and nitrogen accumulation.

Results and discussion

Ammonia volatilization accounted for 8.61–21.68% of applied N. Under the same variety, ammonia volatilization accumulation after fertilization was as follows: U1 > U2 > M1 > M2. Ammonia volatilization rates increased first and then gradually decreased after the fertilization. The ammonia volatilization loss and cumulative loss increased due to increased nitrogen fertilizer application rate. The average nitrogen accumulation and harvest index of 200 kg N hm?2 N treatments were higher than 100 kg N hm?2 N treatments, and the difference between the inorganic fertilizer and organic fertilizer was not significant. In 2016 and 2017, the average yield of Zhengdan958 was 11,758.79 kg hm?2, which was 15.78% higher than that of Lainong14, and the difference between the two fertilizer types was not significant. The average yield of 200 kg N hm?2 N treatment was 11,959.42 kg hm?2, which was 20.13% higher than those of 100 kg N hm?2 N treatment.

Conclusions

By changing the type of fertilizer, replacing chemical fertilizers with organic fertilizer can reduce the loss of ammonia volatilization and promote the synergistic improvement to yield and resource utilization efficiency. Among them, using nitrogen-efficient varieties and using organic fertilizer instead of chemical fertilizer was beneficial to reduce the loss of ammonia volatilization, increase the accumulation of nitrogen, and promote the growth of maize to obtain high yield.

  相似文献   

13.
太湖地区稻麦轮作条件下施用包膜尿素的氮素循环和损失   总被引:8,自引:0,他引:8  
A field experiment was conducted to investigate the fate of ^15N-labeled urea and its residual effect under the winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) rotation system on the North China Plain. Compared to a conventional application rate of 360 kg N ha^-1 (N360), a reduced rate of 120 kg N ha^-1 (N120) led to a significant increase (P 〈 0.05) in wheat yield and no significant differences were found for maize. However, in the 0-100 cm soil profile at harvest, compared with N360, N120 led to significant decreases (P 〈 0.05) of percent residual N and percent unaccounted-for N, which possibly reflected losses from the managed system. Of the residual fertilizer N in the soil profile, 25.6%-44.7% and 20.7%-38.2% for N120 and N360, respectively, were in the organic N pool, whereas 0.3%-3.0% and 11.2%-24.4%, correspondingly, were in the nitrate pool, indicating a higher potential for leaching loss associated with application at the conventional rate. Recovery of residual N in the soil profile by succeeding crops was less than 7.5% of the applied N. For N120, total soil N balance was negative; however, there was still considerable mineral N (NH4^+-N and NO3^--N) in the soil profile after harvest. Therefore, N120 could be considered ngronomically acceptable in the short run, but for long-term sustainability, the N rate should be recommended based on a soil mineral N test and a plant tissue nitrate test to maintain the soil fertility.  相似文献   

14.
2021-01期封面+目录   总被引:1,自引:1,他引:0  
  【目的】   农田氨挥发是大气中氨的重要来源,其减排措施研究已成为国际研究热点。有机肥替代化肥的农田氨挥发减排潜力已得到广泛认可,然而年际间气候变化对其减排能力的影响研究报道较少。通过研究年际间有机替代对作物产量和氨挥发损失量的影响,为华北地区科学减少氨挥发损失提供理论依据   【方法】   本研究基于华北平原玉米长期田间定位试验 (2007年设置),针对不同施肥处理开展了连续3年 (2017—2019年) 的氨挥发监测,以明确年际间气候变化对有机替代氨挥发减排潜力的影响强度。试验共设置4个处理:不施氮肥处理 (PK)、单施化肥处理 (NPK)、半量有机肥氮替代化肥氮处理 (HONS)、全量有机肥氮替代化肥氮处理 (FONS)。   【结果】   有机替代可以提高玉米产量,与NPK处理相比,HONS处理和FONS处理的玉米产量分别提高20.7%和30.9%。不同施氮处理的氮素偏生产力在35.6~46.7 kg/kg,与NPK处理相比,HONS处理和FONS处理的氮素偏生产力分别提高20.8%和30.9%。年际间和各处理间的氨挥发规律基本一致,都是在施肥后的第2~4天出现排放峰值,之后氨挥发速率逐渐降低,并在9天内基本趋于稳定。施肥后前9天是农田氨挥发的主要排放时期,氨挥发量占基肥期氨挥发总量的70.1%;占追肥期的63.7%。华北平原春玉米农田氨挥发损失量较低 (10.6 kg/hm2),有机替代能够进一步显著降低农田氨挥发损失。与NPK处理相比,HONS和FONS处理对氨挥发损失的减排率平均分别可达33.5%和58.7%。有机替代处理农田氨挥发的年际间变化显著高于单施化肥处理。相比氨挥发损失较低的2019年,2018年NPK处理的氨挥发损失增加了12.3%,而HONS处理和FONS处理分别增加了91.2%和105.0%,相应的HONS处理和FONS处理的减排率,从2019年的54.3%和71.1%,降低到22.1%和47.2%。主成分分析表明,年际间大气温度变化和土壤湿度变化是导致年际间氨挥发损失量差异的主要原因。   【结论】   相比单施化肥,有机肥替代化肥能够提高作物产量;相比半量有机替代,长期全量有机肥替代化肥对作物产量的提升能力更强。华北平原旱地农田有机替代能有效降低氨挥发损失,但在氨挥发损失较高年份有机替代的减排潜力会减弱,因此,有机替代氨挥发减排潜力的估算需要考虑年际间的变化。  相似文献   

15.
The nitrogen (N) fertilizer-use efficiency (20–50%) is low in rice fields in India. The neem-oil coated urea can increase N-use efficiency in lowland rice, but the desirable thickness of neem-oil coating onto urea is not known yet. Therefore, field experiments were conducted during kharif (rainy) season years 2004 and 2005 at the Research Farm of Indian Agricultural Research Institute, New Delhi to know the suitable thickness of neem-oil coating on prilled urea (PU) for increased N-use efficiency and yield. The treatments comprised of twelve combinations of four N sources (PU coated with neem-oil thickness of 0, 500, 1000 and 2000 mg kg?1 PU) and three N levels (50, 100, and 150 kg N ha?1) plus a no-N control. Prilled urea (PU) refers to the common urea available commercially in prills, which is different from urea super granules. Application of urea coated with neem-oil thickness of 1000 mg kg?1 PU resulted in significantly higher growth, yield parameters, grain yield, N uptake, and efficiency of aromatic rice (Oryza sativa L.) over uncoated PU. Nitrogen application at 122 kg ha?1 was optimum for increased yield of rice. Nitrogen-use efficiency decreased significantly and substantially with each successive increase in levels of N from 50 to 150 kg ha?1.  相似文献   

16.
Field experiments were conducted with four nitrogen fertilizer treatments to study the effects of controlled-release urea combined with conventional urea on the nitrogen uptake, root yield, and contents of protein, soluble sugar, saponin, zinc (Zn), iron (Fe), magnesium (Mg), and copper (Cu) in Platycodon grandiflorum. Field experiments were conducted with four nitrogen (N) fertilizer treatments: no N fertilization; conventional urea with N rate of 175 kg N ha?1; conventional urea with N rate of 160 kg N ha?1; controlled-release urea combined with conventional urea with N rate of 160 kg N ha?1; controlled-release urea combined with conventional urea with N rate of 135 kg N ha?1. The results showed that nitrogen application significantly increased the yield of P. grandiflorum compared with the control. Treatment with controlled-release urea combined with conventional urea at 160 kg N ha?1 provided the highest yield of 7329.58 kg ha?1. Nitrogen application also increased the contents of soluble sugar, total saponin, protein, Zn, Fe, and Mg but decreased Cu content. Protein, saponin, and Zn contents were significantly higher, but Cu content was lower in P. grandiflorum fertilized with controlled-release urea combined with conventional urea than those fertilized with conventional urea alone. The combination of controlled-release urea with conventional urea at 160 kg N ha?1 was the optimal treatment under the experimental condition investigated in this study.  相似文献   

17.
To determine nitrogen (N) fate and environmental impact of applying anaerobic digestion slurry (ADS) to rice paddy (Oryza sativa L.), a field experiment was established using three treatments based on contrasting N application rate. The ADS (with ammonium-N accounting for >80 % of total N) treatment at a conventional application rate of 270 kg N?ha?1 was compared to a negative control (no N fertilizer) and a positive control of urea applied at 270 kg N?ha?1. The N budget showed the following distribution of applied N from ADS and urea: 41.3?±?5.1 % for ADS and 36.6?±?4.4 % for urea recovered by the rice plant (including straw, grain, and root), 16.4?±?3.7 % for ADS and 7.4?±?1.8 % for urea lost via ammonia volatilization, 0.26?±?0.15 % for ADS and 0.15?±?0.12 % for urea lost by direct N2O emission, 1.9?±?0.5 % for ADS and 2.3?±?0.8 % for urea leached downward, 0.70?±?0.15 % for ADS and 0.67?±?0.12 % for urea discharged with floodwater drainage, and 39.4?±?8.4 % for ADS and 53.0?±?9.1 % for urea retained by soil or lost by N2 emission. Compared to urea application, ADS application impacts the environment mainly through gaseous N losses rather than water N losses. ADS application had a positive impact on rice grain yield and reduced chemical fertilizer use. Considering the wide distribution of paddy fields and the ever-increasing quantities of ADS, ADS may serve as a valuable N source for rice cultivation, although mitigating ammonia and N2O losses should be further investigated.  相似文献   

18.
The aim of this study was to evaluate the effects of a zeolite and urea mixture on ammonia volatilization. Two experiments were carried out: a greenhouse pot experiment and a field trial with Tanzania grass pasture. The pot experiment used five zeolite ratios (0, 12.5, 25, 50, and 100 percent relative to the N-urea level used) mixed with 100 kg ha?1 of nitrogen (N). The field trial used four treatments: 0, 12.5, 25, and 50 percent of zeolite, at the dose of 50 kg ha?1. In the greenhouse experiment, the smallest losses by volatilization occurred at the proportions of 25 percent and 100 percent. During the summer, the mixture of 25 percent of zeolite in N-urea led to a reduction in ammonia volatilization from 33.5 to 7.6 kg ha?1. However, in the winter, volatilization was very low, and there were no differences between the treatments. The addition of 25 percent of zeolite in urea was the most appropriate relation.  相似文献   

19.
【目的】随着一次性施肥逐渐发展为东北地区玉米种植的主要施肥方式,控释肥料、脲甲醛肥料和稳定性肥料等新型高氮复混(合)肥料在一次性施肥中的比例不断增加。本文在吉林省中部黑钙土上设置玉米田间试验,以明确相同养分条件下,不同类型高氮复混(合)肥料在玉米上一次性施用的增产效果及氨挥发状况。【方法】试验于2013年5月至10月在吉林省梨树县榆树台镇新兴黄家窝保村进行,试验地土壤为黑钙土,试验共设7个处理,分别为不施氮(N0)、常规施肥(Con)、高塔肥料(HT)、掺混肥(BB)、控释肥(CRF)、脲甲醛肥(UF)和稳定性肥料(SF),每个处理3次重复,小区面积40 m2。除常规施肥处理的氮肥分为基肥和追肥(基追肥比例为1∶2)外,其他处理均采用一次性基施。各处理氮、磷、钾施用量分别为224、88、88 kg/hm2。在施肥后采用通气法对土壤氨挥发状况进行原位连续测定,于播种前和收获后分别用土钻采集0—100 cm土壤样品,采用1 mol/L的KCl溶液浸提,然后用连续流动注射分析仪[AA3(AUTOANALYSIS3),德国产]测定土壤NH+4-N和NO-3-N含量。玉米成熟期对各处理进行测产,并在每个小区选取3株有代表性的植株,分为秸秆和籽粒,烘干后称重,全部粉碎后测定植株中的氮含量,计算植株吸氮量。【结果】从收获后产量及氮素养分吸收利用的分析可以看出,与不施氮处理相比,施氮肥具有明显的增产效果,增产率达到18.9%24.1%,而在施氮量相同的条件下,一次性施用不同类型的高氮复混(合)肥间的产量无明显差异,介于12197 12899 kg/hm2之间;控释肥、脲甲醛肥料和稳定性肥料3个处理的氮肥当季利用率分别为27.9%、37.7%和28.8%;植株吸氮量分别为277.5、299.3和279.3 kg/hm2,均高于其他处理;肥料施入土壤后,不同时期的氨挥发速率整体上表现为先增加后降低的趋势,各肥料的氨挥发速率的差异主要集中在施肥后的3 13天,氨挥发速率峰值的大小为常规施肥高塔肥料掺混肥控释肥稳定性肥料脲甲醛肥;控释肥、脲甲醛肥和稳定性肥料的氨挥发量分别为10.6、8.1和10.3 kg/hm2,相当于施氮量的4.7%、3.6%和4.6%,明显低于掺混肥(14.8 kg/hm2)和高塔肥料(23.0 kg/hm2);从土壤-作物体系中的氮素平衡可以看出,控释肥、脲甲醛肥和稳定性肥料的表观损失量分别为103、79和73 kg/hm2,明显低于掺混肥(136 kg/hm2)和高塔肥料(123 kg/hm2);且与掺混肥相比,控释肥、脲甲醛肥和稳定性肥料可以提高氮肥利用率7.7 17.5个百分点,有效降低氮素损失。【结论】在黑钙土区一次性施肥模式下,不同类型高氮复混(合)肥间的玉米产量无明显差异;与掺混肥相比,控释肥、脲甲醛肥和稳定性肥料3种新型肥料可以促进植株对氮素的吸收利用,氮肥当季利用率提高38.1%86.6%,氨挥发速率降低40%96.5%,氨挥发损失量减少39.2%81.3%,且在环境可接受范围内有效维持玉米生育期间的土壤无机氮含量,保证了土壤氮素供应。  相似文献   

20.
High rates of nitrogen (N) fertilizer were applied to a paddy field in the Taihu Lake region of China to maximize crop production. Excessive N input has resulted in serious agricultural nonpoint pollution. Water and N management are two important approaches to regulating N loss from paddy fields. This study aimed to determine N losses through ammonia volatilization, runoff, and leaching from a paddy field during the rice-growing season in Taihu Lake region. Field experiments with two water and two N managements were conducted. The N exported to the environment through ammonia volatilization, runoff, and leaching from the paddy field was 37.2 kg N ha?1 to 102 kg N ha?1, with ammonia volatilization accounting for 69.6% to 83.5% of N loss. Ammonium and dissolved organic N significantly contributed to N loss through runoff and leaching. Controlled irrigation and site-specific N management (CS) significantly decreased N losses through ammonia volatilization, runoff, and leaching. Compared with the N and irrigation water inputs in traditional water and N management, those generated by controlled irrigation and site-specific N management were reduced by 34.6% to 43.0% and 59.2% to 63.3%, respectively. Moreover, the reduction in N and water input in the CS paddy field enabled the maintenance of high rice yield; it significantly increased N use efficiency by 15.1% to 34.9% and decreased the N exported to the environment by ammonia volatilization, runoff, and leaching by 53.1% to 56.1%. Therefore, the joint application of controlled irrigation and site-specific N management efficiently reduces agricultural nonpoint pollution through N loss from paddy fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号