首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objective of this work was to study the effect of different biochar on alkaline calcareous soil, inherently low in soil organic carbon and fertility. Experiments were conducted in laboratory and greenhouse. Biochar was produced from wheat and rice straws at pyrolysis temperatures of 300°C, 400°C and 500°C (denoted as WSB300, WSB400, WSB500, RSB300, RSB400 and RSB500, respectively). In the first experiment, soil was incubated with biochar (1.0 % w/w) for up to 50 weeks. The results indicate that, WSB300 caused a significant decrease in soil pH and increased the CEC and nutrients (N, P and K) after 50 weeks of incubation. In the second experiment, maize plants were grown in pots containing calcareous soil amended with WSB and RSB for 60 days the results revealed that the application of WSB300 caused a significant increase in shoot (36%) and root (38%) dry matters over the respective control. Moreover, the highest nutrient concentrations (N and P) in shoot and root were observed with the WSB300 compared to other treatments. Therefore, it is concluded that application of wheat straw biochar produced at low temperature (WSB300) could be successfully used to improve soil properties and growth of plants in calcareous soils.  相似文献   

2.
ABSTRACT

Recently, the use of biochars for stabilization of soil heavy metals has been expanded due to their adsorption characteristics, low cost and carbon storage potential. A factorial experiment was performed to investigate the effects of two plant residue biochars (licorice root pulp and rice husk biochar each applied at 2.5% (w/w)) produced at two temperatures (350 and 550 °C), and three Ni application rates (0, 150 and 300 mg Ni kg?1) on bioavailability and chemical fractions of Ni in a calcareous soil after spinach cultivation. Application of all the biochars significantly reduced Ni bioavailability factor (5–15%) and spinach Ni concentration (54–77%) in Ni-treated soil. The biochars produced at 550 °C were more effective at reducing Ni mobility and Ni uptake by spinach than those produced at 350 °C, attributed to higher CaCO3 and lower acidic functional group content, which resulted in greater enhancement of soil pH. When comparing the biochars produced at the same temperature, the rice husk biochars were the most effective in reducing Ni bioavailability, likely due to their lower acidic functional group content and higher nano-silica content which resulted in higher soil pH values and potentially promoted the formation of Ni-silicates and hydroxides.

Abbreviations : Ni: Nickel; RHB: rice husk biochar; LRB: licorice root pulp biochar; WsEx: water soluble and exchangeable; CARB: carbonate form; RES: residual; MnOx; manganese oxides bound; AFeOx; amorphous iron oxides bound; CFeOx: crystalline iron oxides bound; OM: organic bound.  相似文献   

3.
生物质炭与氮肥配施降低水稻重金属含量的盆栽试验   总被引:6,自引:2,他引:4  
针对重金属污染严重的土壤,探索施用氮肥和生物质炭减少水稻重金属吸收的可行性。该研究采用盆栽试验,选用生物质炭、硫硝铵氮肥(简称普通氮肥)和含硝化抑制剂3,4-二甲基吡唑磷酸盐的硫硝铵氮肥(简称3,4-dimethylpyrazolephosphate,DMPP氮肥),设置了5种处理包括对照即未添加氮肥和生物质炭、普通氮肥添加、DMPP氮肥添加、生物质炭+普通氮肥添加和生物质炭+DMPP氮肥添加,研究了不同处理对水稻华航丝苗(Oryza sativa L.)生长和重金属Cu、Zn和Cd吸收特性的影响。结果表明,不配施生物质炭时,DMPP氮肥对水稻籽粒产量无显著(P0.05)影响;生物质炭与普通氮肥或DMPP氮肥配施均能增加水稻籽粒产量:与单施普通氮肥相比,生物质炭与普通氮肥配施水稻籽粒产量显著(P0.05)增加20.3%;与单施DMPP氮肥相比,生物质炭与DMPP氮肥配施水稻籽粒产量显著(P0.05)增加49.3%。与不施肥对照相比,生物质炭与DMPP氮肥配施能降低籽粒Cu、Zn和Cd含量,其籽粒Cu、Zn和Cd质量分数分别显著降低20.0%、21.4%和11.6%。未配施生物质炭时DMPP促进Cu从秸秆向籽粒的转移,配施生物质炭时DMPP促进Cu和Cd从根向秸秆的转移;生物质炭与不同氮肥配施对水稻籽粒/秸秆和秸秆/根Cu、Zn和Cd转运系数的影响因配施氮肥品种不同而存在差异。综上,生物质炭与DMPP氮肥配施可降低籽粒中重金属Cu、Zn和Cd质量分数,促进水稻生长,增加水稻籽粒产量,适宜在多重金属污染稻田施用。  相似文献   

4.
Biochar is considered a potential technology to enhance chemical fertilizer use efficiency through intensification of the interactions between nutrients and the functional groups on biochar surfaces. However, little is known about how the application of activated biochars mixed with urea influences nitrogen(N) mineralization and crop performance in paddy fields. Here, a sawdust-derived fresh biochar (FBC)(ca. 400?C) was activated chemically with 15%hydrogen peroxide and biologically with a nutri...  相似文献   

5.
Abstract

Soil quality and crop productivity can be improved by the combined soil application of organic amendments and synthetic fertilizers. We evaluated the sole and combined effects of sugarcane-bagasse biochar (SBB), farmyard manure (FYM) and nitrogen (N) fertilizer on soil properties and corn yield traits. Three N fertilizer rates (0, 50 and 100% of recommended) were used with or without the organic amendments. We observed significant increases in soil nitrate-N (at vegetative and reproductive phases), ammonical-N and microbial-biomass-N contents in responses to a co-application of 0.5% SBB, 0.5% FYM and 100% N fertilizer (p?≤?0.05). While the same co-application also resulted in the most significant soil organic carbon value, the maximum soil microbial biomass carbon was observed when 0.5% SBB and 0.5% FYM combination was applied along with 50% N fertilizer (p?≤?0.05). Plant growth indices—shoot length and, fresh and dry weights of shoot and root were also recorded to be the highest where the same organic amendments were applied in addition to a 50% or 100% mineral N fertilizer (p?≤?0.05). Combined application of the organic amendments effectively improved soil CEC compared to those in responses to individual applications of SBB and FYM (p?≤?0.05). Conclusively, for increasing the corn yield and improving the soil quality, the co-application of 0.5% SBB and 0.5% FYM was more effective than any of the individual 1% applications; Additions of 50% and 100% mineral N to the organic combination were equally useful for increasing the grain yield.  相似文献   

6.
Abstract

A short-term study was conducted to investigate the greenhouse gas emissions in five typical soils under two crop residue management practices: raw rice straw (Oryza sativa L., cv) and its derived biochar application. Rice straw and its derived biochar (two biochars, produced at 350 and 500°C and referred to as BC350 and BC500, respectively) were incubated with the soils at a 5% (weight/weight) rate and under 70% water holding capacity for 28 d. Incorporation of BC500 into soils reduced carbon dioxide (CO2) and nitrous oxide (N2O) emission in all five soils by 4?40% and 62?98%, respectively, compared to the untreated soils, whereas methane (CH4) emission was elevated by up to about 2 times. Contrary to the biochars, direct return of the straw to soil reduced CH4 emission by 22?69%, whereas CO2 increased by 4 to 34 times. For N2O emission, return of rice straw to soil reduced it by over 80% in two soils, while it increased by up to 14 times in other three soils. When all three greenhouse gases were normalized on the CO2 basis, the global warming potential in all treatments followed the order of straw > BC350 > control > BC500 in all five soils. The results indicated that turning rice straw into biochar followed by its incorporation into soil was an effective measure for reducing soil greenhouse gas emission, and the effectiveness increased with increasing biochar production temperature, whereas direct return of straw to soil enhanced soil greenhouse gas emissions.  相似文献   

7.
为探究施用水稻秸秆生物炭对水稻产量、氮肥利用率、氮肥残留及损失的影响,采用盆栽试验结合15N示踪技术,分析了施用水稻秸秆生物炭对水稻生物量、氮素积累量、肥料氮去向以及氨氧化微生物的影响。研究共设置5个处理:不施氮肥(N0)、单施化肥(CF)、施化肥配施0.5%生物炭(BC1)、施化肥配施1%生物炭(BC2)和施化肥配施2%生物炭(BC3)。结果表明:与CF处理相比,BC2和BC3处理均显著提高水稻产量,增产率分别为19.3%和22.0%。施用生物炭显著增加水稻氮素积累量和表观利用率。施用生物炭的水稻籽粒肥料氮积累和总肥料氮积累量较CF处理分别提高18.6%~23.4%和18.5%~26.5%。然而,施用生物炭处理与CF处理之间的籽粒土壤氮吸收量没有显著差异。BC1、BC2和BC3处理的氮肥利用率分别为30.4%,28.5%和29.3%,均显著高于CF处理(24.1%)。施用生物炭有利于肥料氮在土壤中的 残留,从而减少损失。因此,施用生物炭的肥料氮损失率(25.7%~27.5%)显著低于单施化肥处理(38.4%)。与CF处理相比,高量施用生物炭(BC3)显著降低氨氧化细菌的amoA基因拷贝数,但施用生物炭对氨氧化古菌丰度没有显著影响。综上表明,施用水稻秸秆生物炭是提高水稻产量和氮肥利用率,同时还是有效减少氮素损失的一种有效措施。  相似文献   

8.
Biochar is obtained by the pyrolysis of biomass, and contains abundant carbon and minerals. Biochar supplementation of soils can greatly improve soil health and quality, but these beneficial effects typically develop slowly over time. Depending on the quality of the biochar and the soil to which it is applied, it may take years before positive effects are apparent. This is because organic substances are slowly sorbed onto the biochar over time, and the biochar eventually becomes part of the sorption complex of the soil. It is therefore advisable to apply biochar together with some organic material. We examined the effect of co-application of different doses of biochar with manure on soil dehydrogenase activity (DHA), soil oxidizable carbon (COX), cumulative soil respiration, soil buffering capacity, the soil exchange reaction (pH/KCl) and the production yield of winter rape seeds. We also determined seed production when artificial granular fertilizers were added to biochar and manure. The results showed that the application of biochar and manure significantly increased grain yield, DHA, the soil exchange reaction and cumulative respiration. Thus, application of biochar with organic material can increase seed yield and some properties of agricultural soils. However, the positive effect of biochar on seed yield was not directly proportional to biochar dose, in that the seed yield was lower for a biochar dose of 45 t/ha than 30 t/ha.  相似文献   

9.
ABSTRACT

The formation of phosphorus (P) compounds including iron-P, aluminum-P and calcium-P in highly weathered tropical soils can be altered upon biochar addition. We investigated the effect of corn cob biochar (CC) and rice husk biochar (RH) pyrolyzed at three temperatures (300°C, 450°C and 650°C) on phosphorus (P) fractions of three contrasting soils. A 90d incubation study was conducted by mixing biochar with soil at a rate of 1% w/w and at 70% field capacity. Sequential P fraction was performed on biochar, soil and soil-biochar mixtures. Increase in most labile P (resin-Pi, NaHCO3-Pi) and organic P fraction (NaHCO3-Po + NaOH-Po) in CC and RH biochars were inversely related to increasing temperature. HCl-Pi and residual P increased with increasing temperature. Interaction of CC and RH with soils resulted in an increase in most labile P as well as moderately labile P (NaOH-Pi) fractions in the soils. CC increased most labile P in the soils more than RH. The increase in most labile P fraction in soils was more significant at relatively lower temperatures (300°C and 450°C) than 650°C. However, the increase in HCl-Pi and residual P of the soils was more predominant at high temperature (650°C). The study suggested that biochar pyrolyzed at 300–450°C could be used to increase P bioavailability in tropical soils.  相似文献   

10.
王启  兰婷  赖晶晶  高雪松 《土壤》2020,52(6):1170-1178
生物质炭施用可能对土壤中氮素硝化过程和N2O排放产生影响。本研究通过室内培养试验,研究铵态氮肥与玉米秸秆生物质炭施用量(0、1%、2%、5%、10%w/w)对酸性(pH=5.10)和石灰性紫色土(pH=8.15)氮素硝化率、净硝化速率及N2O排放特征的影响。结果表明:(1)酸性和石灰性紫色土生物质炭处理平均净硝化速率相比对照分别降低了33.7%~93.7%和7.5%~40.9%,生物质炭添加抑制了酸性和石灰性紫色土硝化作用,在酸性紫色土中生物质炭对氮素硝化作用的抑制作用随施用量的增加而增强,在石灰性紫色土中无明显规律。(2)与对照相比,酸性紫色土N2O累计排放量在1%生物质炭(1%BC)和2%生物质炭(2%BC)处理下降幅分别为15.9%和27.7%,在5%生物质炭(5%BC)和10%生物质炭(10%BC)处理下增幅分别为60.1%和93.2%。石灰性紫色土生物质炭各处理N2O累积排放量均显著高于对照。(3)综合考虑酸性紫色土1%、2%生物质炭量施用下对硝化作用抑制和N2O减排综合效果最好,在石灰性紫色土中无明显抑制和减排效果。  相似文献   

11.
In sub-Saharan Africa, manure and loam soil are popular growing media substrates. However, their poor physiochemical properties limit their use in growing media. Following a survey of farmers, single species sawdust, mixed species sawdust, and rice husk (RH) were selected and composted with poultry manure. Additionally, the RH was charred for use in soilless media. Objectives were to produce feedstock-specific composts and determine appropriate proportion for using them in containerized systems. Three composts produced were amended with soil in ratios of 1:1, 1:2, and 1:3 (v/v) in an initial experiment. In a second experiment (soilless), the single sawdust and RH compost were each amended with RH biochar in ratios of 1:0, 1:1, 1:2 (v/v) and subjected to half or full pot irrigation. RH compost amended soils gave the highest lettuce yield. In the soilless media, 2:1 ratio (v/v) of biochar to sawdust compost gave the highest yield.  相似文献   

12.
Although most studies have indicated that biochar can boost rice (Oryza sativa) growth, the material may also suppress it, depending on ratios of carbon (C) to nitrogen (N) and available N to available phosphorous (P). The current study sought to examine the impacts of biochar on rice growth and to identify underlying mechanisms. A pot experiment was conducted using two soils of high (3.05%) and low (0.54%) organic carbon (OC) content, mixed with 0, 1.5, 3, 6, and 12% biochar and planted with rice. Rice growth components, five rice tissue nutrients, and nine soil properties were measured. The results showed that the response of rice growth to biochar rates could be described using an exponential-growth function in high-OC soil but an inverted U-shaped curve in low-OC soil. In high-OC soil, the 12% biochar rate led to the greatest total biomass, increased by 47%, whereas in low-OC soil, the 3 and 6% rates exhibited the highest total biomass, increased by 44%, compared to the no-biochar added soils. Biochar elevated the C:N ratio from 11.5 to 39.1, with an optimal range of 20–30 corresponding to the highest rice growth. Biochar declined the ratio of NH4-N to Mehlich-1 P, causing N deficiency. In brief, high biochar rates may suppress rice growth when the soil C:N ratio exceeds 30. The applied biochar rate should be considered based on soil properties typically OC and N content to obtain the C:N ratio between 20 and 30 for optimal rice growth.  相似文献   

13.
农业废弃物制备的生物质炭对红壤酸度和油菜产量的影响   总被引:6,自引:0,他引:6  
李九玉  赵安珍  袁金华  徐仁扣 《土壤》2015,47(2):334-339
利用自行研制的生物质炭化炉在田间条件下制备花生秸秆炭和油菜秸秆炭,采集秸秆气化站产生的稻壳炭,研究了这3种生物质炭对酸性土壤的改良效果和对油菜产量的影响。结果表明:施用稻壳炭、花生秸秆炭和油菜秸秆炭均可提高土壤p H,降低土壤交换性酸含量,效果随施用量的增加而增强。生物质炭对酸性土壤的改良效果主要决定于其本身的含碱量,施用花生秸秆炭和油菜秸秆炭显著增加土壤交换性盐基阳离子、有效磷、有效阳离子交换量和盐基饱和度,并提高油菜籽产量。田间条件下施用花生秸秆炭和油菜秸秆炭3年后土壤p H仍明显高于对照处理,说明生物质炭对土壤酸度的改良具有持续性。因此,花生秸秆炭和油菜秸秆炭是优良的酸性土壤改良剂。  相似文献   

14.
采用田间定位试验,研究了冬闲期种植绿肥和稻草全量还田对江汉平原单季稻田土壤理化性质和水稻产量的影响。试验设置稻草不还田水稻不施肥(CK)、稻草不还田单施化肥(NPK)、稻草原位焚烧还田+化肥(RSB+NPK)、稻草全量还田+化肥(RSM+NPK)、稻草不还田单独种植绿肥+化肥(GM+NPK)以及稻草全量还田+种植绿肥+化肥(RSM+GM+NPK),共6个处理。结果表明,与不还田的CK及NPK处理相比,RSM+NPK、GM+NPK和RSM+GM+NPK处理模式均有利于改善土壤物理性状和提高耕层土壤养分及有机质含量,其中多以RSM+GM+NPK处理增幅最大。RSB+NPK处理较CK处理显著提高土壤pH值、土壤有效磷和速效钾含量,但对土壤有机质、全氮和碱解氮含量影响不大。GM+NPK处理与RSM+GM+NPK处理稻谷产量近似,分别较NPK处理显著增加6.9%~11.7%和6.0%~13.4%,3年平均增加9.1%和8.7%,而RSM+NPK和RSB+NPK处理的稻谷产量3年里与NPK处理无显著差异。综合考虑,在江汉平原单季稻作条件下,以冬闲期稻草条带覆盖还田与种植绿肥配合还田为宜,可以改善土壤理化性质,显著提高水稻产量。  相似文献   

15.
ABSTRACT

Biochar has not been adequately used by farmers to improve the clay textured soil productivities in the world. Therefore, the objective of this study is to investigate the effect of the co-application of biochar with different rates of phosphorus (P) fertilizer on selected soil physical properties and wheat yield on clay textured soil over two growth seasons. Biochar treatments occupied the main plots at a rate of 0.0 and 10 t ha?1, while the sub-plots were devoted to phosphorus rates at rates of 0%, 50%, 100%, and 150% of recommended P fertilizers. Biochar (10 t ha?1) and P at different rates decreased soil bulk density significantly. Meanwhile, it increased aggregate stability, saturated hydraulic conductivity and soil water retention significantly at (p < .05), and it improved the grain yield of wheat. More grain yields in the soil treated with biochar than untreated soil under all P application rates for both years were probably caused partially by more nutrients (N, P, and K) were applied from biochar itself. Grain yield of wheat in the soil-amended biochar and P did not increase significantly between the application at 50%, 100% and 150% P. The results of this study indicate that phosphorus blends with biochar can be used to decrease the bulk density of clay textured soils and to improve crop production in these soils.  相似文献   

16.
17.
This study was conducted to investigate the effect of pyrolysis temperature on chemical properties of poultry manure (PM) biochar over the range of 200–500°C. Chemical properties of biochar produced at 200°C were almost the same as PM, but significant changes were observed in higher-temperature-produced biochars. According to elemental and fourier transformation infrared analyses, the degree of carbonization in biochar was accelerated with increasing pyrolysis temperature. Biochar yield decreased, while its pH, cation exchange capacity, and P, K, Fe, Mn, Zn, and Cu contents increased with increasing pyrolysis temperature. The biochar produced at 400°C or 500°C was highly alkaline. Also, due to high electrical conductivity, these types of biochars may not be suitable for salt-sensitive crops. It was concluded that the pyrolysis temperature of more than 300°C reduces the quality of PM biochar for use in calcareous soils, although it may be suitable for acidic soils or environmental application.  相似文献   

18.
The study was conducted to determine how biochar as a soil amendment maintained the microbial community in pesticide contaminated soils. Alfisol (Adenta series – Typic Kandiustalf) and Vertisol (Akuse series – Typic Calciustert) were amended with biochar (0 t/ha biochar, 10 t/ha cocoa husk biochar (CHB), 10 t/ha rice husk biochar (RHB)) and pesticides (atrazine and paraquat at two rates each namely 0 kg/ha pesticide and 10 times the normal recommended rate of pesticide) were applied. The CHB-amended soils stimulated microbial activities such as ammonia and nitrate release more than the RHB-amended soils. Basal respiration was significantly higher in the atrazine polluted soils than in paraquat polluted soil. Significant interaction occurred between soil type and biochar and high microbial biomass carbon was recorded for vertisol amended with CHB. Metabolic quotient was lower in soils amended with biochar and polluted with atrazine than in the un-amended soil. The use of CHB in soil of high clay content (47.5%, i.e. the vertisol) was a more effective management tool in maintaining the microbial community in a pesticide-polluted environment than in soil of lower clay content (22.5%). Soils of high clay content amended with biochar can sustain the soil microbial community even in a disturbed environment.  相似文献   

19.
ABSTRACT

Biochar has attracted significant attention due to the long-lasting nature, and prominent influence on soil characteristics. This study was conducted to evaluate changes in the activity of β-glucosidase enzyme (BG) in loamy and sandy loam texture soils following two winter wheat growing seasons. The experimental design was a randomized complete block with three replicates and four treatments. The treatments were two soils, three biochars (rice husk, corn cob and bean harvest residue), five biochar rates (BR) and five levels of mineral fertilizers (FR) or dairy effluent (DE). The fertilizers were applied at the beginning of each season, while biochars were applied only at the beginning of experiment. Soil samples were collected following the second season and analyzed for the BG activity. Addition of biochars reduced the BG activity and the decline was higher in sandy loam compared to loamy soils. Negative effect of biochar to BG activity was greater at the highest BR (3.0%) than the lower BR. Fertilizer additions along with DE biochar had significant effect on BG activity that increased with higher FR. Given the importance of BG activity in soil organic matter decomposition, biochar application can be considered a sustainable way of increase in carbon sequestration.  相似文献   

20.
ABSTRACT

Biochar application and alternate wetting and drying (AWD) are emerging as promising technologies recommended for reducing CH4 emissions and water consumption in rice cultivation. In this study, we hypothesized that both technologies could be practiced in combination and this could further reduce CH4 emissions and water consumption when compared to practicing alone. The effects of biochar application and its co-application with chemical fertilizer or compost under conventional or AWD water management on CH4 emissions, productivity of rice, water use, and SOC stock, as well as cost and income were investigated. The experiment was carried out in an irrigated paddy field in the central plain of Thailand during both in the wet and dry seasons. Relative to control (CT), biochar application (BI), its co-application with compost (BC) or chemical fertilizer (BF) reduced seasonal CH4 emissions by 40.6%, 29.5%, and 12.3%, respectively. BI and BC significantly (p < 0.05) reduced grain yield by 19.9% and 10.8%, respectively, while BF significantly increased grain yield by 3.70%. In addition, BI, BC, and BF significantly enhanced soil organic carbon (SOC) stock by 21.2%, 21.4%, and 18.3%, respectively. Compared to the CT, higher production costs were found in BC and BF, but the farmer’s net incomes were also higher in BF because of its higher grain yield. On the other hand, water management in all amendment treatments under AWD was resulted in the reduction of CH4 emissions by the average of 18.8% as compared to the conventional system. AWD decreased rice yield by an average of 2.29%. It significantly reduced irrigation water use by an average of 11.9%, resulting in reducing production cost for water pumping. The results show that the practice that combined biochar application, AWD and chemical fertilizer are feasible for CH4 emission mitigation, SOC stock increase and irrigation water saving without significant effects on yield and farmer income.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号