首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 218 毫秒
1.
日本矮紫薇花芽由中上部侧枝和主枝顶芽发育而成,花芽分化从4月末开始至5月末结束,历时30d,包括花序分化和小花分化两个过程,分为形态分化前、开始分化期、花序原基分化期、花蕾分化期、小花花萼分化期、花瓣分化期、雄蕊分化期、雌蕊分化期8个时期,花序和小花分化的顺序分别是离心和向心的.花芽分化与春梢生长有一定的相关性.  相似文献   

2.
以一品红"金奖"为试材,研究遮光处理下花芽分化的形态发育过程。结果表明:遮光处理24d后一品红开始进行花芽分化,整个花芽分化过程持续约38d,其花芽分化分为花芽未分化期、生长锥伸长期、花序原基和小花原基分化期、花器官分化期4个时期。植株的苞片数与花芽分化进程呈显著相关,苞片数为1~2片,茎尖生长锥处于伸长期;大苞片3~5片,小苞片2~4片,为花序原基和小花原基分化期;大苞片5~8片,小苞片3~5片,为花器官分化期。  相似文献   

3.
‘厚瓣金桂’桂花花芽形态分化的研究   总被引:19,自引:2,他引:19  
 采用石蜡切片法观察了‘厚瓣金桂’桂花(Osmanthus fragrans‘Houban Jingui’) 花芽形态分化过程。研究表明: 厚瓣金桂花芽分化从4 月中旬开始分化苞片原基至8 月底心皮原基形成历时约4 个月,其过程可分为苞片分化期、花序原基分化期、花蕾原基分化期、顶花花萼分化期、花瓣分化期、雄蕊分化期和雌蕊分化期7 个时期。其中, 苞片分化期和雄蕊分化期历时长, 分化较慢, 其它时期历时短, 分化较快。聚伞花序的中间顶花先分化, 需时长, 侧花后分化, 需时短, 因此各小花几乎同时完成花芽分化进程。  相似文献   

4.
新铁炮百合花芽分化过程的形态学观察   总被引:11,自引:0,他引:11  
 以新铁炮百合‘雷山’(Lilium formolongi‘Raizan’)为试材,利用石蜡切片和扫描电子显微技术,对百合花芽分化的过程进行了形态学观察。结果表明:‘雷山’低温贮藏期间鳞茎内顶端生长点尚未开始花芽分化,栽植后20~30d花芽分化开始进行,并在栽植后50~60d完成花芽分化,整个花芽分化过程约需40d。其分化进程可分为花芽未分化期、花芽分化初期、花序原基和小花原基分化期、花器官分化期、整个花序形成期五个时期。  相似文献   

5.
为探究异型花柱连翘(长花柱和短花柱)花芽分化与生长发育差异及其传粉习性,利用石蜡切片技术观察连翘花芽分化及发育过程,并进行了授粉试验。5月中旬连翘新梢萌发时,分别取长为1、2、3、4、5和6 mm的异型花柱连翘花芽并制作石蜡切片,对连翘植株的花芽结构进行观察和拍照。连翘花期进行自交、同型与异型杂交授粉试验。结果表明:连翘花芽分化及花器官生长发育过程包括花芽分化期、休眠期、花芽萌动与膨大期、鳞片脱落期、现蕾期、露冠期、开花期;其中花芽分化期可划分为分化初期、萼片原基分化期、花冠原基分化期、雄蕊和雌蕊原基分化期、雌雄蕊形成期、花粉粒形成期。开花前1年异型花柱连翘的花芽分化及发育无明显区别;开花当年花芽外层鳞片脱落后,观察到长花柱伸长并明显超过其雄蕊高度,花丝开始发育,而短花柱发育基本完成,花丝快速伸长并超过其花柱。授粉试验结果表明,连翘异型杂交坐果率大于50%,同型杂交坐果率略大于20%,自交坐果率在5%左右,具有自交不亲和的特性。  相似文献   

6.
采用石蜡切片技术对托桂型菊花和非托桂型菊花的花发育过程以及花瓣的组织机构进行观察。结果表明:菊花的花芽分化可分为花序分化和小花分化两个阶段,托桂和非托桂型菊花的花芽分化过程在小花花冠伸长期开始出现差异,桂瓣的发育过程中组织结构的变化更类似于舌状花;成熟的桂瓣和舌状花一样,其花瓣结构均由上下表皮细胞和内部多层叶肉细胞构成,而非托桂花型菊花管状花花瓣仅有上下表皮细胞。桂瓣内层细胞旺盛的分裂能力以及发达的维管束组织可能是菊花形成托桂花型的重要原因。  相似文献   

7.
采用石蜡切片技术,观察研究番木瓜长圆型两性花的花器官发生和分化过程及其与外部形态关系。结果表明,番木瓜两性花的发育方式属于向心式,花部各器官由外向内依次分化发生。发育进程可以分为花芽未分化期、花芽分化期、花萼原基分化期、花冠原基分化期、雄蕊原基分化期和雌蕊原基分化期。花芽分化启动的时间非常短,在外部形态直径小于0.4mm左右时,花芽已开始分化。雄蕊发育早于雌蕊,花粉粒成熟时,大孢子处于球形胚或心形胚阶段。  相似文献   

8.
卡特兰的花芽形态分化   总被引:5,自引:0,他引:5  
郑宝强  王雁  彭镇华  李莉 《园艺学报》2008,35(12):1825-1830
采用石蜡切片法观察了卡特兰‘Green World’花芽的形态发生和结构发育过程。研究表明:在北方温室环境条件下,卡特兰花芽分化从7月初花序原基分化开始至9月下旬合蕊柱及花粉块形成历时约3个月。其过程可分为6个时期:未分化期、花序原基分化期、花蕾原基分化期、萼片原基分化期、花瓣原基分化期、合蕊柱及花粉块分化期。其中,花蕾原基分化期、合蕊柱及花粉块分化期历时长,分化较慢,其它时期历时短,分化较快。自萼片原基分化期开始,新生植株生长已基本停止。  相似文献   

9.
金边瑞香花芽形态分化研究   总被引:7,自引:1,他引:7  
 金边瑞香花芽由顶芽发育而成,花芽分化包括花序分化和小花分化两个过程,分为未分化、开始分化、花序原基分化、小花原基分化、花瓣分化、雄蕊分化和雌蕊分化7个时期,分化的顺序是向心的;分化的临界期为5月中旬,分化时期长达7个月,花芽分化既持续又表现出两个分化高峰,还受温度等因素的影响。  相似文献   

10.
连翘花芽分化及发育的初步研究   总被引:6,自引:0,他引:6  
陈旭辉  江莎  李一帆  许珂  韩轶 《园艺学报》2006,33(2):426-428
 利用普通光学显微镜和扫描电镜对连翘的花芽分化及发育过程进行了观察。观察结果如下:(1) 连翘花芽分化期为5月中下旬~7月中旬, 整个过程可分为未分化期、分化初期、花萼原基分化期、花冠和雄蕊原基分化期、雌蕊原基分化期。(2) 雌雄蕊的发育紧随着花芽分化的完成而进行。9月上旬花药中分化出花粉母细胞和完整的花粉囊壁; 10月下旬胚珠的发育进入大孢子母细胞阶段。  相似文献   

11.
许申平  张燕  袁秀云  崔波 《园艺学报》2020,47(7):1359-1368
以蝴蝶兰‘大辣椒’为试验材料,对花芽分化进程及期间光合特性和碳水化合物、可溶性蛋白及激素含量的变化进行研究。结果表明:花芽长度为0、2、4、8、16和24 cm时,分别处于花芽分化初始期、花序原基分化期、花原基分化期、萼片原基分化期和花瓣原基分化期(16和24 cm)。蝴蝶兰叶片的净CO2吸收速率在花芽发育前期(0 ~ 4 cm)没有显著变化,花芽8 cm时显著降低。花芽中的碳水化合物和可溶性蛋白的含量显著高于叶片,碳水化合物在花芽长度为4 cm时达到稳定水平,可溶性蛋白含量在花芽8 cm时达到叶片与花芽的平衡;赤霉素(GA)的含量在花芽2 cm时达到最大值,生长素(IAA)含量在花芽4 cm时显著升高,玉米素(ZT)含量在花芽8 cm时显著降低,而ABA含量在花芽发育的过程中并没有显著变化。由此可知,当蝴蝶兰花芽开始分化萼片原基(8 cm)时,光合生理及生化物质基本达到一个相对稳定的水平,此阶段的蝴蝶兰花芽已彻底完成成花分化。  相似文献   

12.
铁线莲属4种植物的花芽分化研究   总被引:1,自引:0,他引:1  
利用石蜡切片法对大叶铁线莲(Clematisheracleifolia)、东北铁线莲(C.ternifloravar.mandshurica)、棉团铁线莲(C. hexapetala)和褐毛铁线莲(C. fusca)的花芽分化过程进行了观察。结果表明,4种植物的花芽分化过程可分为5个时期,未见明显花萼或花瓣分化或退化现象,各轮花器官为向心式发生,向心式发育。大叶铁线莲、东北铁线莲和棉团铁线莲还存在花序形成期。至各花器官形态分化完全,东北铁线莲及褐毛铁线莲花芽分化过程为10~12 d,棉团铁线莲为12~14 d,大叶铁线莲为15~17 d。  相似文献   

13.
早实核桃花器官发育的解剖学研究   总被引:3,自引:0,他引:3  
 通过形态解剖方法,观察早实核桃品种‘香玲’第1次开花的雌花芽和雄花芽发育特点,结果发现:在山东泰安地区,早实核桃‘香玲’雌花芽的分化从5月上旬—中旬进入形态分化临界期后,历经雌花花序分化期、花柄原基和雌花原基分化期、花被原基分化期、苞片原基分化期、花萼原基分化期、花瓣原基分化期、雌蕊原基分化期和胚珠分化期;个别雌花原基还能分化出花瓣原基和雄蕊原基,雌花花瓣原基和雄蕊原基在随后的发育过程中退化。在晚实核桃品种‘青林’雌花发育过程中没有发现花瓣原基和雄蕊原基的分化。‘香玲’核桃雄花芽的分化从4月上—中旬次第进入雄花序分化期、雄花原基分化期、花萼原基分化期、雄蕊原基分化期、花药分化期、花粉囊和花粉粒形成期。  相似文献   

14.
菊花花芽分化期超微弱发光及生理代谢的变化   总被引:9,自引:1,他引:8  
林桂玉  黄在范  张翠华  郑成淑 《园艺学报》2008,35(12):1819-1824
 研究了菊花花芽分化期超微弱发光(UWL),呼吸速率和ATP、可溶性糖、可溶性蛋白含量的变化。结果表明,菊花花芽分化起动期(II)与未分化期(I)相比,UWL强度增加119.3%,呼吸速率提高102.4%,ATP含量增加148.6%,可溶性糖增加95.5%,可溶性蛋白增加18.3%;在总苞鳞片分化期(III)、小花原基分化期(IV)和花冠形成期(V),UWL强度、呼吸速率和ATP含量逐渐下降,可溶性糖在IV和V期下降幅度很大并接近对照水平,可溶性蛋白在II、III和IV期保持较高水平,在V期下降幅度较大,但仍比对照增加14.0%;而长日照处理的对照菊花UWL强度、呼吸速率以及ATP、可溶性糖和可溶性蛋白含量基本保持较稳定水平。显示菊花花芽分化期叶片UWL水平与呼吸速率和能量代谢密切相关。  相似文献   

15.
萝卜花芽分化过程中茎尖和叶片碳水化合物含量的变化   总被引:9,自引:0,他引:9  
 以萝卜冬性品种‘一点红’和春性品种‘短叶13’为材料,研究花芽分化过程中茎尖和叶片以及萌动种子碳水化合物含量的变化。萌动种子在5℃下处理20 d,然后在温暖(>15℃)、长日照(16h)下生长,于不同花芽分化时期测定可溶性总糖、蔗糖和淀粉含量。结果表明:在花芽分化期间,无论是茎尖或是叶片,可溶性总糖、蔗糖和淀粉含量的变化趋势在两个品种之间较为接近。随着花芽分化的继续,可溶性总糖含量呈先上升后下降的趋势;蔗糖和淀粉含量则一直呈现上升趋势,在花芽分化完成后再下降。叶片中可溶性总糖、蔗糖和淀粉含量始终低于茎尖。冬性品种的蔗糖和淀粉含量在整个花芽分化期间始终较低,但在花芽分化初期的可溶性总糖含量则高于春性品种。  相似文献   

16.
Flower differentiation in Gladiolus × grandiflorus takes place immediately after initation of all the leaves. The prefloral stage was observed in shoots 3–4 mm long and the shoot apex was floral when the first foliage leaf was half extended.Initiation of individual florets continued up to the 7-leaf stage. Flower development is acropetal and continued up to anthesis of each individual floret.Flower blasting generally starts at the tip of the inflorescence and advances towards the base of the flower stalk. Blasting starts as a stoppage in the growth of the inflorescence, the flower stalk and the leaves on the stalk. Later these organs shrivel. Daughter corms fill early as a consequence of blasting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号