首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The aim of this study was to determine the effect of land‐use and forest cover depletion on the distribution of soil organic carbon (SOC) within particle‐size fractions in a volcanic soil. Emphasis was given to the thermal properties of soils. Six representative sites in Mexico were selected in an area dominated by Andosols: a grassland site, four forested sites with different levels of degradation and an agricultural site. Soils were fractionated using ultrasonic energy until complete dispersion was achieved. The particle‐size fractions were coarse sand, fine sand, silt, clay and particulate organic matter from the coarse sand sized fraction (POM‐CS) and fine sand (POM‐FS). Soil organic carbon decreased by 70% after forest conversion to cropland and long‐term cultivation; forest cover loss resulted in a decrease in SOC of up to 60%. The grassland soil contained 45% more SOC than the cropland one. Soil organic carbon was mainly associated with the silt‐size fraction; the most sensitive fractions to land‐use change and forest cover depletion were POM followed by SOC associated with the silt and clay‐sized fractions. Particulate organic matter can be used as an early indicator of SOC loss. The C lost from the clay and silt‐sized fractions was thermally labile; therefore, the SOC stored in the more degraded forest soils was more recalcitrant (thermally resistant). Only the transformation of forest to agricultural land produced a similar loss of thermally stable C associated with the silt‐sized fraction.  相似文献   

2.
Soil organic carbon and nitrogen are key elements of sustainable agriculture. Converting forest land and grassland to arable land is known to decrease the content of soil organic carbon (SOC), whereas converting land under annual crops into perennial grasslands has the potential to increase organic C and N sequestration, an assumption tested in this study. Compared to the levels in reed meadows, SOC and total nitrogen (TN) stocks in the top layer of 2489 Mg soil ha−1 (about 0–15 cm depth) significantly increased 3 years after the conversion, despite a slight decrease numerically in the first year following the conversion. And the mass of light fraction organic carbon (LFOC), total extractable carbon (TEC), humic acid carbon (HAC), and fulvic acid carbon (FAC) stocks all decreased significantly in the first year in the top layer but recovered after 3 years. In the deeper layer of 2549 Mg soil ha−1 (about 15–30 cm depth), however, the levels of SOC and heavy fraction organic carbon (HFOC) stocks began increasing from the first year itself. During the period of 1–10 years after the conversion, the degree of humification rate (HR) for the deeper layer were consistent, averaging 30%, whereas the same parameters in the top layer stabilized after 3 years at 33%. After 10 years of conversion, the soil recorded higher levels of SOC and TN stocks, used as indicators in this study, than those that had prevailed in the reed meadows, demonstrating the positive combined effects of the conversion on the retention of atmospheric C-CO2 in the soil. This study suggests that proper management of alfalfa fields can maintain or even improve chemical and physical quality of converted reed meadows soils.  相似文献   

3.
Long-term changes in soil organic carbon (SOC) resulting from management change are documented for many experimental situations, and corresponding trends in the field have been observed by national survey. Since these changes are relevant to atmospheric carbon balance a practical measure to confirm the impact of recent management decisions at any location, without resorting to repeated sampling, is highly attractive but none has previously been tested. This study assessed intra-aggregate C to fulfil the role, based on a temporary deviation from its predictable contribution to total SOC under stable management. A total of 166 surface soil samples (0–15 cm) were analyzed for intra-aggregate C using an established physical fractionation protocol or compatible scaled-up procedure. Soils were arable (or ley-arable) managed by conventional or minimum-tillage, or permanent grassland, and assigned ‘stable’ or ‘changing’ status on the basis of a verbal account of management history. Log-normal populations of intra-aggregate C were compared for soils of stable and changing status using F-tests. Intra-aggregate C shows promise as an indicator of changing SOC in arable soils up to 30% clay content, particularly soils <20% clay. A larger dataset is required to establish its utility in grassland soils. It is not certain that intra-aggregate C is capable of confirming direction of change or trajectory (endpoint), and functions to indicate change, rather than confirm stable status. Supplementary information on the history of soil use and management is therefore essential in the interpretation of such measurements.  相似文献   

4.
Although current assessments of agricultural management practices on soil organic C (SOC) dynamics are usually conducted without any explicit consideration of limits to soil C storage, it has been hypothesized that the SOC pool has an upper, or saturation limit with respect to C input levels at steady state. Agricultural management practices that increase C input levels over time produce a new equilibrium soil C content. However, multiple C input level treatments that produce no increase in SOC stocks at equilibrium show that soils have become saturated with respect to C inputs. SOC storage of added C input is a function of how far a soil is from saturation level (saturation deficit) as well as C input level. We tested experimentally if C saturation deficit and varying C input levels influenced soil C stabilization of added 13C in soils varying in SOC content and physiochemical characteristics. We incubated for 2.5 years soil samples from seven agricultural sites that were closer to (i.e., A-horizon) or further from (i.e., C-horizon) their C saturation limit. At the initiation of the incubations, samples received low or high C input levels of 13C-labeled wheat straw. We also tested the effect of Ca addition and residue quality on a subset of these soils. We hypothesized that the proportion of C stabilized would be greater in samples with larger C saturation deficits (i.e., the C- versus A-horizon samples) and that the relative stabilization efficiency (i.e., ΔSOC/ΔC input) would decrease as C input level increased. We found that C saturation deficit influenced the stabilization of added residue at six out of the seven sites and C addition level affected the stabilization of added residue in four sites, corroborating both hypotheses. Increasing Ca availability or decreasing residue quality had no effect on the stabilization of added residue. The amount of new C stabilized was significantly related to C saturation deficit, supporting the hypothesis that C saturation influenced C stabilization at all our sites. Our results suggest that soils with low C contents and degraded lands may have the greatest potential and efficiency to store added C because they are further from their saturation level.  相似文献   

5.
Mass distributions of different soil organic carbon (SOC) fractions are influenced by land use and management. Concentrations of C and N in light- and heavy fractions of bulk soils and aggregates in 0–20 cm were determined to evaluate the role of aggregation in SOC sequestration under conventional tillage (CT), no-till (NT), and forest treatments. Light- and heavy fractions of SOC were separated using 1.85 g mL−1 sodium polytungstate solution. Soils under forest and NT preserved, respectively, 167% and 94% more light fraction than those under CT. The mass of light fraction decreased with an increase in soil depth, but significantly increased with an increase in aggregate size. C concentrations of light fraction in all aggregate classes were significantly higher under NT and forest than under CT. C concentrations in heavy fraction averaged 20, 10, and 8 g kg−1 under forest, NT, and CT, respectively. Of the total SOC pool, heavy fraction C accounted for 76% in CT soils and 63% in forest and NT soils. These data suggest that there is a greater protection of SOC by aggregates in the light fraction of minimally disturbed soils than that of disturbed soil, and the SOC loss following conversion from forest to agriculture is attributed to reduction in C concentrations in both heavy and light fractions. In contrast, the SOC gain upon conversion from CT to NT is primarily attributed to an increase in C concentration in the light fraction.  相似文献   

6.
(1)根据中国知网(CNKI)的《中国学术期刊影响因子年报(自然科学与工程技术.2010版)计量指标统计表》,《水土保持通报》综合统计源统计的总被引频次为3 446次(2009年版中为1 358次);复合影响因子为0.955;期刊综合影响因子为0.568(2008年为0.493),在所统计  相似文献   

7.
Land use change is a key factor driving changes in soil organic carbon (SOC) around the world. However, the changes in SOC following land use changes have not been fully elucidated, especially for deep soils (>100 cm). Thus, we investigated the variations of SOC under different land uses (cropland, jujube orchard, 7‐year‐old grassland and 30‐year‐old grassland) on hillslopes in the Yuanzegou watershed of the Loess Plateau in China based on soil datasets related to soils within the 0–100 cm. Furthermore, we quantified the contribution of deep‐layer SOC (200–1,800 cm) to that of whole soil profiles based on soil datasets within the 0–1,800 cm. The results showed that in shallow profiles (0–100 cm), land uses significantly (p  < 0·05) influenced the distribution of SOC contents and stocks in surface layer (0–20 cm) but not subsurface layers (20–100 cm). Pearson correlation analysis indicated that soil texture fractions and total N were significantly (p  < 0·05 or 0·01) correlated with SOC content, which may have masked effects of land use change on SOC. In deep profiles (0–1,800 cm), SOC stock generally decreased with soil depth. But deep soils showed high SOC sequestration capacity. The SOC accumulated in the 100–1,800 m equalled 90·6%, 91·6%, 87·5% and 88·6% of amounts in the top 100 cm under cropland, 7‐year‐old grassland, 30‐year‐old grassland and jujube orchard, respectively. The results provide insights into SOC dynamics following land use changes and stressed the importance of deep‐layer SOC in estimating SOC inventory in deep loess soils. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
Among factors controlling decomposition and retention of residue C in soil, effect of initial soil organic C (SOC) concentration remains unclear. We evaluated, under controlled conditions, short-term retention of corn residue C and total soil CO2 production in C-rich topsoil and C-poor subsoil samples of heavy clay. Topsoil (0–20 cm deep, 31.3 g SOC kg?1 soil) and subsoil (30–70 cm deep, 4.5 g SOC kg?1 soil) were mixed separately with 13C–15N-labeled corn (Zea mays L.) residue at rates of 0 to 40 g residue C kg?1 soil and incubated for 51 days. We measured soil CO2–C production and the retention of residue C in the whole soil and the fine particle-size fraction (<50 μm). Cumulative C mineralization was always greater in topsoil than subsoil. Whole-soil residue C retention was similar in topsoil and subsoil at rates up to 20 g residue C kg?1. There was more residue C retained in the fine fraction of topsoil than subsoil at low residue input levels (2.5 and 5 g residue C kg?1), but the trend was reversed with high residue inputs (20 and 40 g residue C kg?1). Initial SOC concentration affected residue C retention in the fine fraction but not in the whole soil. At low residue input levels, greater microbial activity in topsoil resulted in greater residue fragmentation and more residue C retained in the fine fraction, compared to the subsoil. At high residue input levels, less residue C accumulated in the fine fraction of topsoil than subsoil likely due to greater C saturation in the topsoil. We conclude that SOC-poor soils receiving high C inputs have greater potential to accumulate C in stable forms than SOC-rich soils.  相似文献   

9.
Our knowledge of effects of land use changes and soil types on the storage and stability of different soil organic carbon (SOC) fractions in the tropics is limited. We analysed the effect of land use (natural forest, pasture, secondary forest) on SOC storage (depth 0–0.1 m) in density fractions of soils developed on marine Tertiary sediments and on volcanic ashes in the humid tropics of northwest Ecuador. The origin of organic carbon stored in free light (< 1.6 g cm?3) fractions, and in two light fractions (LF) occluded within aggregates of different stability, was determined by means of δ13C natural abundance. Light occluded organic matter was isolated in a first step after aggregate disruption by shaking aggregates with glass pearls (occluded I LF) and in a subsequent step by manual destruction of the most stable microaggregates that survived the first step (occluded II LF). SOC storage in LFs was greater in volcanic ash soils (7.6 ± 0.6 Mg C ha?1) than in sedimentary soils (4.3 ± 0.3 Mg C ha?1). The contribution of the LFs to SOC storage was greater in natural forest (19.2 ± 1.2%) and secondary forest (16.6 ± 1.0%) than in pasture soils (12.8 ± 1.0%), independent of soil parent material. The amount of SOC stored in the occluded I LF material increased with increasing silt + clay content (sedimentary soils, r = 0.73; volcanic ash soils, r = 0.58) and aggregation (sedimentary soils, r = 0.52; volcanic ash soils, r = 0.45). SOC associated with occluded I LF, had the smallest proportion of new, pasture‐derived carbon, indicating the stabilizing effect of aggregation. Fast turnover of the occluded II LF material, which was separated from highly stable microaggregates, strongly suggested that this fraction is important in the initial process of aggregate formation. No pasture‐derived carbon could be detected in any density fractions of volcanic ash soils under secondary forest, indicating fast turnover of these fractions in tropical volcanic ash soils.  相似文献   

10.
The proportional differences in soil organic carbon (SOC) and its fractions under different land uses are of significance for understanding the process of aggregation and soil carbon sequestration mechanisms. A study was conducted in a mixed vegetation cover watershed with forest, grass, cultivated and eroded lands in the degraded Shiwaliks of the lower Himalayas to assess land‐use effects on profile SOC distribution and storage and to quantify the SOC fractions in water‐stable aggregates (WSA) and bulk soils. The soil samples were collected from eroded, cultivated, forest and grassland soils for the analysis of SOC fractions and aggregate stability. The SOC in eroded surface soils was lower than in less disturbed grassland, cultivated and forest soils. The surface and subsurface soils of grassland and forest lands differentially contributed to the total profile carbon stock. The SOC stock in the 1.05‐m soil profile was highest (83.5 Mg ha−1) under forest and lowest (55.6 Mg ha−1) in eroded lands. The SOC stock in the surface (0–15 cm) soil constituted 6.95, 27.6, 27 and 42.4 per cent of the total stock in the 1.05‐m profile of eroded, cultivated, forest and grassland soils, respectively. The forest soils were found to sequester 22.4 Mg ha−1 more SOC than the cultivated soils as measured in the 1.05‐m soil profiles. The differences in aggregate SOC content among the land uses were more conspicuous in bigger water‐stable macro‐aggregates (WSA > 2 mm) than in water‐stable micro‐aggregates (WSA < 0.25 mm). The SOC in micro‐aggregates (WSA < 0.25 mm) was found to be less vulnerable to changes in land use. The hot water soluble and labile carbon fractions were higher in the bulk soils of grasslands than in the individual aggregates, whereas particulate organic carbon was higher in the aggregates than in bulk soils. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
The concept of carbon (C) saturation implies that soils have a finite capacity to store C in a stable form, depending on their silt + clay content. We hypothesized that the stabilization of added organic C would be low in C saturated soil. We tested experimentally the influence of C saturation deficit on stabilization of added grass residue. We incubated 12 highly weathered, oxic soil samples collected from three contrasting land uses (i.e. cropping, improved pasture, and forest) with grass residue for 8 months. Carbon saturation deficit of the forest soils was lower than pasture and cropping soils. After incubation, we found increases in silt + clay associated C in grass residue treatment positively correlated with C saturation deficit of soils. Our results suggest that stabilization of added C was high in soil with low C saturation level and hence higher C saturation deficit.  相似文献   

12.
Land use changes profoundly affect the equilibrium of soil organic carbon (SOC) sequestration and greenhouse gas emissions. With the current global climatic changes, it is vital to understand the influence of ecological restoration and conservation management on the dynamics of SOC under different land uses, especially in erosion-endangered Loess soils. Therefore, we investigated changes in SOC through a suit of labile fractions, namely: light fraction organic C (LFOC), heavy fraction organic C (HFOC), coarse particulate organic C (CPOC), fine particulate organic C (FPOC), and dissolved organic C (DOC), from two forests i.e., Robinia pseudoacacia (RP) and Platycladus orientalis (PO), with different ages, in comparison with farmland (FL). The SOC and STN contents significantly increased over 42 years in the RP forest where the contents of CPOC and FPOC were significantly higher than in the FL. Moreover, total SOC and its labile fractions, in the studied land use types, significantly correlated with soil CaCO3, pH, and STN contents, indicating their key roles in SOC sequestration. The results reported here from different vegetation with different ages provide a better understanding of SOC and STN alterations at different stages of vegetation restoration. Our findings suggest that long-term natural vegetation restoration could be an effective approach for SOC sequestration and soil conservation on the Loess soil.  相似文献   

13.
Findings of previous studies suggest that there are relations between thermal stability of soil organic matter (SOM), organo‐mineral associations, and stability of SOM against microbial decay. We aimed to test whether thermal oxidation at various temperatures (200°C, 225°C, 275°C, 300°C, 400°C, or 500°C) is capable of isolating SOM fractions with increasing stability against microbial degradation. The investigation was carried out on soils (Phaeozem and Luvisol) under different land‐use regimes (field, grassland, forest). The stability of the obtained soil organic carbon (SOC) fractions was determined using the natural‐13C approach for continuously maize‐cropped soils and radiocarbon dating. In the Luvisol, thermal oxidation with increasing temperatures did not yield residual SOC fractions of increasing microbial stability. Even the SOC fraction resistant to thermal oxidation at 300°C contained considerable amounts of young, maize‐derived C. In the Phaeozem, the mean 14C age increased considerably (from 3473 y BP in the mineral‐associated SOC fraction to 9116 y BP in the residual SOC fraction after thermal oxidation at 300°C). An increasing proportion of fossil C (calculated based on 14C data) in residual SOC fractions after thermal oxidation with increasing temperatures indicated that this was mainly due to the relative accumulation of thermally stable fossil C. We conclude that thermal oxidation with increasing temperature was not generally suitable to isolate mineral‐associated SOC fractions of increasing microbial stability.  相似文献   

14.
The different management regimes on grassland soils were examined to determine the possibilities for improved and/or changed land management of grasslands in Flanders (Belgium), with respect to article 3.4 of the Kyoto Protocol. Grassland soils were sampled for soil organic carbon (SOC) and for bulk density. For all grasslands under agricultural use, grazing and mowing + grazing led to higher SOC stocks compared with mowing, and grazing had higher SOC stocks compared with mowing + grazing. Overall, 15.1 ± 4.9 kg OC m–2 for the clayey texture, 9.8 ± 3.0 kg OC m–2 for the silty texture, and 11.8 ± 3.8 kg OC m–2 for the sandy texture were found for grassland under agricultural use to a depth of 60 cm. For seminatural grasslands, different results were found. For both the clayey and silty texture, mowing and mowing + grazing led to higher SOC stocks compared with grazing. The clayey texture had a mean stock of 15.1 ± 6.6, the silty texture of 10.9 ± 3.0, and the sandy texture of 12.1 ± 3.9 kg OC m–2 (0–60 cm). Lower bulk densities were found under grazed agricultural grassland compared with mown grassland but for seminatural grassland, no clear trends for the bulk density were found. The best management option for maintaining or enhancing SOC stocks in agricultural grassland soils may be permanent grazed grassland. For seminatural grassland, no clear conclusions could be made. The water status of the sampled mown fields was influencing the results for the clayey texture. Overall, the mean SOC stock was decreasing in the order clay > sand > silt. The higher mean SOC concentrations found for the sandy texture, compared to the finer silty texture, may be explained by the historical land use of these soils.  相似文献   

15.
Soil Bulk Density (BD) is an extremely important variable because it is an important site characterization parameter, and it is highly relevant for policy development because it is mandatory for calculating soil nutrient stocks. BD can influence soil chemical properties, land-use planning and agronomic management. The 2018 Land Use and Coverage Area Frame Survey (LUCAS) saw the unprecedented collection of BD core analysis in a subset of the locations in Europe and the United Kingdom where soil physical and chemical properties were analysed in the 2009 and the 2015 sampling campaigns. Here, we integrated the LUCAS 2018 BD sampling campaign with the mass fraction of coarse fragments previously determined in LUCAS 2009–2015 in order to provide a dataset of the volume fraction of coarse fragments and the BD of the fine earth and improve soil organic carbon (SOC) stock estimation accuracy for topsoil. BD data sampled at 0–10 and 10–20 cm were averaged to harmonize the BD with the mass fraction of coarse fragments measured in 2009, 2012 and 2015. Samples were from cropland, grassland and woodland soils, which accounted for 41%, 21% and 30%, respectively, of the total number of selected sites (n = 6059); ‘bareland’, and ‘shrubland’ accounted for 3% of the sites each, whereas ‘artificial land’ accounted for <1%. Only six samples were classified as ‘wetland’. The dataset was produced assuming the mass density of the coarse fraction to be constant across all LUCAS soil samples. We also estimated the SOC stocks associated with LUCAS 2018 BD and SOC content measurements and showed that correcting the BD by the coarse mass fraction instead of the coarse volume fraction generates SOC stock underestimation. We found the highest deviations in woodlands and shrublands. We showed that, when SOC stock is computed with coarse mass fraction, the error compared with the computation by volume may vary depending on the SOC and coarse mass fraction. This may imply a SOC stock underestimation for European soils. This dataset fits into the big framework of LUCAS soil properties monitoring and contributes both to soil awareness and soil research and assessments, which are two important objectives of the Soil Strategy and the European Soil Observatory (EUSO).  相似文献   

16.
Soil restoration is a means of combating desertification in semi‐arid and arid parts of the world. There, vast areas of the cropped soil degrade, particularly because of the loss of organic matter. One approach to reverse this loss is the conversion of cropland into permanent grassland for use as pasture. This study was designed to evaluate how fast and to what degree degraded cropland may re‐sequester soil organic carbon (SOC) when converted into permanent secondary pasture. Topsoil samples (0–5, 5–10 and 10–20 cm) were taken from chronosequences of secondary pastures (1 to 31 years old) at three agro‐ecosystems in the semi‐arid Highveld of South Africa. Long‐term croplands and primary grassland used as pastures served as the controls. In bulk soil samples (<2 mm) and their clay (<2 µm), silt (2–20 µm), fine sand (20–250 µm) and coarse sand (250–2000 µm) fractions, the contents of carbon (C) and nitrogen were determined. In all three agro‐ecosystems, using a mono‐exponential model, the SOC stocks increased exponentially until a maximum was reached 10–95 years after land conversion. This gain in SOC was clearly pronounced for the top 0–5 cm of soil, but hardly detectable at 10–20‐cm depth. The sand fractions recovered organic C more rapidly but less completely than did the finer size separates. Overall, between 9.0 and 15.3 t of SOC were sequestered in the 0–20 cm of surface soil by this land conversion. Thus, the SOC recovery in the secondary pastures resulted in SOC stocks that were 29.6–93.9% greater than those in the arable land. Yet, in no agro‐ecosystem, at any soil depth, nor in any soil fraction, did the measured SOC content reach that of the primary grassland. In part this can be attributed to a slightly finer texture of the primary grassland that had not lost silt through wind erosion or had never been used as arable land because of slightly elevated clay contents. Overall it appears, however, that previous losses of SOM cannot easily be rectified, suggesting that the native primary grassland soils are only partially resilient to land‐use change.  相似文献   

17.
Land use change (LUC) is known to have a large impact on soil organic carbon (SOC) stocks. However, at a regional scale, our ability to explain SOC dynamics is limited due to the variability generated by inconsistent initial conditions between sample points, poor spatial information on previous land use/land management history and scarce SOC inventories. This study combines the resampling in 2003–2006 of an extensive soil survey in 1950–1960 with exhaustive historical data on LUC (1868–2006) to explain observed changes in the SOC stocks of temperate forest soils in the Belgian Ardennes. Results from resampling showed a significant loss of SOC between the two surveys, associated with a decrease in variability. The mean carbon content decreased from 40.4 to 34.5 g C kg?1 (10.6 to 9.6 kg C m?2), with a mean rate of C change (ΔSOC) of ?0.15 g C kg?1 year?1 (?0.023 kg C m?2 year?1). Soils with high SOC content tended to loose carbon while conversely soils with low SOC tended to gain carbon. Land use change history explained a significant part of past and current SOC stocks as well as ΔSOC during the last 50 years. We show that the use of spatially explicit historical data can help to quantitatively explain changes in SOC content at the regional scale.  相似文献   

18.
Woody plant encroachment into grasslands and savannas is a globally extensive land-cover change that alters biogeochemical processes and frequently results in soil organic carbon (SOC) accrual. We used soil physical fractionation, soil respiration kinetics, and the isotopic composition of soil respiration to investigate microbial degradation of accrued SOC in sandy loam soils along a chronosequence of C3woody plant encroachment into a C4-dominated grassland in southern Texas. Our previous work in this system demonstrated significant changes in the chemistry and abundance of lignin and aliphatic biopolymers within particulate soil fractions during the first 40 yrs of woody plant encroachment, indicating selective accrual of purportedly more recalcitrant plant chemicals. However, during the long-term soil laboratory incubation presented herein, a greater proportion of SOC was mineralized in soils from older woody stands (34-86 yrs) than in soils from younger woody stands (14-23 yrs) and grasslands, providing no evidence for greater biochemical recalcitrance as a controlling mechanism for SOC accrual. In addition, δ13C values of respired CO2 indicate that the mineralized SOC was predominately of C3 origin from all woody stands along the chronosequence, and that respired CO2 was primarily derived from the free light fraction (density <1.0 g/cm3) and macroaggregate-sized soil fraction. Our data suggested that the location of SOC among soil fractions was more important than plant polymer chemistry in determining SOC turnover rates during incubation. Surprisingly, estimates of the size and turnover rate of the active SOC pool based on respiratory kinetics did not increase with woody encroachment, and the turnover rate of the slower SOC pool decreased, again supporting the notion that increases in biochemically recalcitrant biopolymers did not hinder decomposition in the lab. These data indicate environmental conditions that may allow for C accrual in the field were alleviated during the controlled incubation. Therefore, C accrual in these sandy loam soils following woody encroachment should not be assumed stable, and this factor should be taken into account when considering responses of SOC to climate change or when making management decisions regarding land cover impacts on SOC.  相似文献   

19.
Soil organic carbon (SOC) density was researched in southern NingXia with five different land uses: shrubland, farmland, grazing grassland, orchard, and artificial grassland. The results have shown that (1) content of SOC in soil 0–20 cm deep was greatest for grazing grassland and less for bush forestland, farmland, artificial grassland, and orchard; (2) content of SOC of bush forestland and orchard decreased slowly as depth of profile increased, whereas SOC of farmland, grazing grassland, and artificial grassland decreased fast; (3) SOC density of grazing grassland and farmland was greater than the bush forestland, artificial grassland, and orchard; and (4) the establishment and development of C. korshinski on eroded soil resulted in significant improvement of SOC density.  相似文献   

20.
Soils that exhibit soil organic carbon (SOC) saturation provide an opportunity to examine mechanisms of C storage in soils with increasingly limited C-stabilization potential. A manure rate experiment in Lethbridge, Alberta, in which SOC responded asymptotically to long-term manure C additions, allowed us to assess changes in SOC biochemical composition in response to soil C saturation. By quantifying the cupric oxide oxidation products of lignin, cutin, and suberin in fractionated SOC pools that are characterized by chemical (i.e., mineral-associated), physical (i.e., microaggregate-associated), or no protection (i.e., free particulate organic matter), we evaluated the interaction between C saturation and the biochemical characteristics of SOC.We tested the specific responses of soil fraction lignin, cutin, and suberin to C saturation level by using the bulk soil to approximate C-input composition across manure input treatments. Carbon-normalized lignin (lignin-VSC/OC) in the chemically protected fractions did not differ, while in the non-protected and physically protected soil fractions, it decreased with C saturation level. Neither the stabilization of cutin and suberin, nor the lignin:cutin + suberin ratio, differed in any of the measured soil fractions in response to C saturation level.These results indicate that with C saturation and decreased C stabilization potential, lignin, cutin, or suberin were not preferentially stabilized or depleted in mineral protected soil C pools. The lack of evidence for biochemical preference in mineral associations with C saturation supports the existence of an outer kinetic zone of organomineral associations, in which partitioning of organic compounds, rather than sorption, controls mineral SOC accumulation at high SOC loadings. Furthermore, despite theories of inherent lignin recalcitrance, depleted lignin concentrations with C saturation in the non-protected and aggregate protected fractions indicate that lignin was, in this study, preferentially decomposed when not protected by association with mineral phases in the soil. In conclusion, C-input quantity, and not quality, combined with physical and chemical protection mechanisms that govern long-term C storage, appeared to control C saturation and stabilization at this site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号