首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
通过对影响AFLP反应体系主要因素的优化,建立了蜡梅的AFLP反应体系,并筛选出了适宜该体系分析的引物.结果表明,20μL蜡梅AFLP最佳酶切体系为模板600 ng DNA,3 U Pst I和3 U Mse I,在37℃下双酶切2 h;在20μL最佳连接体系中酶切产物为15μL,3 U T4连接酶,0.25μmol.L-1 Pst I接头,2.5μmol.L-1 Mse I接头,1μL 10×T4 Buffer,在22℃下连接10 h;在20μL最佳预扩反应体系中稀释10倍的连接产5μL,2.0mmol.L-1 Mg2+,2 U Taq酶,300μmol.L-1dNTP,0.5μmol.L-1 Pst I和Mse I引物(P+AGA/M+ATC);在20μL最佳选择性扩增反应体系中5μL稀释20倍的预扩增产物,2.0 mmol.L-1的Mg2+,2 U Taq酶,300μmol.L-1 dNTP,0.5μmol.L-1 Pst I和Mse I引物(P+AGA/M+ATC).最后,利用上面的体系筛选出了96对适宜于蜡梅AFLP分析的引物.  相似文献   

2.
瓜实蝇[Bactrocera cucurbitae(Coquillett)]是中国重要的蔬菜害虫,但其DNA甲基化研究尚未见报道。甲基化敏感扩增多态性是研究DNA甲基化的重要技术之一。通过对酶切反应、连接、PCR扩增和引物筛选等条件优化,建立瓜实蝇MSAP反应体系,即:120μL酶切体系中加入10 U的限制性内切酶与600 ng基因组DNA,于37℃酶切反应过夜;220μL连接体系中加入T4连接酶1 U,HpaⅡ-MspⅠ-adapter接头50 pmol,Eco R I-adapter接头5 pmol,并于16℃反应12 h;3连接产物稀释后进行PCR预扩增和选择性扩增,再经6%变性聚丙烯酰胺凝胶电泳和银染检测结果。通过该体系筛选出适用于瓜实蝇基因组DNA甲基化多态性研究的6对引物;瓜实蝇MSAP体系为瓜实蝇的表观遗传学研究提供了技术支持。  相似文献   

3.
以芝麻细胞核雄性不育系95ms-5为材料,对AFLP反应体系中的酶切连接、预扩增和选择性扩增中的关键性因素进行了优化。结果表明,在模板DNA质量浓度为200ng/μL、37℃酶切连接6h的情况下,预扩增中最佳Mg2+浓度为1.0mmol/L,dNTP最佳浓度为0.3mmol/L,Taq酶量以0.5U为宜,预扩增引物终浓度为0.4mmol/L;选择性扩增中,预扩增产物稀释10倍后,以Mg2+0.8mmol/L、dNTP 0.2mmol/L、Taq酶1.0U、选扩引物0.6mmol/L为宜。  相似文献   

4.
为获得不同倍性泥鳅基因组DNA甲基化水平及模式,以泥鳅Misgurnus anguillicaudatus为研究对象,利用正交试验建立了甲基化敏感扩增多态性( MSAP)方法的反应体系,并利用该方法对二倍体泥鳅鳍基因组DNA进行了MSAP分析。结果表明:最佳双酶切反应体系为800 ng的泥鳅基因组DNA,用EcoR I、 Hpa II和Msp I各10 U,在37℃下反应8 h后即可酶切;最佳预扩增反应体系为模板4μL、预扩增引物0·8μL、0·2 mmol/L dNTPs、1·5 mmol/L Mg2+和 Taq 1 U;最佳选择性扩增反应体系为预扩增产物稀释20倍的模板2μL、引物1·5μL、0·375 mmol/L dNTPs、1·5 mmol/L Mg2+和 Taq 1 U;二倍体泥鳅全甲基化率分别为24·1%、20·8%、22·3%,半甲基化率分别41·4%、20·8%、33·3%,总甲基化率分别为65·5%、41·6%、55·6%。研究表明,该反应体系稳定、可靠、重复性好,为MSAP技术在多倍体泥鳅相关研究中的应用奠定了基础。  相似文献   

5.
为建立适合桃的甲基化敏感扩增多态性(methylation sensitive amplification polymorphism,简称MSAP)反应体系,以桃PCM-1R、PCM-1G为材料,对MSAP技术中的关键因素进行优化。结果表明,500 ng基因组DNA用EcoRⅠ、HapⅡ或MspⅠ各10 U(0.5μL,2 000 U/m L),37℃保温12 h,即可酶切完全;25μL选择性扩增体系中,含有2μL10倍稀释的预扩增产物、各1μL上下游引物、2.5μL 10×Taq buffer、2.5μL d NTP mix(各0.2 mmol/L)、2.5μL25 mmol/L MgCl_2、0.25μL Taq DNA聚合酶。在该体系下选用256对引物对桃叶片进行甲基化模式分析,经筛选获得23对扩增条带清晰、重复性好的引物,PCM-1R、PCM-1G总甲基化率分别为28.0%、25.7%。  相似文献   

6.
以豫杂一号泡桐组培苗为材料,通过对影响MSAP反应体系各主要因素的优化,建立了适于泡桐MSAP分析的反应体系.结果表明,最佳酶切体系(25μL)包含300 ng模板DNA,16 U的EcoR I和10 U的HapⅡ(MspI),各双酶切8 h后,80℃失活20 min;最佳连接体系(25μL)是酶切产物20μL,0.16μmol.L-1EcoR I接头,1.6μmol.L-1HapⅡ(MspI)接头,2.5μL 10×T4Buffer,2 U T4连接酶,22℃连接18 h;最佳预扩反应体系(20μL)是5μL稀释10倍的连接产物,100μmol.L-1dNTP,0.5 U Taq酶,EcoR I和HapⅡ(MspI)预扩引物各0.25μmol.L-1,2.5μL 10×PCR Buffer.最佳选择性扩增反应体系(20μL)为5μL稀释30倍预扩增产物,100μmol.L-1 dNTP,0.5 U Taq酶,EcoR I和HapⅡ(MspI)选扩引物各0.3μmol.L-1,2.5μL 10×PCRBuffer.最后,利用优化的体系,筛选出了96对适宜于泡桐MSAP分析的引物.  相似文献   

7.
基于毛细管电泳的柳树AFLP分子标记研究   总被引:2,自引:0,他引:2  
为构建柳树遗传图谱、进行分子育种等奠定基础,以柳树为材料,基于毛细管电泳技术体系建立并优化了AFLP分子标记技术,简化了AFLP分析流程。首先提取高质量的柳树基因组DNA,对基因组进行酶切与接头连接、预扩增和选择性扩增,最后通过毛细管电泳分析各因素的影响。基因组DNA提取采用改进的CTAB法,酶切模板DNA用量450 ng,EcoRⅠ酶切2 h,MseⅠ酶切2 h,接头过夜连接,选择性扩增时dNTP浓度0.3 mmol/L,Mg 2+ 浓度1.5 mmol/L,引物浓度0.125 μmol/L,DNA聚合酶浓度0.025 U/μL,预扩增产物最适稀释倍数20倍。经过重复实验,证明建立的AFLP 毛细管反应体系适用于柳树AFLP分析。   相似文献   

8.
火龙果EST-SSR分子标记反应体系的建立与优化   总被引:2,自引:0,他引:2  
基于火龙果转录组测序序列设计引物,以生物学性状差异明显的11份火龙果种质DNA为材料,采用正交试验设计,对影响火龙果EST-SSR-PCR扩增的2×Taq PCR Master Mix、引物及模板DNA浓度等因素进行了优化,在此基础上对变性聚丙烯酰胺凝胶质量浓度及上样量进行筛选确定。以期建立适合火龙果的EST-SSRPCR最佳反应体系。结果表明,优化后的火龙果EST-SSR-PCR扩增的最佳反应体系为:10μL混合反应体系含基因组DNA 30 ng、6μL 2×PCR Mix和0.6μL(10-5mol/L)的EST-SSR引物。在聚丙烯酰胺凝胶电泳检测中,10%的变性聚丙烯酰胺凝胶质量浓度、2.5μL上样量扩增效果最佳。该体系的建立可为今后利用EST-SSR标记对火龙果遗传多样性分析、系统发育研究、遗传图谱构建、基因定位和分子标记辅助育种等研究提供基础。  相似文献   

9.
蜡梅AFLP-银染体系的建立与优化   总被引:1,自引:0,他引:1  
为了建立蜡梅AFLP-银染的优化体系,采用EcoRI和MseI 2种限制性内切酶酶切组合,对该2种酶的用量、酶切时间、预扩增与选择扩增中的Mg2 浓度、Taq DNA聚合酶的用量、引物的浓度以及预扩增产物的稀释倍数等因素进行了多水平的筛选,同时探讨了温度及聚丙烯酰胺凝胶电泳(PAGE)的电流强度等因素对胶图的影响。结果表明:用5 U限制性内切酶酶切4 h便能在40μL的反应体系中完全切割500 ng的总DNA,酶切连接产物稀释10倍后在含有1.5 mmol/L Mg2 1、U Taq、预扩增引物E A和M C分别为40 ng的20μL反应体系中进行预扩增,将预扩增产物稀释30倍后在含有1.5 mmol/L Mg2 、0.6 U Taq、选择扩增引物E 3为30 ng、M 3为60 ng的20μL的体系中进行选择性扩增,能够得到质量比较好的AFLP胶图。此外,在进行PAGE电泳和硝酸银染色,将电泳的温度控制在50℃左右,电流控制在45~60 mA左右能提高胶图的质量。利用这种优化的反应体系,成功地评价了40个蜡梅基因型的遗传多样性,6对选择扩增引物组合表现出较高的稳定性、清晰度和多态性,它们分别是:E-AAC/M-CCC,E-ATC/M-CCC,E-AGA/M-CAG,E-AAA/M-CAC,E-ATA/M-CCA,E-ATT/M-CCA。  相似文献   

10.
枣选择性扩增微卫星体系的建立及优化   总被引:1,自引:0,他引:1  
【目的】建立和优化枣的选择性扩增微卫星(SAM)技术体系,丰富枣群体遗传学研究的方法,同时为枣利用SAM法开发SSR引物提供技术参考和模板。【方法】以冬枣、大荔龙枣和金丝小枣为试材,采用CTAB法提取样品DNA,对SAM试验过程中的酶切-连接、抑制性扩增、预扩增、选择性扩增等关键因子进行研究。【结果】利用PstⅠ和MseⅠ双酶切系统,分步法进行酶切-连接是后续试验成功的关键,抑制性扩增(20.0μL体系)模板取酶切连接液2.0μL,预扩增和选择性扩增(20.0μL体系)的模板分别取上步扩增的稀释产物各2.0μL;抑制性扩增和预扩增反应中,ExTaq取0.5 U,反应25个循环,产物稀释20倍进行下一步扩增;选择性扩增采用前6个循环中退火温度梯度降低(每循环降低1℃)的反应程序,体系中可将ExTaq用量增加到1.0 U以保证酶的保真效果。【结论】试验利用优化后的反应体系,选用16个MseⅠadapter+NN primer和SSR primer(PCT6)组成引物对进行筛选,获得了谱带清晰、分辨率高、多态性丰富的电泳图谱。该研究结果为利用SAM技术开展枣的亲缘演化、遗传多样性分析及SSR引物开发等方面的研究打下了基础。  相似文献   

11.
毛白杨MSAP体系优化及DNA甲基化的初步分析   总被引:1,自引:0,他引:1  
首次利用MSAP技术开展毛白杨DNA甲基化研究。在优化选择性扩增体系的基础上,对毛白杨亲子代的CCGG位点甲基化相对水平、CCGG位点胞嘧啶甲基化模式的遗传变异进行了初步分析。结果表明:①引物H/M+3、引物E+A+2、dNTP、Taq酶、预扩增产物稀释倍数分别为0.03 nmol、0.03 nmol、0.20 mmol/L、1 U(或1.5U)、40倍时组成的20μL反应体系经PCR扩增后电泳,可得到品质最佳的银染谱带。②毛白杨CCGG位点甲基化相对水平约为26.75%~29.39%,CNG甲基化相对水平低于CG甲基化相对水平,子代的甲基化相对水平低于亲本的甲基化相对水平。③子代中发生遗传变异的CCGG位点数之比为1∶1。遗传自亲本的CG甲基化位点数高于遗传自亲本的CNG甲基化位点数,遗传自父本的甲基化位点数高于遗传自母本的甲基化位点数;子代甲基化位点的变异以去甲基化为主,发生CG甲基化变异的位点数与发生CNG甲基化变异的位点数之比为1∶1。  相似文献   

12.
泡桐AFLP反应体系的建立及引物筛选   总被引:1,自引:1,他引:0  
以豫杂一号泡桐为材料,通过对影响AFLP技术体系的各主要因素的研究,建立了适于泡桐AFLP分析的技术体系.结果表明最佳酶切体系(20μL)为500 ng模板DNA,3 U的Pst 1和Mse I,在37℃下双酶切3 h;20μL最佳连接体系中为酶切产物15 μL,0.25 μmol·L-1Pst I接头,2.5 μmol·L-1 Mse I接头,1 μL 10×T4 Buff-er,2 U T4连接酶,22℃连接18 h;20 μL最佳预扩反应体系中5 μL稀释10倍的连接产物,100 μmol·L-1dNTP,2 U Taq酶,250 μmol.L-1 Pst I和Mse I引物(P+AGT/M+AGT),2 μL 10×PCR Buffer.20 μL最佳选择性扩增反应体系中5 μL稀释20倍预扩增产物,100 μmol·L-1dNTP,2 U Taq酶,350 μmol·L-1 Pst I和Mse I引物(P+AGT/M+AGT),2 μL 10×PCR Buffer.最后,筛选出了97对适宜于泡桐AFLP分析的引物.  相似文献   

13.
以柱花草奥克雷品种为材料,采用改良的CTAB法提取基因组DNA,对影响AFLP反应体系的主要因素进行了优化,建立了柱花草的AFLP反应体系。结果表明:20μL为最佳反应体系,酶切体系中DNA模板量为1000ng,用5 U EcoR I 37℃酶切2 h、5 U Mse I 65℃酶切2 h效果最佳;分别取5μL酶切液、1μL T4连接酶(5μL/L)、1μL EcoR I接头、1μL Mse I接头、2μL缓冲液(T4DNA酶自带),于22℃下连接10 min效果最佳;预扩增体系中模板稀释15倍、Mg2+浓度为0.75 mmol/L、Taq酶用量为1 U、dNTPs浓度为0.2 mmol/L、引物浓度为2 ng/μL效果最佳;选择扩增体系中模板稀释20倍、Mg2+浓度为1.25 mmol/L、Taq酶为1 U、dNTPs浓度为0.225 mmol/L、引物浓度为0.4 ng/μL效果最佳。利用热研5号、奥克雷2个品种对8对引物组合进行筛选,筛选出46对引物组合,为利用AFLP标记对柱花草进行分子生物学研究及分子育种奠定基础。  相似文献   

14.
柿AFLP银染技术体系的建立   总被引:1,自引:0,他引:1  
通过对各主要影响因素的研究,建立了适于柿AFLP分析的银染技术体系:酶切体系20μL总体积中含纯化后的DNA450ng,EcoRI和MseI各3U,37℃酶切4h;酶切完成后加入连接液,37℃连接10h(或过夜),然后65℃变性10min;连接产物稀释5倍用于预扩增,预扩增体系中EcoRI和MseI引物均不含选择性碱基;预扩增产物稀释5倍用于选择性扩增,选择性扩增体系中EcoRI和MseI引物均含3个选择性碱基,选择性扩增完成后,加入10μLLoadingbuffer,95℃变性10min,立即冰浴;取6 5μL变性后的选择性扩增产物在6%变性聚丙烯酰胺凝胶上电泳,电泳完毕后,对胶板进行固定、脱色、水洗、银染、冲洗、显影、定影及干燥等银染程序。  相似文献   

15.
蝴蝶兰SRAP反应体系的建立与优化   总被引:1,自引:0,他引:1  
以蝴蝶兰嫩叶提取的DNA为材料,蝴蝶兰SRAP反应体系中的重要参数Mg2+、Taq酶、模板DNA及随机引物,建立了一套适合蝴蝶兰基因扩增的SRAP反应体系:25μL的反应体系中Mg2+浓度为2.0mmol/L,Taq酶1.0U,DNA模板40ng,上下游引物0.8mmol/L。该体系扩增条带清晰,重复性好,有望在蝴蝶兰属植物的遗传育种研究中运用。  相似文献   

16.
采用单因素试验结合正交试验,对PCR反应体系中的5种主要反应因子Mg2+、dNTPs、TaqDNA聚合酶、引物、模板DNA浓度进行优化筛选,确立了适合蛇莓基因组DNA的RAPD和ISSR反应体系,RAPD反应体系(20μL):Mg2+1.5 mmol/L、dNTPs 250μmol/L、Taq酶1 U、引物0.2μmol/L、DNA模板60 ng;ISSR反应体系(20μL):Mg2+2.0 mmol/L、dNTPs 250μmol/L、Taq酶0.5 U、引物1μmol/L、DNA模板60 ng。利用确立的体系对24份蛇莓种质进行扩增,结果条带清晰明亮,多态性好。  相似文献   

17.
从草珊瑚(Sarcandra glabra)的幼嫩叶片中提取基因组DNA,建立草珊瑚AFLP反应体系,对AFLP反应体系中模板DNA的浓度、基因组DNA的双酶切时间、预扩增产物的稀释倍数和引物组合的筛选等关键因素进行摸索.优化的草珊瑚AFLP反应体系为模板DNA的用量20 ng/μL、酶切反应时间4h、预扩增产物稀释15倍,初步筛选出8对较为适合草珊瑚AFLP分析的引物组合.  相似文献   

18.
为橡胶树遗传多样性分析及遗传图谱的构建奠定基础,分析引物浓度、Mg2+浓度、dNTPs浓度、模板DNA用量、Taq酶用量等因素对SRAP-PCR扩增反应的影响。结果表明,橡胶树SRAP-PCR的适宜扩增反应体系(20μL)为:引物0.2μmol/L,Mg2+2.0mmol/L,dNTPs 0.20mmol/L,模板DNA50ng,Taq酶0.5U。利用该体系从400对引物组合中初筛出28组多态性好的引物组合,获得250条清晰带,多态性比率为62.8%。  相似文献   

19.
对獭兔RAPD体系中Taq DNA聚合酶浓度、引物浓度、基因组DNA浓度进行研究。结果表明:Taq酶浓度为1.0 U,引物浓度为10 pmol/μl,基因组DNA浓度为50 ng/μl时,可获得清晰、稳定性好的条带。优化的RAPD反应体系为:总体积为20.0μl。10×Buffer(含Mg2+)为2.0μl;dNTPs(各2.5 mmol/L)为2.0μl;Taq酶浓度为1.0 U,引物浓度为10 pmol/μl,基因组DNA浓度为50 ng/μl;超纯水为13.8μl。PCR扩增条件为:97℃预变性7 m in,94℃1 m in,36℃退火1 m in,72℃2 m in,45个循环后,在72℃延伸10 m in结束,4℃保存。PCR扩增产物通过1.4%的琼脂糖凝胶电泳检测。点样后,以2~3 V/cm电压降稳压电泳3.0~3.5 h。  相似文献   

20.
 以小麦条锈菌、杆锈菌、叶锈菌的夏孢子为材料,通过DNA提取、酶切、PCR扩增、凝胶电泳等系列程序摸索和优化,建立了锈菌的AFLP分子标记体系如下: 40μL酶切体系中采用了EcoRI,TrulI各5U,37℃3h,65℃3h双酶切4μL100ng/μL的DNA; 然后加入10μL连接混合液22℃连接3h,16℃10h; 连接产物5μL,10μmol/LEcoRI,10μmol/LTru1I预扩引物各1.5μL,PCR反应液25μL,ddH2O17μL进行预扩;预扩产物稀释20倍后取 5μL,50ng/μL EcoRI,Tru1I选扩引物各1μL,PCR反应液10μL,ddH2O3μL体系进行选择性扩增。为研究小麦锈病和其他真菌性病害的分子标记克隆及抗病育种的辅助选择提供了有力工具。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号