首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 79 毫秒
1.
The effect of the soil yeast, Rhodotorula mucilaginosa LBA, on Glomus mosseae (BEG n°12) and Gigaspora rosea (BEG n°9) was studied in vitro and in greenhouse trials. Hyphal length of G. mosseae and G. rosea spores increased significantly in the presence of R. mucilaginosa. Exudates from R. mucilaginosa stimulated hyphal growth of G. mosseae and G. rosea spores. Increase in hyphal length of G. mosseae coincided with an increase in R. mucilaginosa exudates. No stimulation of G. rosea hyphal growth was detected when 0.3 and 0.5 ml per petri dish of yeast exudates was applied. Percentage root length colonization by G. mosseae in soybean (Glycine max L. Merill) and by G. rosea in red clover (Trifolium pratense L. cv. Huia) was increased only when the soil yeast was inoculated before G. mosseae or G. rosea was introduced. Beneficial effects of R. mucilaginosa on arbuscular mycorrhizal (AM) colonization were found when the soil yeast was inoculated either as a thin agar slice or as a volume of 5 and 10 ml of an aqueous solution. R. mucilaginosa exudates (20 ml per pots) applied to soil increased significantly the percentage of AM colonization of soybean and red clover.  相似文献   

2.
The effects of biocide use on nontarget organisms, such as arbuscular mycorrhizal (AM) fungi, are of interest to agriculture, since inhibition of beneficial organisms may counteract benefits derived from pest and disease control. Benomyl, pentachloronitrobenzene (PCNB) and captan were tested for their effects on the germination and early hyphal growth of the AM fungiGlomus etunicatum (Becker & Gerd.),Glomus mosseae (Nicol. & Gerd.). Gerd. and Trappe andGigaspora rosea (Nicol & Schenck) in a silty-clay loam soil placed in petri plates. Application of fungicides at 20 mg active ingredient (a.i) kg–1 soil inhibited spore germination by all three AM-fungal isolates incubated on unsterilized soil for 2 weeks. However, fungicides applied at 10 mg a.i. kg–1 soil had variable effects on AM-fungal isolates. Fungicide effects on germination and hyphal growth of G.etunicatum were modified by soil pasteurization and CO2 concentration in petri plates and also by placing spores below the soil surface followed by fungicide drenches. Effects of fungicides on mycorrhiza formation and sporulation of AM fungi, and the resulting host-plant response, were evaluated in the same soil in associated pea (Pisum sativum L.) plants. Fungicides applied at 20 mg a.i. kg–1 soil did not affect the root length colonized byG. etunicatum, but both benomyl and PCNB reduced sporulation by this fungus. Benomyl and PCNB reduced the root length colonized byG. rosea at 48 and 82 days after transplanting. PCNB also reducedG. mosseae-colonized root length at 48 and 82 days, but benomyl only affected root length colonized byG. mosseae at the earlier time point. Only PCNB reduced sporulation byG. mosseae, consistent with its effect on root length colonized by this fungus. captan reduced the root length colonized by G. rosea at 48 days, but not at 82 days, and reduced colonization byG. mosseae at 82 days, but not at 48 days. Captan did not affect sporulation by any of the fungi.G. rosea spore production was highly variable, but benomyl appeared to reduce sporulation by this fungus. Overall,G. etunicatum was the most tolerant to fungicides in association with pea plants in this soil, andG. rosea the most sensitive. Benomyl and PCNB were overall more toxic to these fungi than captan. Interactions of AM fungi and fungicides were highly variable and biological responses depended on fungus-fungicide combinations and on environmental conditions.  相似文献   

3.
This study was carried out in a semiarid degraded area to assess the effectiveness of mycorrhizal inoculation with a mixture of native arbuscular mycorrhizal (AM) fungi or an allochthonous AM fungus (Glomus claroideum), on the establishment of Olea europaea subsp. sylvestris L. and Retama sphaerocarpa (L.) Boissier in this area. Associated changes in the soil microbiological properties and aggregate stability related to these AM inocula were also recorded. Eighteen months after planting, G. claroideum had increased available P in the rhizosphere of both shrub species. In general, both inoculation treatments increased water-soluble C and water-soluble and total carbohydrates, G. claroideum being the most effective inoculum, particularly in R. sphaerocarpa. The mixture of native AM fungi was the most effective treatment for increasing the aggregate stability of R. sphaerocarpa soil, while that of O. europaea was increased only by G. claroideum. Increased (dehydrogenase, urease, protease-BAA, acid phosphatase and -glucosidase) enzyme activities, in particular of dehydrogenase and acid phosphatase, were recorded in the rhizosphere of both mycorrhizal shrub species. The mixture of native AM fungi was the most effective treatment for stimulating the growth of O. europaea and R. sphaerocarpa (11.6-fold and 3.3-fold, respectively, greater than control plants). The establishment of mycorrhizal shrub species favoured the reactivation of soil microbial activity, which was linked to an increase in aggregate stability.  相似文献   

4.
The effects of three commonly used fungicides on the colonization and sporulation by a mixture of three arbuscular mycorrhizal (AM) fungi consisting of Glomus etunicatum (Becker & Gerd.), Glomus mosseae (Nicol. & Gerd.) Gerd. & Trappe, and Gigaspora rosea (Nicol. & Schenck) in symbiosis with pea plants and the resulting response of the host-plant were examined. Benomyl, PCNB, and captan were applied as soil drenches at a rate of 20 mg active ingredient kg-1 soil 2 weeks after transplanting pea seedlings in a silty clay-loam soil containing the mixed inocula of AM fungi (AM plants). Effects of fungicides were compared to untreated plants that were inoculated with fungi (AM control). The effect of mycorrhizal inoculation on plant growth was also examined by including nonmycorrhizal, non-fungicide-treated plants (non-AM control). Fungicides or inoculation with AM fungi had only a small effect on the final shoot weights of pea plants, but had greater effects on root length and seed yield. AM control plants had higher seed yields and lower root lengths than the corresponding non-AM plants, and the fungicide-treated AM plants had intermediate yields and root lengths. Seed N and P contents were likewise highest in AM control plants, lowest in non-AM plants, and intermediate in fungicide-treated AM plants. All three fungicides depressed the proportion (%) of root length colonized by AM fungi, but these differences did not translate to reductions in the total root length that was colonized, since roots were longer in the fungicide-treated AM plants. Pea plants apparently compensated for the reduction in AM-fungal metabolism due to fungicides by increasing root growth. Fungicides affected the population of the three fungi as determined by sporulation at the final harvest. Captan significantly reduced the number, relative abundance, and relative volume of G. rosea spores in the final population relative to the controls. The relative volume of G. etunicatum spores was greater in all the fungicide-treated soils, while G. mosseae relative volumes were only greater in the captan-treated soil. These findings show that fungicides can alter the species composition of an AM-fungal community. The results also show that AM fungi can increase seed yield without enhancing the vegetative shoot growth of host plants.  相似文献   

5.
接种AM真菌对采煤沉陷区文冠果生长及土壤特性的影响   总被引:2,自引:2,他引:0  
煤炭井工开采往往造成地表塌陷,导致了土壤养分贫瘠和水分缺乏,土壤沙化和水土流失,从而限制了当地矿区植被生长,而丛枝菌根真菌(arbuscular mycorrhiza fungi,AM真菌)对植被生长有促进作用。以文冠果为宿主植物,采用野外原位监测和室内分析方法,研究了未接种和接种丛枝菌根真菌对采煤沉陷区复垦植物文冠果生长和土壤特性的影响。结果表明:与未接种AM真菌处理相比,接种AM真菌显著提高了文冠果根系菌根侵染率和土壤根外菌丝密度,7月接种AM真菌文冠果的株高、冠幅和地径提高了31.89%,23.07%,9.89%。同时,9月接种AM真菌处理的根际土壤全氮、碱解氮和有机碳含量分别比对照组增加0.29g/kg、13.0mg/kg和1.4g/kg,接种AM真菌显著提高了根际土壤的含水率、总球囊霉素和易提取球囊霉素,而速效磷和速效钾的含量显著降低。相关分析结果表明,菌根侵染率、土壤根外菌丝密度与根际土壤理化性质之间存在协同反馈效应。因此,接种AM真菌促进了采煤沉陷区复垦植被文冠果的生长和土壤的改良,这对矿区水土保持、维持生态系统稳定性和持续性具有重要意义。  相似文献   

6.
The effects of soil disturbance and residue retention on the functionality of the symbiosis between medic (Medicago truncatula L.) and arbuscular mycorrhizal fungi (AMF) were assessed in a two-stage experiment simulating a crop rotation of wheat (Triticum aestivum L.) followed by medic. Plants were inoculated or not with the AMF, Glomus intraradices and Gigaspora margarita, separately or together. The contribution of the arbuscular mycorrhizal (AM) pathway for P uptake was determined using 32P-labeled soil in a small hyphal compartment accessible only to hyphae of AMF. In general AM colonization was not affected by soil disturbance or residue application and disturbance did not affect hyphal length densities (HLDs) in soil. At 4 weeks disturbance had a negative effect on growth and phosphorus (P) uptake of plants inoculated with G. margarita, but not G. intraradices. By 7 weeks disturbance reduced growth of plants inoculated with G. margarita or AMF mix and total P uptake in all inoculated plants. With the exception of plants inoculated with G. margarita in disturbed soil at 4 weeks, the AM pathway made a significant contribution to P uptake in all AM plants at both harvests. Inoculation with both AMF together eliminated the negative effects of disturbance on AM P uptake and growth, showing that a fungus insensitive to disturbance can compensate for loss of contribution of a sensitive one. Application of residue increased growth and total P uptake of plants but decreased 32P in plants inoculated with the AMF mix in disturbed soil, compared with plants receiving no residue. The AMF responded differently to disturbance and G. intraradices, which was insensitive to disturbance, compensated for lack of contribution by the sensitive G. margarita when they were inoculated together. Colonization of roots and HLDs in soil were not good predictors of the outcomes of AM symbioses on plant growth, P uptake or P delivery via the AM pathway.  相似文献   

7.
Recycling of olive mill wastewaters (OMW) into agricultural soils is a controversial issue since benefits to soil fertility should counterbalance potential short-term toxicity effects. We investigated the short-term effects of OMW on the soil-plant system, regarding the diversity, structure and root colonization capacity of arbuscular mycorrhizal (AM) fungi and the respective growth response of Vicia faba L, commonly used as green manure in olive-tree plantations. A compartmentalized pot system was used that allowed the establishment of an AM fungal community in one compartment (feeder) and the application of three OMW dose levels in an adjacent second compartment (receiver). At 0, 10, and 30 days after OMW treatment (DAT), V. faba pre-germinated seeds were seeded in the receiver compartment. At harvest, shoot and root dry weights, AM fungal root colonization, soil hyphal length and P availability were recorded in the receiver compartment. In addition, OMW effects on AM fungal diversity in plant roots were studied by DGGE. A transient effect of OMW application was observed; plant growth and AM fungal colonization were initially inhibited, whereas soil hyphal length was stimulated, but in most cases differences were absent when seeding was performed 30 DAT. Similarly, changes induced in the structure of the root AM fungal community were of transient nature. Cloning and sequencing of all the major DGGE bands showed that roots were colonized by Glomus spp. The transient effects of OMW on the structure and function of AM fungi could be attributed to OMW-derived phytoxicity to V. faba plants or to an indirect effect via alteration of soil nutritional status. The high OMW dose significantly increased soil P availability in the presence of AM fungi, suggesting efficient involvement of AM fungi in organic-P minerilization. Overall our results indicate that soil application of OMW would cause transient changes in the AM fungal colonization of V. faba plants, which, would not impair their long-term plant growth promoting ability.  相似文献   

8.
The effects of biocide use on nontarget organisms, such as arbuscular mycorrhizal (AM) fungi, are of interest to agriculture, since inhibition of beneficial organisms may counteract benefits derived from pest and disease control. Benomyl, pentachloronitrobenzene (PCNB) and captan were tested for their effects on the germination and early hyphal growth of the AM fungiGlomus etunicatum (Becker & Gerd.),Glomus mosseae (Nicol. & Gerd.). Gerd. and Trappe andGigaspora rosea (Nicol & Schenck) in a silty-clay loam soil placed in petri plates. Application of fungicides at 20 mg active ingredient (a.i) kg?1 soil inhibited spore germination by all three AM-fungal isolates incubated on unsterilized soil for 2 weeks. However, fungicides applied at 10 mg a.i. kg?1 soil had variable effects on AM-fungal isolates. Fungicide effects on germination and hyphal growth of G.etunicatum were modified by soil pasteurization and CO2 concentration in petri plates and also by placing spores below the soil surface followed by fungicide drenches. Effects of fungicides on mycorrhiza formation and sporulation of AM fungi, and the resulting host-plant response, were evaluated in the same soil in associated pea (Pisum sativum L.) plants. Fungicides applied at 20 mg a.i. kg?1 soil did not affect the root length colonized byG. etunicatum, but both benomyl and PCNB reduced sporulation by this fungus. Benomyl and PCNB reduced the root length colonized byG. rosea at 48 and 82 days after transplanting. PCNB also reducedG. mosseae-colonized root length at 48 and 82 days, but benomyl only affected root length colonized byG. mosseae at the earlier time point. Only PCNB reduced sporulation byG. mosseae, consistent with its effect on root length colonized by this fungus. captan reduced the root length colonized by G. rosea at 48 days, but not at 82 days, and reduced colonization byG. mosseae at 82 days, but not at 48 days. Captan did not affect sporulation by any of the fungi.G. rosea spore production was highly variable, but benomyl appeared to reduce sporulation by this fungus. Overall,G. etunicatum was the most tolerant to fungicides in association with pea plants in this soil, andG. rosea the most sensitive. Benomyl and PCNB were overall more toxic to these fungi than captan. Interactions of AM fungi and fungicides were highly variable and biological responses depended on fungus-fungicide combinations and on environmental conditions.  相似文献   

9.
Increased phosphate (P) uptake in plants by arbuscular mycorrhizal (AM) fungi is thought to depend mainly on the extension of external hyphae into soil. On the other hand, it is known that the hyphae of some kinds of ectomycorrhizal fungi release organic acids into soil and that they dissolve the insoluble inorganic P. This study collected hyphal exudates of AM fungi within compartmentalized pot culture and clarified their ability to solubilize insoluble inorganic P. Sterilized Andisol was packed in pots that were separated into root and hyphal compartments with a nylon net of 30 μm pore size. Seedlings of Allium cepa inoculated with AM fungi, Gigaspora margarita, or Glomus etunicatum were grown. Control pots were not inoculated. Mullite ceramic tubes were buried in the soil of each compartment and soil solution was collected. The anionic fraction of the soil solution was incubated with iron phosphate (4 mg FePO4 in 1 mL of 0.4 acetate buffer). Solubilized P was measured. The AM colonization of plants inoculated with G. margarita and G. etunicatum was 86% and 54%, respectively. Adhesion of external hyphae was observed on the surface of the mullite ceramic tubes buried in soil of the hyphal compartment. Colonization of both fungi increased shoot P uptake and growth. Soil solution collected from the hyphal compartments of both fungi solubilized more P than did that from uninoculated plants. It is suggested that hyphal exudates can contribute to increased P uptake of colonized plants.  相似文献   

10.
The effect of different concentrations (0.5, 2 and 8 μM) of apigenin and its glycosidated form 5,7,4′-hydroxy flavone glycoside on arbuscular mycorrhizal (AM) fungal spore germination, hyphal growth, hyphal branching, the formation of entry points and root colonization of Gigaspora. rosea, Gi. margarita, Glomus mosseae and G. intraradices was tested. The lowest apigenin concentration (0.5 μM) nearly doubled hyphal branching, the formation of entry points and root colonization of all four tested fungi, whereas higher concentrations (2 and 8 μM) nearly doubled the hyphal growth of Gi. margarita, G. mosseae and G. intraradices. In none of the treatments with the apigenin-glycoside any effect on AM fungi could be observed. Our data show that apigenin exhibits an AM fungal genus and even species activity and we provide strong evidence that glycosidation results in a loss of its activity towards AM fungi.  相似文献   

11.
为探讨多胺对共生条件下丛枝菌根真菌及其宿主植物生长发育的影响,本研究以丛枝菌根真菌(Gigaspora margarita)为试验材料,通过施用不同浓度的多胺(Polyamine,PA)及其生物合成抑制剂[Methylglyoxal bis(guanylhydrazone),MGBG]处理接种丛枝菌根真菌的葡萄微繁苗,研究共生培养条件下外源多胺及多胺合成抑制剂对丛枝菌根真菌孢子萌发、芽管菌丝及其宿主植物生长发育的影响.试验结果表明,共生培养条件下,一定浓度的外源PA对丛枝菌根真菌及其宿主植物的生长发育具显著促进作用,丛枝菌根真菌孢子数、菌丝长度、侵染率、丛枝丰富度及菌根化葡萄幼苗生长势均显著提高.MGBG则表现较强的抑制作用.且该抑制作用可被外源PA部分解除,证明外源多胺对菌根化葡萄微繁苗生长发育的促进作用是通过活化根系土壤中丛枝菌根真菌,促进微繁苗丛枝菌根共生体的良好发育,最大程度地发挥菌根化效应得以表现的.  相似文献   

12.
The aim of this study was to assess the comparative efficacy of three arbuscular mycorrhizal fungi (AMF) combined with cultivar specific Bradyrhizobium japonicum (CSBJ) in soybean under greenhouse conditions. Soybean seeds of four cultivars namely JS 335, JS 71-05, NRC 2 and NRC 7 were inoculated with three AM fungi (Glomus intraradices, Acaulospora tuberculata and Gigaspora gigantea) and CSBJ isolates, individually or in combination, and were grown in pots using autoclaved alluvial soil of a non-legume cultivated field of Ajmer (Rajasthan). Assessment of the data on nodulation, plant growth and seed yield revealed that amongst the single inoculations of three AMF, G. intraradices produced the largest increases in the parameters studied followed by A. tuberculata and G. gigantea indicating that plant acted selectively on AMF symbiosis. The dual inoculation with AMF + CSBJ further improved these parameters demonstrating synergism between the two microsymbionts. Among all the dual treatments, G. intraradices + B. japonicum brought about the largest increases in the studied characteristics particularly in seed weight per plant that increased up to 115.19%, which suggested that a strong selective synergistic relationship existed between AMF and B. japonicum. The cv. JS 335 exhibited maximum positive response towards inoculation. The variations in efficacy of different treatments with different soybean cultivars indicate the specificity of the inoculation response. These results provide a basis for selection of an appropriate combination of specific AMF and Bradyrhizobium which could further be utilized for verifying the symbiotic effectiveness and competitive ability of microsymbionts under field conditions of Ajmer region.  相似文献   

13.
The effects of collembolan grazing on arbuscular mycorrhizal (AM) fungi and plant growth were studied in a controlled experiment utilizing a mix of AM fungi and the dominant collembolan species (Isotoma sp.) indigenous to the experimental soil. Collembolan (+/– Col) effects were examined in the presence and absence of crop residue (+/– Litter) incorporated into the experimental soil. Significant interactions between collembolans and crop residue occurred for mycorrhizal colonization of roots and plant growth. In the absence of crop residue, collembolans reduced root length colonized by AM fungi, total plant dry mass and seed pod yield. However, in the presence of crop residue, collembolans had no effect on root colonization by AM fungi, and increased total plant mass and pod yield. Crop residue increased root colonization by AM fungi, numbers of bacteria and saprophytic fungi (colony forming units), small- (<5 m) and large- (>5 m) diameter hyphal lengths in soil, and the final population of collembolans in soil. Collembolans reduced both small- and large-diameter hyphae in soil and the number of saprophytic fungi (colony forming units, p =0.052). Feeding preference experiments conducted in vitro showed that Isotoma sp. preferred to graze on mycorrhizal roots over nonmycorrhizal roots when given no other food choice. However, when crop residue was added as a food choice, Isotoma sp. showed a clear feeding preference for crop residue. We conclude that collembolan grazing on mycorrhizae can be detrimental to plant growth when other fungal food sources are limited, but grazing on mycorrhizal fungi does not occur when ample organic matter and associated saprophytic fungi are present in soils.  相似文献   

14.
The effect of salinity on the efficacy of two arbuscular mycorrhizal fungi, Glomus fasciculatum and G. macrocarpum, alone and in combination was investigated on growth, development and nutrition of Acacia auriculiformis. Plants were grown under different salinity levels imposed by 0.3, 0.5 and 1.0 S m-1 solutions of 1 M NaCl. Both mycorrhizal fungi protected the host plant against the detrimental effect of salinity. The extent of AM response on growth as well as root colonization varied with fungal species, and with the level of salinity. Maximum root colonization and spore production was observed with combined inoculation, which resulted in greater plant growth at all salinity levels. AM fungal inoculated plants showed significantly higher root and shoot weights. Greater nutrient acquisition, changes in root morphology, and electrical conductivity of soil in response to AM colonization was observed, and may be possible mechanisms to protect plants from salt stress.  相似文献   

15.
The external hypha of arbuscular mycorrhizal (AM) fungi, extending from roots out into soil, is an important structure in the uptake of phosphate from the depletion zone around each root. In this paper, we analysed some phospholipid fatty acids (PLFAs) derived from external hyphae of four AM fungi (Glomus etunicatum, Glomus clarum, Gigaspora margarita and Gigaspora rosea) to find fatty acids which may be useful as specific markers for identifying and quantify the external hyphae of Gigaspora species. Leek (Allium porrum L.) seedlings inoculated with each AM fungus were grown in river sand. Sand samples were collected and four PLFAs (16:1ω5, 18:1ω9, 20:1ω9 and 20:4) in the sand were analysed. In addition, the hyphal biomass in the sand was determined by the direct microscopic method. PLFAs 18:1ω9 and 20:4 were found in all the AM-inoculated and non-inoculated sand samples. PLFA 16:1ω5 was detected in the sand inoculated with G. etunicatum, G. clarum and Gi. rosea. PLFA 20:1ω9 was detected only in the sand inoculated with Gi. rosea. PLFAs 16:1ω5 and 20:1ω9 were not found in the sand inoculated with Gi. margarita. The amount of PLFA 20:1ω9 was closely correlated with the amount of biomass of external hyphae of Gi. rosea (r=0.937, P<0.001), whereas no correlation was observed for PLFA 16:1ω5. The 20:1ω9 content of Gi. rosea was approximately 6.56 nmol mg−1 hyphal biomass. We suggest that PLFA 20:1ω9 can be used as a specific marker for identifying and quantifying the external hyphae of Gi. rosea, at least in controlled experimental systems.  相似文献   

16.
Glasshouse experiments were conducted to assess the influence of arbuscular mycorrhizal (AM) fungi (Glomus mosseae and Gigaspora margarita) and organic fertilizers (cow dung, horse dung, goat dung and poultry manure) alone and in combination on the reproduction of the nematode Meloidogyne incognita and on growth and water loss of tomato. Meloidogyne incognita decreased water loss of tomato from the first week onwards after inoculation. AM fungi increased water loss of both nematode-infected and uninfected plants. Glomus mosseae was better at improving growth of tomato and reducing galling and nematode multiplication than G. margarita, but the rate of water loss was similar with both fungi. Addition of organic fertilizers improved growth of tomato, but decreased the rate of water loss. There was less galling and nematode multiplication with poultry manure, which improved tomato growth more than goat dung, while cow dung was the least effective organic fertilizer. Greatest plant growth and least nematode reproduction were observed in plants inoculated with M. incognita along with G. mosseae and poultry manure.  相似文献   

17.
对西北地区5个酿酒葡萄赤霞珠(Vitis vinifera L. cv. Cabernet Sauvignon)葡萄园根际土壤060 cm土层的AM真菌空间分布进行了研究。结果表明,葡萄根系可形成丛枝菌根,且侵染率较高,最高达79%; 在西北地区的5个样地中共分离出AM真菌4属22种,其中球囊霉属(Glomus)15种,无梗囊霉属(Acaulospora)4种,盾巨孢囊霉属(Scutellospora)2种,巨孢囊霉属(Gigaspora)1种。5个样地孢子密度大小顺序为: 陕西泾阳(JY)>山西永济(YJ)>陕西杨凌(YL)>宁夏银川(YC)>甘肃莫高(MG)。各样地葡萄根际土壤中AM真菌种的丰富度不同,陕西泾阳地区最高; 分布于葡萄根际的AM真菌按种类多少排序的属依次是: 球囊霉属无梗囊霉属盾巨孢囊霉属巨孢囊霉属,球囊霉属占据的比例保持着绝对优势; 根内球囊霉、摩西球囊霉、地表球囊霉在不同样地中均为优势菌株,副冠球囊霉,集球囊霉,细凹无梗囊霉是多数样地中的稀有种类。研究表明,葡萄与AM真菌具有良好的共生关系,二者协同进化产生了具有生态环境特异性的菌根真菌多样性; 葡萄根际存在较为丰富的丛枝菌根真菌资源,可供进一步开发利用。  相似文献   

18.
Plants can mediate interactions between aboveground herbivores and belowground decomposers as both groups depend on plant-provided organic carbon. Most vascular plants also form symbiosis with arbuscular mycorrhizal fungi (AMF), which compete for plant carbon too. Our aim was to reveal how defoliation (trimming of plant leaves twice to 6 cm above the soil surface) and mycorrhizal infection (inoculation of the fungus Glomus claroideum BEG31), in nutrient poor and fertilized conditions, affect plant growth and resource allocation. We also tested how these effects can influence the abundance of microbial-feeding animals and nitrogen availability in the soil. We established a 12-wk microcosm study of Plantago lanceolata plants growing in autoclaved soil, into which we constructed a simplified microfood-web including saprotrophic bacteria and fungi and their nematode feeders. We found that fertilization, defoliation and inoculation of the mycorrhizal fungus all decreased P. lanceolata root growth and that fertilization increased leaf production. Plant inflorescence growth was decreased by defoliation and increased by fertilization and AMF inoculation. These results suggest a negative influence of the treatments on P. lanceolata belowground biomass allocation. Of the soil organisms, AMF root colonization decreased with fertilization and increased with defoliation. Fertilization decreased numbers of bacterial-feeding nematodes, probably because fertilized plants produced less root mass. On the other hand, bacterial feeders were more abundant when associated with defoliated than non-defoliated plants despite defoliated plants having less root mass. The AMF inoculation per se increased the abundance of fungal feeders, but the reduced and increased root AM colonization rates of fertilized and defoliated plants, respectively, were not reflected in the numbers of fungal feeders. We found no evidence of plant-mediated effects of the AM fungus on bacterial feeders, and against our prediction, soil inorganic nitrogen concentrations were not positively associated with the concomitant abundances of microbial-feeding animals. Altogether, our results suggest that (1) while defoliation, fertilization and AMF inoculation all affect plant resource allocation, (2) they do not greatly interact with each other. Moreover, it appears that (3) while changes in plant resource allocation due to fertilization and defoliation can influence numbers of bacterial feeders in the soil, (4) these effects may not significantly alter mineral N concentrations in the soil.  相似文献   

19.
A field experiment was conducted to study and compare the effectiveness of two arbuscular mycorrhizal fungi (AMF), Glomus macrocarpum (GM) and Glomus fasciculatum (GF) on three accessions of Artemisia annua. The AM inoculation significantly increased the production of herbage, dry weight of shoot, nutrient status (P, Zn and Fe) of shoot, concentration of essential oil and artemisinin in leaves as compared to non-inoculated plants. The extent of growth, nutrient concentration and production of secondary plant metabolites varied with the fungus–plant accession combination. The mycorrhizal dependency of the three accessions was related to the shoot: root ratio. Comparing the two fungal inoculants in regard to increase in essential oil concentration in shoot, the effectiveness of GF was more than that of GM. While in two accessions, GM was more effective in enhancing artemisinin concentration than GF. Increase in concentration of essential oil was found to be positively correlated to P-status of the plant. Conversely, no correlation was found between shoot-P and artemisinin concentration.  相似文献   

20.
接种丛枝菌根真菌对甘薯生长的影响研究   总被引:10,自引:0,他引:10  
温室盆栽试验研究 3种丛枝菌根真菌 (AM )对甘薯生长的影响结果表明 ,灭菌土壤条件下接种 3种AM真菌 (GlomusmosseaeBEG16 7GlomusintraradicesBEG14 1和Glomussp .WUM2 6 )均不同程度促进甘薯对P的吸收和植株生长 ,其中BEG16 7和BEG14 1对甘薯效应显著高于WUM2 6 ;各接种处理菌丝长度差异及琥珀酸脱氢酶(SDH)活性与其对甘薯的生长效应基本一致 ;接种BEG16 7和BEG14 1的生长效应无显著差异 ,但接种BEG16 7菌丝长度显著大于BEG14 1,其原因可能是BEG16 7菌丝活性低于BEG14 1所致。未灭菌土壤条件下接种 3种AM真菌对甘薯的生长效应不显著 ,而土著AM真菌繁殖体数量较多可能是影响其接种效果的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号