首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mass balance estimates of carbon and nitrogen flux through two extensive shrimp ponds in the Mekong delta, Vietnam, were constructed to identify major sources and sinks of organic matter potentially available for shrimp production. Nutrient transformations in the sediments were measured to further assess rates of decomposition and burial and quality of organic matter. Tidal exchange was the major pathway for inputs and outputs of carbon and nitrogen in both ponds, with net primary production, nitrogen fixation and precipitation being minor inputs. No fertilizers or artificial feeds were added to either pond. The nutrient budgets identified burial and respiration as the next most important outputs after tidal exchange losses of particulate and dissolved carbon and nitrogen. There was no measurable denitrification in either pond, and volatilization was negligible. Mineralization efficiency of carbon in the water column was high (> 100%) in pond 23 reflecting rapid respiration rates; efficiency was lower (36%) in pond 12 waters. Mineralization efficiency of sediment nutrients averaged 34% for C and 41% for N in the pond with a higher annual shrimp yield (pond 12); lower mineralization efficiencies (11% for C, 10% for N) were calculated for the lower yield pond (pond 23). High burial efficiencies for both C (66–89%) and N (59–90%) in the sediments of both ponds suggest that little organic matter was shunted into biological production. Conversion efficiency for shrimp averaged 16% for C and 24% for N from pond 12, and 6% for C and 18% for N from pond 23. The high quantity but low quality of organic matter entering the ponds coupled with other factors, such as poor water quality, limits shrimp productivity. On average, nutrient outputs were greater than inputs in both ponds. This imbalance partly explains why shrimp yields are declining in these ponds.  相似文献   

2.
Intensive marine and brackishwater shrimp farms commonly use large quantities of zeolites in ponds with the aim of removing ammonia through ion exchange, providing physical cover over sediments to prevent leaching of metabolites into the water column, removing suspended solids, and improving water colour and diatom blooms. Zeolites have the capacity to remove ammonia and other nutrients/ metabolites from fresh waters by ion exchange and absorption. However, there are doubts as to their efficacy and cost-effectiveness in saline waters. This research was conducted to investigate the effect of zeolites on water quality under a range of conditions in seven laboratory-based trials and one pond trial. These investigated the effects of six types of commercially available zeolites and three other alumino-silicate clays at levels from one to 26 times the recommended dose rate (380 kg ha-1 month-1) in water at salinities of 0-30%o for periods of 3-19 days. The results indicated that none of the zeolites or natural alumino-silicate clays from Thailand had any significant effects on the removal of nutrients from water at salinities of 0-30%. Neither were these able to prevent nutrient emission from shrimp pond sediments in water at 20-2l%o salinity. Furthermore, none of the other suggested functions of reducing levels of particulate nutrients, enhancing algal biomass, or affecting oxygen and pH dynamics were evident. This study could not establish any useful, cost-effective role for zeolites in shrimp pond culture.  相似文献   

3.
ABSTRACT:   An experiment in which water was circulated between shrimp aquaculture ponds stocked with 10 000 or 20 000 PL-15 stage Penaeus monodon , and mangrove enclosures each planted with 476 Rhizophora mucronata per enclosure, was carried out at the Samut Songkhram Coastal Aquatic Research Station, Faculty of Fisheries, Kasetsart University, Thailand. Shrimp survival rate was significantly higher ( P  < 0.001, Fisher's exact test) in ponds where 10 000 larvae was stocked and water was exchanged with the mangrove enclosure, compared with the control pond with no water exchange, over the 136 day experimental period. Phosphorus transport to the mangrove enclosure was estimated to be 0.41 kgP and 0.18 kgP over the experimental period and change in phosphorus content in mud was reduced there compared with the control pond. A load reduction effect to the environment was confirmed in this aquaculture system with mangrove enclosure compared with the phosphorus budget in the control pond, and 6.2 or 8.9 ha of mangrove area was estimated to be required by 1 ha shrimp ponds to fully process the phosphorus.  相似文献   

4.
Hydrology of inland brackishwater shrimp ponds in Chachoengsao, Thailand   总被引:1,自引:0,他引:1  
This study focuses on a new trend in shrimp aquaculture, the development of brackishwater ponds for Penaeus monodon culture in inland freshwater areas of Thailand’s Central Plain. Water balances were calculated for ponds and reservoirs at an inland shrimp farm in Chachoengsao, Thailand, between May and July 1999. Regulated inflow and outflow were the largest water fluxes, averaging 0.94 and 0.70 cm/day. Other daily average water gains were rainfall (0.52 cm/day) and runoff (1.7 cm/day), and other water losses were evaporation (0.31 cm/day) and seepage (0.52 cm/day). Over an entire crop cycle, of average length 109 days, average water inputs were: initial pond filling (84 cm); regulated inflow (103 cm); rainfall (57 cm); and runoff (3 cm). Average outputs were: regulated outflow (76 cm); seepage (57 cm); evaporation (34 cm); and draining at harvest (87 cm). The main feature of note in the water balance is the large volume of regulated outflow. All regulated outflow and most (82%) of the pondwater drained at harvest went directly to the irrigation canal system. Such large volumes of discharge could have serious environmental implications because small inland waterways have low assimilative capacity and pond effluent is saline. Consumptive water use for 14 inland shrimp ponds and reservoirs averaged 0.83±0.14 cm/day. Consumptive water use was also measured for 11 nearby rice fields, the main land use in the regions where inland shrimp farming is proliferating. Rice paddy water use averaged 0.91±0.17 cm/day. There was no significant difference in the daily consumptive water use of shrimp ponds and rice fields, suggesting that conversion from rice farming to shrimp farming would have little net impact on water availability for irrigation.  相似文献   

5.
Asian shrimp farming industry has experienced massive production losses due to a disease caused by toxins of Vibrio bacteria, known as early mortality syndrome/acute hepatopancreatic necrosis disease (EMS/AHPND) for the last 5 years. The disease can cause up to 100% cumulative pond mortality within a week. The objective of this study was to identify factors associated with AHPND occurrence on shrimp farms. A case–control study was carried out on shrimp farms in four provinces of Thailand. Factors related to farm characteristics, farm management, pond and water preparation, feed management, post‐larvae (PL) shrimp and stock management were evaluated. Multivariable logistic regression analysis identified factors affecting AHPND occurrence at the pond level. Chlorine treatment, reservoir availability, use of predator fish in the water preparation, culture of multiple shrimp species in one farm and increased PL stocking density contributed to an increased risk of AHPND infection, while delayed first day of feeding, polyculture and water ageing were likely to promote outbreak protection. Additionally, the source of PL was found to be associated with AHPND occurrence in shrimp ponds, which requires further study at the hatchery level. Identification of these factors will facilitate the development of effective control strategies for AHPND on shrimp farms.  相似文献   

6.
Most shrimp farmers in Chantaburi Province, Thailand, use water jets to dislodge sediment from empty pond bottoms, and wastewater is held for sedimentation before discharge into natural waters. Other pond bottom management practices used by a few farmers are sediment excavation, leave sediment but till entire pond bottom, and no mechanical treatment. All four methods of pond bottom treatment are followed by sun drying for 30 d. Soil organic carbon concentration in ponds following dry‐out seldom exceeded 2%. Although shrimp production in 24 ponds supplied by the same source of water was negatively correlated with increasing soil organic carbon concentration (r = ?0.582), this observation does not confirm a causative relationship. Moreover, in trials conducted at Burapha University, Chantaburi Campus, bottom soil organic matter concentration following dry‐out differed little irrespective of treatment method. Lower soil moisture concentration revealed that dry‐out was more complete with sediment removal than without, but better dry‐out resulted in lower soil pH. Removal of sediment by excavation or flushing is expensive, and natural dry‐out combined with liming and occasional sediment removal should be investigated as a less expensive and more environment‐friendly alternative to removing sediment after each crop.  相似文献   

7.
Water exchange is routinely used in shrimp culture. However, there are few, if any, systematic investigations upon which to base exchange rates. Furthermore, environmental impacts of pond effluent threaten to hinder further development of shrimp farming in the U.S. The present study was designed to determine effects of normal (25.0%/d), reduced (2.5%/d) and no (0%/d) water exchange on water quality and production in intensive shrimp ponds stocked with Penaeus setiferus at 44 postlarvae/m2. Additional no-exchange ponds were stocked with 22 and 66 postlarvae/m2 to explore density effects. Water exchange rates and stocking density influenced most water quality parameters measured, including dissolved oxygen, pH, ammonia, nitrite, nitrate, Kjeldahl nitrogen, soluble orthophosphate, biochemical oxygen demand, phytoplankton and salinity. Reduced-exchange and no-exchange treatments resulted in reduced potential for environmental impact. Mass balance of nitrogen for the system indicates that 13–46% of nitrogen input via feed is lost through nitrification and atmospheric diffusion. Growth and survival were excellent in ponds with normal exchange, reduced exchange, and a combination of low density with no water exchange. A combination of higher stocking density and no water exchange resulted in mass mortalities. Mortalities could not be attributed to a toxic effect of any one water quality parameter. Production was 6,400 kg/ha/crop with moderate stocking density (44/m2) and reduced (2.5%/d) water exchange and 3,200 kg/ha/crop with lower stocking density (22/m2) and no water exchange. Results indicate that typical water exchange rates used in intensive shrimp farms may be drastically reduced resulting in a cost savings to farms and reduced potential for environmental impact from effluent.  相似文献   

8.
The present authors investigated the impact of farming intensity and the prevailing season on water quality in intensive tropical shrimp farms. The weekly water quality samples from the inlets and production ponds of two commercial shrimp farms operating partial water exchange schedules and representing low and high farming intensities in Thailand (with Penaeus monodon Fabricius production rates of 4 and 9 t ha–1 cycle–1, respectively) were analysed over two consecutive production cycles, covering the wet (monsoon) and dry seasons. Significant differences in inlet water quality between farms occurred only in salinity, temperature and suspended solids. The present authors assessed impacts of farming intensity and season on production pond water quality parameters using: (1) an analysis of variance ( anova ) of measurements in replicate ponds during the final month of the production cycle; and (2) a trend analysis which classified trends in parameters over the cycle as externally or internally determined. The prevailing season was found to have a strong impact on salinity, temperature, pH, nitrate, dissolved reactive phosphorus, total phosphorus and dissolved oxygen in the final month of the cycle. The trends in these parameters were largely externally determined or absent. Nitrite and chlorophyll a were affected by production intensity in interaction with season and showed mainly internally determined trends. This indicates that nitrogen transformation processes responded to input levels as well as seasonal influences. Ammonia was highly variable and no significant intensity or season effects were detected, but trends were internally determined only at high intensity and more pronounced in the dry rather than the wet season. The results indicate strong seasonal effects on water quality in tropical shrimp ponds, direct in some parameters and indirect in others, including those linked to nitrogen transformations. The mechanisms of seasonal variation and the implications of these changes for water quality management call for further investigation.  相似文献   

9.
Analyses of bottom soils from three recently-established (newer) and three older ponds on each of two, semi-intensive shrimp farms near Choluteca, Honduras, revealed that the 0 to 2.5 cm layer had greater concentrations of most variables than deeper layers. Concentrations of total carbon, nitrogen, sulphur, phosphorus, calcium, iron, manganese, and zinc were greater in older than in newer ponds on one or the other of the farms. After 8–11 y of continuous production, total carbon concentrations varied over pond bottoms, and concentrations usually were greatest (1.5–2.5%) in inlet sections. Nitrogen concentrations were about 20% those of carbon and changes in nitrogen concentration closely followed those of carbon. Precipitation of iron pyrite (FeS2) in anaerobic soil layers was the apparent cause of sulphur accumulation in older ponds. Phosphorus accumulated in older ponds on the farm where heavy doses of fertilizer were applied. Soils of both older and newer ponds on both farms had large accumulations of major cations, a large portion of which were water-soluble salts. There was no evidence of development of adverse soil quality in older ponds.  相似文献   

10.
Soil chemical analyses were conducted on samples from 358 freshwater fish ponds and 346 brackishwater shrimp ponds. Freshwater ponds were located in Honduras, Rwanda, Bhutan, and the United States. Ponds in the United States were in Alabama, Georgia, Mississippi, Florida, and South Carolina. Brackishwater ponds were in Thailand, Ecuador, Philippines, and Venezuela. Soils of freshwater and brackishwater ponds did not differ greatly in average concentrations and concentration ranges for carbon, nitrogen, calcium, and pH. Concentrations of copper and barium tended to be higher in freshwater soils than in brackishwater ones. All other measured chemical constitutents tended to be more abundant in the soils of brackishwater ponds than in those of freshwater ponds. For the most part, ranges of pond soil chemical properties were similar to those of terrestrial soils, with freshwater pond soils resembling terrestrial soils from humid areas and brackishwater soils being similar in many respects to soils of arid regions. However, some brackishwater pond soils were highly acidic, acid-sulfate soils. Data were arranged into concentration categories (very low, low, medium, high, and very high) to facilitate comparisons of the present data set with other data on soil chemical properties for aquaculture ponds. All ponds included in the present study were used for aquaculture, showing that it is possible to rear fish and shrimp across an extremely wide range of soil chemical properties.  相似文献   

11.
ABSTRACT:   A pelagic bacterial community structure was examined in experimental intensive shrimp culture ponds that have a shrimp–mangrove complex aquaculture system, an extensive shrimp culture pond and a mangrove area in Thailand by denaturant gradient gel electrophoresis analysis of polymerase chain reaction amplified partial 16S rRNA genes. Bacterial community structure in the intensive shrimp culture ponds was distinguishable from that of the mangrove area. In the extensive shrimp culture pond, the bacterial community structure resembled that in the mangrove area, but bacterial abundance was as great as that in the intensive shrimp culture ponds. Among the intensive shrimp culture ponds, the bacterial community structure was different between a closed culture system and a shrimp–mangrove complex culture system. Moreover, the bacterial community structure in mangrove planted ponds was close to those in the intensive shrimp culture ponds when shrimp culture was conducted, but it was close to those in the mangrove areas without shrimp culture. These results suggest that intensive shrimp culture with shrimp feed input affects the bacterial community structures in pond water.  相似文献   

12.
Socio-economic impacts of shrimp culture   总被引:8,自引:0,他引:8  
Farmed shrimp contributed 27% of total world shrimp production in 1995 with a volume of 712 000 tonnes. Undoubtedly, the shrimp culture industry earns valuable foreign exchange for developing countries and generates jobs across the industry from fry gatherers to growers and processors. However, grave socio-economic consequences – including conversion, expropriation and privatization of mangroves and other lands; salinization of water and soil; decline in food security; marginalization of coastal communities, unemployment and urban migration; and social conflicts – have followed in the wake of, shrimp farm development in the Philippines and other tropical countries. The paper focuses on mangrove ecosystems: the valuation and cost-benefit analysis of their goods and services, and the mangrove-offshore fisheries connection. Research gaps in these areas and the need to internalize the ecological and socio-economic costs (‘externalities’) of shrimp farming are highlighted. Other recommendations include mangrove conservation and rehabilitation, enforcement of existing legislation, and introduction of environment-friendly aquaculture within the broader framework of community-based, integrated coastal area management, e.g. the traditional, extensive polyculture ponds in Indonesia.  相似文献   

13.
A participatory on-farm study was conducted to explore the effects of food input patterns on water quality and sediment nutrient accumulation in ponds, and to identify different types of integrated pond systems. Ten integrated agriculture-aquaculture (IAA) farms, in which ponds associate with fruit orchards, livestock and rice fields were monitored in the Mekong delta of Vietnam. Pond mass balances for nitrogen (N), organic carbon (OC) and phosphorus (P) were determined, and pond water quality and sediment nutrient accumulation were monitored. Data were analyzed using multivariate canonical correlation analysis, cluster analysis and discriminant analysis. The main variability in pond water quality and sediment nutrients was related with food inputs and water exchange rates. Water exchange rate, agro-ecological factors, pond physical properties and human waste input were major variables used to classify ponds. Classification was into: (1) low water exchange rate ponds in the fruit-dominated area, (2) low water exchange rate ponds in the rice-dominated area receiving homemade feed, and (3) high water exchange rate ponds in the rice-dominated areas receiving wastes. Pond water exchange rate was human-controlled and a function of food input patterns, which were determined by livelihood strategies of IAA-households. In the rice-dominated area with deep ponds, higher livestock and human wastes were found together with high water exchange rates. In these ponds, large organic matter loads reduced dissolved oxygen and increased total phosphorus concentrations in the water and increased nutrient (N, OC and P) accumulation in the sediments. In the rice-dominated area with wide ponds, higher homemade feed amounts were added to the ponds with low water exchange rate. This resulted in high phytoplankton biomass and high primary productivity. The contrary occurred in the fruit-dominated area, where fish were grown in shallow and narrow ponds, receiving more plant residue which resulted in lower phytoplankton biomass and lower sediment nutrient accumulation.  相似文献   

14.
A mathematical model is used to investigate the impact of farming intensity and water management on nitrogen dynamics in the water column of intensive aquaculture ponds. The model describes the input of ammonia, its assimilation by phytoplankton or nitrification, and the loss of nitrogen through sedimentation, volatilization, and discharge. The model is calibrated for two commercial shrimp (Penaeus monodon Fabricius) farms in Thailand. Assimilation by phytoplankton with subsequent sedimentation or discharge is the principal process of ammonia removal. When inputs of ammonia exceed the algal assimilation capacity (carrying capacity), nitrification and volatilization of excess ammonia become significant. Carrying capacity is negatively affected by non-chlorophyll turbidity, and was estimated as 6 t ha?1 cycle?1 at a non-chlorophyll extinction of 2.6 m?1. In ponds managed within their carrying capacity, ammonia concentrations are lowest at no water exchange, reach a maximum at exchange rates between 0.2 and 0.4 day?1, and decline again at higher rates. When the carrying capacity is exceeded, excess ammonia concentrations decline continuously with increasing water exchange. Average exchange rates used in intensive shrimp farms (up to 0.2 day?1) reduce phytoplankton abundance and sedimentation within ponds, but not ammonia concentrations. Discharges are high in particulate nitrogen at water exchange rates up to 0.3 day?1, but contain mainly dissolved nitrogen at higher rates.  相似文献   

15.
The efficacy of a commercial microbial product was tested in commercial tiger shrimp, Penaeus monodon (Fabricius), ponds for one culture period in Kuala Selangor, Malaysia. Four ponds with replicates for treatment and control were used. The pond bottom was dried but the organic sludge was not removed as normally practised in pond preparation. The ponds were stocked with 15 post‐larvae at the rate of 31.m?2. Physical, chemical and biological parameters of the pond were analysed every 2 weeks during the culture period. Water quality parameters remained within the optimum range for shrimp culture except for ammonia‐nitrogen being significantly higher in control ponds and silica in treated ponds. Benthic organisms were not found in any of the ponds. The average counts of different bacteria were not significantly higher in treated ponds than control. Because of poor health, the shrimp were harvested earlier (72 days) than the usual 120 days. An average of 875.60 ± 67.00 kg shrimp ha?1 was obtained in treated ponds with a feed conversion ratio (FCR) of 1.57 ± 0.10 and survival rate of 42.35 ± 5.37% compared with 719.50 ± 130.94 kg shrimp ha?1, 2.99 ± 0.70 and 21.25 ± 3.26%, respectively, in control ponds. Neither the microbial product nor the frequent water exchange was effective in overcoming the problems caused by the poor pond bottom.  相似文献   

16.
An environmental assessment was made of Alabama channel catfish Ictalurus punctatus farming which is concentrated in the west‐central region of the state. There are about 10,000 ha of production ponds with 10.7% of the area for fry and fingerlings and 89.3% for food fish. Food fish production was about 40,800 tons in 1997. Watershed ponds filled by rainfall and runoff make up 76% of total pond area. Water levels in many of these ponds are maintained in dry weather with well water. The other ponds are embankment ponds supplied by well water. Harvest is primarily by seine‐through procedures and ponds are not drained frequently. The main points related to Alabama catfish farming and environment issues are as follows: 1) catfish farming in Alabama is conservative of water, and excluding storm overflow, about two pond volumes are intentionally discharged from each pond in 15 yr; 2) overflow from ponds following rains occurs mostly in winter and early spring when pond water quality is good and stream discharge volume is high; 3) total suspended solids concentrations in pond effluents were high, and the main sources of total suspended solids were erosion of embankments, pond bottoms, and discharge ditches; 4) concentrations of nitrogen and phosphorus in effluents were not high, but annual effluent loads of these two nutrients were greater than for typical row crops in Alabama; 5) ground water use by the industry is about 86,000 m3/d, but seepage from ponds returns water to aquifers; 6) there is little use of medicated feeds; 7) copper sulfate is used to control blue‐green algae and off‐flavor in ponds, but copper is rapidly lost from pond water; 8) although sodium chloride is applied to ponds to control nitrite toxicity, stream or ground water salinization has not resulted from this practice; 9) fertilizers are applied two or three times annually to fry and fingerling ponds and occasionally to grow‐out ponds; 10) hydrated lime is applied occasionally at 50 to 100 kg/ha but this does not cause high pH in pond waters or effluents; 11) accumulated sediment removed from pond bottoms is used to repair embankments and not discarded outside ponds; 12) sampling above and below catfish pond outfalls on eight streams revealed few differences in stream water quality; 13) electricity used for pumping water and mechanical aeration is only 0.90 kW h/kg of production; 14) each metric ton of fish meal used in feeds yields about 10 tons of dressed catfish. Reduction in effluent volume through water reuse and effluent treatment in settling basins or wetlands does not appear feasible on most farms. However, some management practices are recommended for reducing the volume and improving the quality of channel catfish pond effluents.  相似文献   

17.
采用低频率运转循环水处理系统(含粗滤器、臭氧仪、气液混合器,蛋白分离器、暗沉淀池等)联用池内设施(微泡曝气增氧机与净水网)开展凡纳滨对虾室内集约化养殖实验。研究了养虾池以水处理系统调控水质效果及氮磷收支。结果表明,养虾水经系统处理后,NO2-N(53.4%~64.5%)、CODMn(53.4%~94.4%)与TAN(31.6%~40.4%)被显著去除,有效改进虾池水质;养殖周期内未换水与用药,虾池主要水化指标均控制在对虾生长安全范围,7号实验池(100 d)与8号对照池(80 d)主要水化指标变化范围:DO分别为 5.07~6.70 mg/L和4.38~6.94 mg/L,TAN 0.248~0.561 mg/L和0.301~0.794 mg/L,NO2-N 0.019~0.311 mg/L和0.012~0.210 mg/L,CODMn 10.88~21.22 mg/L和11.65~23.34 mg/L。7号池对虾生长指数优于8号池(80 d虾病暴发终止),单位水体产量分别为1.398 kg/m2与0.803 kg/m2。氮磷收支估算结果:7号与8号池饲料氮磷分别占总收入:氮93.70%与92.37%,磷98.77%与99.09%;初始水层与虾苗含氮共占总收入6.30%与7.63%,磷共占1.23%与0.91%。总水层(含排污水)氮磷分别占总输出:氮56.45%与59.86%,磷53.26%与55.79%;收获虾体氮磷分别占总输出:氮37.07%与31.94%,磷21.37%与13.11%。7号池饲料转化率较高;池水渗漏与吸附等共损失氮磷分别占总输出:氮7.00%与9.34%,磷25.37%与31.10%。实验结果表明,虾池以低频率运转循环水处理系统联用池内设施可有效控制水质与虾病,具较高饲料转化率。  相似文献   

18.
强降雨对粤西凡纳滨对虾养殖池塘微生物群落的影响   总被引:1,自引:0,他引:1  
于强台风"莫拉菲"环流云系带来的持续强降雨天气前后(2009年7月14日和7月28日),对广东省茂名市电白县凡纳滨对虾半集约化养殖土池的水样和泥样进行调查,研究施用微生态制剂和未施用微生态制剂的虾池水体及底泥中的异养细菌、弧菌和芽孢杆菌的变化情况,并利用BIOLOGECO微板对水体和底泥的微生物群落代谢变化进行探讨。结果发现,定期施用微生态制剂的虾池水体和底泥中的细菌数量和微生物群落功能在强降雨前后基本保持稳定;未施用微生态制剂的虾池在强降雨后,水体的弧菌数升高,Simpson指数和McIntosh指数显著降低(P0.05),水体和底泥微生物群落对碳源的利用率变化明显。研究结果表明,与施用微生态制剂的虾池相比较,未施用微生态制剂的虾池在强降雨后,水体及沉积物环境波动变化明显,强降雨对其水域环境产生很大的影响。因此建议在对虾养殖过程中定期施用微生态制剂,并针对恶劣天气采取有效措施,以稳定虾池水体及沉积物的微生物生态。  相似文献   

19.
A study of added feed utilization by pond grown shrimp was done using seven feeds with different 13C/12C ratios, as expressed by δ13C. The pond shrimp did not track the δ13C value of the feed to the extent that tank grown shrimp did. For the seven pond experiments the δ13C data indicate that the added feed supplied between 23 and 47% of the growth carbon. This implies that between 53 and 77% of the growth is due to the grazing on pond biota. It is suggested that this experimental approach can be used to evaluate the relative contribution of presented dried feeds versus natural productivity in ponds as an aid to developing pond management strategies and optimum feeds.  相似文献   

20.
根据漠斑牙鲆(Paralichthys lethostigma)适广温、广盐和较强的抗逆性等优良生态习性,采用地下卤水、盐碱地渗水,通过合理淡水配兑使其适合漠斑牙鲆生理生长需求,在我国中纬度地区利用盐碱地低盐水养殖过洋、暖温性漠斑牙鲆。2004-2005年,利用盐碱地低盐水池塘虾池设置网箱套养漠斑牙鲆349.5m2,产鱼3.749t,产虾55.065t,其中2005年虾池设置网箱套养漠斑牙鲆306m2,产鱼3.245t,平均10.6kg/m2,平均全长34.0cm,体重527.4g,养殖成活率为90.5%,产虾49.003t,平均408.4kg/亩,平均规格11.9cm,养殖成活率为71.23%。虾池设置网箱套养漠斑牙鲆,可充分利用水体空间,促使池塘高产高效,提高养殖经济效益。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号