首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
【目的】探讨高光谱遥感数据不同预处理及不同估测算法下土壤有机质估测模型的优劣,为提高土壤有机质估测精度奠定基础。【方法】使用高光谱仪在室内条件下对土壤样品进行光谱测量,对光谱数据进行4种去噪处理(无去噪处理、Savitzky-Golay(S-G)平滑滤波去噪、小波包去噪以及S-G平滑与小波包结合去噪),然后对去噪后的光谱数据进行8种数据变换(原始光谱数据R、倒数1/R、对数log(R)、倒数对数log(1/R)、一阶导数R′、倒数一阶导数(1/R)′、对数一阶导数(log(R))′、倒数对数一阶导数(log(1/R))′),接着对变化后的光谱数据进行3种降维处理(无降维处理、敏感波段降维和主成分分析降维),最后运用支持向量回归法和偏最小二乘回归法分别建立SOM含量估测模型。【结果】研究中所涉及的各种数据预处理和估测算法中,小波包去噪、PCA降维、反射率倒数一阶导数(1/R)′光谱数据变换处理条件下,使用PLSR方法的估测模型精度最高、模型最稳定,可以较精确地估测吉林省伊通县SOM含量。【结论】合适的数据预处理,尤其是小波包去噪和PCA降维相结合,可有效改善光谱数据质量,提高SOM含量估测模型精度及稳定性。  相似文献   

2.
通过实地采集剑湖湿地茭草反射光谱和现场测量鲜生物量,基于24种光谱变换对茭草反射光谱特征进行分析,选取16种光谱变换筛选全波段(350~2 350 nm)中对茭草鲜生物量敏感的特征波段,构建其鲜生物量估测模型。结果表明:不同形式的光谱变换更容易分析光谱特征,对数倒数和倒数的变换增强了可见光波段的特征。对数倒数一阶微分变换增强了近红外波段的特征,倒数二阶微分和对数倒数二阶微分增强了短波红外的特征,4~5尺度的连续小波变换适合分析原始光谱特征。连续小波变换后最大相关系数为0.734;其次为二阶微分变换,最大相关系数为-0.730。基于立方根二阶微分变换构建的多元回归模型对茭草鲜生物量估测效果最佳,R2、RMSE、P和RPD分别为0.88、1 044.90 g/m2、83.95%、2.64。  相似文献   

3.
博斯腾湖西岸湖滨带土壤盐分高光谱反演   总被引:3,自引:0,他引:3  
选取博斯腾湖西岸湖滨带为研究区,沿垂直湖岸线方向采集14个土壤剖面70个样本,利用ASD FieldSpec3地物光谱仪获取高光谱数据,基于Q型聚类分析研究不同含盐量土壤光谱特征,对土壤光谱反射率与含盐量做逐波段相关分析和显著性检验,筛选不同光谱变换下的敏感波段,通过多元逐步回归和偏最小二乘回归方法,分别以敏感波段和全波段光谱构建12个土壤含盐量反演模型,优选最佳反演模型。结果表明:17种高光谱变换中, 4种最优光谱变换使土壤含盐量与Savitzky-Golay平滑后的反射率极显著相关波段数明显增多,分别是反射率的一阶微分、平方根一阶微分、对数倒数一阶微分、倒数对数一阶微分,综合确定盐分敏感波段聚集在749、1 024、1 083、1 230、1 677和2 387 nm处;以对数倒数一阶微分光谱全波段建立的偏最小二乘回归模型更适合该区0~50 cm土壤含盐量的高光谱反演,其建模和验证决定系数R~2分别为0.93和0.85,均方根误差RMSE分别为0.37和0.42,相对预测偏差RPD为3.57。  相似文献   

4.
青花菜矿质元素含量丰富,传统的青花菜矿质养分评价方法步骤繁琐、耗时费力。通过电感耦合等离子体原子发射光谱法(Inductively Coupled Plasma Optical Emission Spectrometer,ICP-OES)测定青花菜中钾(K)、硫(S)、磷(P)、钙(Ca)、铁(Fe)、镁(Mg)等矿质元素含量,同时使用近红外光谱仪扫描样品,获取样品光谱文件,拟建立青花菜矿质元素的近红外光谱快速测定的方法。对化学分析结果与光谱文件在偏最小二乘法(partial least square,PLS)分析的基础上,通过Savitzky-Golay卷积平滑处理,采用不同的散射处理方式[多元散射校正(multiplicative scatter correction,MSC)和标准正态变量变换(standard normal variate transformation,SNV)],以及不同导数处理方式[一阶导数(first derivative, FD)和二阶导数(second derivative,SD)]对光谱进行预处理,从而获得定标方程。结果表明:(1)K、Mg、Ca经过MSC+FD处理的结果最好,校正相关系数(coefficient of determination in calibration, RSQ)分别为0.884、0.944、0.651,验证决定系数(coefficient of determination in valibration, R2)分别为0.893、0.928、0.604,相对分析误差(residual predictive deviation, RPD)分别为2.491、2.710、1.344;(2)P经过SNV+FD处理的效果最好,RSQ、R2和RPD分别为0.733、0.703和1.117;(3)S、Fe经过MSC+SD处理的结果最好,RSQ分别为0.523、0.581,R2分别为0.537和0.416,RPD分别为1.133、1.100。建立的K和Mg的近红外光谱快速检测模型,可以用于实际应用;P可以近似定量预测,但还需要通过增加样品种类提高模型的准确度与稳定度;Ca、S和Fe的近红外模型可以通过建立高浓度和低浓度2个模型来提高模型预测度。  相似文献   

5.
目的 研究不同维度光谱变换下土壤盐分反演模型及其验证。方法 以博斯腾湖西岸湖滨绿洲为研究区,面向ASD高光谱数据,利用17种一维数学变换光谱和3种二维变换光谱指数,分别与实测土壤盐分进行相关分析,得到0.01显著性检验水平下初步优选的光谱特征参数,基于VIP准则选入最佳自变量实现PLSR模型构建,进行精度验证。结果 研究区干季土壤平均反射率随含盐量的增加而高于湿季土壤平均反射率,尤其体现在590、800、1 810、2 150 nm处;17种一维单波段光谱变换中,对数倒数的一阶微分(1/lgR)变换与土壤盐分含量相关性最好,峰值敏感波段为1 083 nm,相关系数绝对值|r|最高达0.63;3种二维两波段光谱变换中,归一化光谱指数NDSI(R1 780,R1 742)与土壤盐分含量相关性最好,相关分析决定系数R 2最大值为0.57;基于特征归一化光谱指数结合VIP准则进行自变量筛选的PLSR估算模型效果最佳,土壤盐分建模集和验证集的决定系数 R V 2 达0.77,均方根误差RMSEV为0.64 g/kg,相对分析误差RPD为2.11。 结论 利用归一化光谱指数NDSI建立PLSR高光谱模型可有效地对研究区土壤盐分进行定量估算。  相似文献   

6.
以贵州省典型山区耕地土壤高光谱数据为研究对象,基于光谱变换法和机器学习原理构建贵州省山区耕地土壤有机质(SOM)含量估算模型。于2020年8月至2021年3月在贵州省13个县(区、市)采集了120个土壤样品,检测土壤可见光-近红外波段光谱信息,利用5种光谱数据变换(原始光谱、一阶微分、二阶微分、倒数对数的一阶微分、连续统去除)和4类模型(偏最小二乘回归、支持向量机、随机森林和BP神经网络)组合出不同土壤有机质含量的预测模型,按照3∶1选择训练样本和测试样本以估算山区SOM含量。结果表明,一阶微分数据变换与山区SOM含量的相关性较高,相关系数最高达到-0.635;反演模型中,基于一阶微分光谱变换构建的BP神经网络模型精度最高,训练集、测试集的决定系数(R2)分别为0.845、0.838,测试集均方根误差(RMSE)为3.452,相对分析误差(RPD)达到2.470,其次是RF、PLSR模型的RPD较高,SVM模型的RPD最低。光谱数据变换中一阶微分法能极大程度提取出山区耕地的SOM含量信息,BP神经网络模型是估算山区SOM含量的最优模型,本研究结果可为贵州省山区耕地...  相似文献   

7.
构建佛手瓜叶片叶绿素含量估算模型,为实现高光谱技术监测佛手瓜叶片叶绿素含量变化提供参考依据。利用SPAD-502 PLUS叶绿素仪同步测定佛手瓜叶片的SPAD值,以Field Spec 3地物光谱仪采集佛手瓜叶片光谱数据。对原始光谱去噪处理后经一阶微分变换、倒数对数变换和倒数对数的一阶微分变换提取其特征波段,然后利用红边及绿峰位置构建了SPAD值的预测模型,并采用决定系数(R2)、均方根误差(RMSE)和相对误差(RE)对模型进行精度评价。结果表明,在400~1 000 nm波长范围内,佛手瓜叶片光谱特征在可见光区的绿峰波段反射率在22%左右,在近红外区形成高反射率,达到56%左右。通过对原始光谱曲线进行一阶微分变换、倒数对数变换和倒数对数的一阶微分数学变换后,提取出佛手瓜叶片的特征波长分别有520、550、640、650、670、680、700 nm。以单一红边位置与佛手瓜SPAD值建立的模型,r2为0.814 2,以此模型进行SPAD值预测,得到预测值与实测值的决定系数r2为0.833 7,RMSE为2.83,RE为...  相似文献   

8.
[目的]检测橡胶树割胶期叶片的实际氮素含量,建立橡胶树叶片光谱诊断模型,为实现橡胶树叶片氮素含量的快速无损检测提供参考依据.[方法]使用FieldSpec 3光谱仪采集割胶期橡胶树叶片的光谱反射率,分别以其原始光谱(R)、倒数光谱(1/R)、对数光谱(logR)和对数倒数光谱(1/logR)作为光谱信息,采用分数阶微分进行处理,获得不同分数阶阶次下的光谱数据,并通过竞争性自适应重加权算法(CARS)选择变量及偏最小二乘回归法(PLSR)建立橡胶树氮素光谱诊断模型.[结果]采用分数阶对橡胶树叶片R、1/R、logR和1/logR建立模型的最优均方根误差(RMSE)分别为0.1376、0.1175、0.1263和0.1505,且使用1/R数据建立的0.6阶模型表现最优,相关系数为0.9273,RMSE为0.1175,决定系数为0.8551.与整数阶算法相比,分数阶模型具有更强的预测能力,表明分数阶能充分挖掘光谱信息的有效信息,有效提高橡胶叶片氮含量光谱诊断模型的预测精度,实现橡胶树叶片氮素含量快速无损检测.[结论]应用近红外光谱技术并结合分数阶微分算法可快速无损检测橡胶树叶片氮素含量,为生产上橡胶树的精准可变量施肥提供技术支持.  相似文献   

9.
【目的】探讨光谱变量选择及依据土壤类型进行分层校准两种方法对高光谱预测土壤有机碳(SOC)精度的影响。【方法】以江西省为研究区,490个土壤样本为研究对象,对研究区内的所有样本以及不同土壤类型样本分别通过竞争性自适应重加权采样(CARS)算法筛选特征波段,并采用偏最小二乘回归(PLSR)、支持向量机(SVM)、随机森林(RF)、反向传播神经网络(BPNN)4种模型,对比不同土壤类型下SOC在全波段以及CARS算法筛选后特征波段的预测精度。进而,还对比了全局校准和分层校准下SOC在全波段以及CARS算法筛选后特征波段的预测精度。【结果】(1)红壤筛选的特征波段为484、683—714和2 219—2 227 nm,水稻土筛选的特征波段为484、689—702和2 146—2 156 nm。红壤采用CARS-BPNN模型预测效果最佳(R 2=0.82),较全波段建模验证集R 2提升0.07。水稻土采用CARS-RF模型预测效果最佳(R 2=0.83),较全波段建模验证集R 2提升0.13。(2)在总体样本上,分层校准相比全局校准精度有所提升。采用CARS-BPNN进行分层校准预测效果最佳(R 2=0.82),较全局校准验证集R 2提升0.06。【结论】采用CARS-BPNN进行分层校准能够较好地预测江西省土壤有机碳含量,本研究可为其他类似地区预测土壤属性提供科学依据。  相似文献   

10.
为了探寻快速、准确估测土壤有机质含量的方法以推动精准农业化进程,以北疆绿洲农田灰漠土为研究对象,通过野外实地调查收集土壤样品,室内化学分析测得土壤样品有机质含量,暗室内利用SVC HR-768高光谱仪测定土壤样品光谱反射率。通过对土壤光谱反射率进行倒数、对数、一阶微分、倒数的一阶微分、对数的一阶微分变换,运用单相关分析法提取土壤光谱特征波段,采用多元逐步方法对土壤有机质含量定量反演,分析研究土壤有机质含量和室内土壤光谱的特征关系。结果表明,在波长567、1 697 nm和2 221 nm处,采用反射率对数的一阶微分建立的土壤有机质含量反演模型预测精度最高,模型决定系数达到0.82。北疆绿洲农田灰漠土土壤有机质含量高光谱反演模型的建立为土壤有机质的快速测定提供了新的途径。  相似文献   

11.
不同类型土壤的光谱特征及其有机质含量预测   总被引:18,自引:1,他引:17  
 【目的】构建适合土壤有机质含量估测的高光谱参数及定量反演模型。【方法】系统分析中国中、东部地区5种不同类型土壤风干样本有机质含量与350~2 500 nm波段范围高光谱反射率之间的关系,利用特征光谱参数和BP神经网络建立土壤有机质的定量估测模型。【结果】光谱一阶导数构成的两波段光谱参数与土壤有机质含量的相关性明显优于原始光谱,尤其采用Norris平滑滤波后导数光谱效果更好。光谱参数构成形式以差值指数最好,其次为比值和归一化指数。与土壤有机质含量相关程度最高的光谱参数是由可见光区554 nm和近红外区1 398 nm两个波段的一阶导数组合而成的差值指数DI(D554,D1398),两者呈显著指数曲线关系,拟合方程为y= 184.2 ×exp[-1297×DI(D554,D1398)],决定系数为0.90。经不同类型土壤的观测资料检验,模型预测决定系数为0.84,均方根误差RMSE为3.64,相对分析误差RPD为2.98,显示估测模型具有较好的预测精度。另外,利用BP神经网络结合偏最小二乘法(PLS)对导数光谱进行分析,提取贡献率达到99.56 %的前6个主成分建立了三层BP 神经网络模型,模型决定系数为0.98,经不同类型土壤的观测资料检验,模型预测决定系数为0.96,RMSE为2.24,相对偏差RPD为4.83。比较利用DI(D554,D1398)和BP网络进行土壤有机质含量的预测结果,前者精度低于后者,但可以满足土壤有机质监测的需要。【结论】利用差值光谱指数DI(D554,D1398)和BP神经网络模型均可实现对土壤有机质的精确估测。  相似文献   

12.
黄土高原煤矿区复垦农田土壤有机质含量的高光谱预测   总被引:6,自引:0,他引:6  
南锋  朱洪芬  毕如田 《中国农业科学》2016,49(11):2126-2135
【目的】针对黄土高原丘陵地多、地形复杂、有机质含量低、采样困难以及因采煤活动引起大面积土地损毁等问题,在土地复垦与综合整治过程中,为快速定量监测与评估复垦农田土壤质量提供一种新的方法。【方法】以山西省襄垣县复垦农田土壤为研究对象,选取由北向南土地损毁中间条带状区域采集样品152个,进行室内土壤农化分析、光谱测定,运用ParLes 3.1软件对光谱曲线进行多元散射校正(multipication scatter correction,MSC)、基线偏移(baseline offset correction,BOC)和Savitzky-Golay filter平滑去噪预处理。对土壤原始光谱反射率(raw spectral reflectance,R)作一阶微分(first order differential reflectance,D(R))和倒数的对数变换(inverse-lg reflectance ,lg(1/R)),分析3种不同变换形式的光谱数据与土壤有机质含量的相关性,相关系数通过P=0.01水平显著性检验来确定显著性波段的范围。基于全波段(400-2400 nm)和显著性波段利用偏最小二乘回归(partial least squares regression,PLSR)分析方法建立该区域土壤有机质含量高光谱预测模型,通过模型精度评价指标:决定系数(coefficient of determination,R2)、均方根误差(root mean square error,RMSE)和相对预测偏差(residual prediction deviation,PRD)确定最优模型。【结果】通过P=0.01水平显著性检验的波段范围为:R的400-1 800、1880-2 400 nm;D(R)的420-790、1 020-1 040、2 150-2 200 nm;lg(1/R)的400-1 830、1 860-2 400 nm。光谱与有机质含量的相关系数绝对值最大的波段是R的800 nm;D(R)的600 nm;lg(1/R)的760 nm。进行D(R)变换,光谱曲线的吸收特征更加明显,相关系数在可见光(400-800 nm)波段范围内有所增加,其最大值由0.72提高到了0.82;基于显著性波段的PLSR建模效果优于全波段,其中lg(1/R)变换的预测精度为最佳,具有很好的预测能力,其校正模型的R2和RMSE分别为0.95、7.64,预测模型的R2、RMSE和RPD分别为0.85、3.00、2.56;基于全波段的R-PLSR和lg(1/R)-PLSR模型具有较好的预测能力,其预测模型的R2、RMSE和RPD分别为0.79、3.64、2.10和0.79、3.53、2.17,而D(R)-PLSR模型只能进行粗略估测,其预测模型的R2、RMSE和RPD分别为0.61、5.43、1.41。综合分析全波段和显著性波段3种光谱数据的预测精度,发现基于显著性波段的R-PLSR、D(R)-PLSR、lg(1/R)-PLSR模型均取得了显著的预测效果。【结论】研究区土壤光谱反射率与土壤有机质含量具有高度的相关性,应用偏最小二乘回归分析方法可以很好地建立土壤有机质含量反演模型。  相似文献   

13.
【Objective】 The objective of the experiments is to develop a key method for fast and nondestructive monitoring canopy equivalent water thickness (CEWT) in cotton (Lumian 54) and to further improve the estimation accuracy of CEWT in cotton monitored by remote sensing technology. 【Method】 Through setting irrigation gradient treatment in different growth period, canopy spectral reflectance and canopy equivalent water thickness and other information were measured simultaneously. Firstly, we comprehensively analyzed the correlation between CEWT and various spectral parameters, including original spectral reflectance, first derivative spectral reflectance, all-band combined spectral index and existing spectral index. Then, we determined the optimal spectral indices of bud stage, flowering and bolls stage, and full growth period. Finally, we constructed a hyperspectral monitoring model of cotton CEWT by linear regression. 【Result】 The canopy equivalent water thickness and the original spectral reflectance show continuous sensitive bands in the near infrared band (NIR) of 780-1130 nm and the short wave infrared band (SWIR) of 1 450-1 830 nm and 1 950-2 450 nm, the sensitivity of the first derivative spectrum to CEWT was enhanced in NIR band than that of the original spectrum, but was weaker in SWIR band than that of the original spectrum. The correlation between the spectral index constructed by the original spectral reflectance and CEWT is stronger than that of the first derivative spectrum, and the ratio spectral index (RSI) is more suitable for the monitoring of CEWT than the normalized difference spectral index (NDSI). During the whole growth period, the inversion accuracy of CEWT by (R1135-5R1494)/R2003 was the best (R 2=0.7878, RRMSE=0.1803). In the bud stage, RSIb(1130,1996) has the best estimation effect on CEWT (R 2=0.7258, RRMSE=0.1444). RSIa (904,1952) was the optimal spectral index (R 2=0.7853, RRMSE=0.2454) for estimating CEWT at the flowering and bolls stage.【Conclusion】The new hyperspectral indexes proposed in this study in different growth stages can be used for quantitative monitoring of canopy equivalent water thickness in cotton. The results of this study can provide reference for the application of hyperspectral technology in monitoring water content of cotton canopy, and provide technical basis for precision irrigation of cotton.  相似文献   

14.
【目的】建立基于可见-近红外光谱的土壤游离铁精确预测模型,简单、快速、经济地预测土壤游离铁,有助于研究土壤发生和分类。【方法】采集广西壮族自治区的铁铝土、富铁土、淋溶土和雏形土等82个旱地土壤剖面的B层土壤,进行室内土壤化学分析、光谱测定,分析不同光谱变换后的光谱反射率与土壤游离铁含量的相关性。基于特征波段利用偏最小二乘回归(PLSR)和逐步多元线性回归(SMLR)法建立土壤游离铁含量光谱预测模型,通过决定系数(R2)、均方根误差(RMSE)和相对预测偏差(PRD)确定最优模型。【结果】土壤光谱曲线分别在457、800和900 nm波段附近有明显的游离铁吸收和反射峰特征;土壤游离铁含量与原始光谱反射率呈负相关;原始光谱经过微分变换后,游离铁含量与光谱反射率相关性显著提高;基于400~580和760~1 300 nm特征波段和一阶微分光谱变换的SMLR模型预测精度最高,其验证集的R2和RPD分别为0.85和2.62,RMSE为8.41 g·kg~(-1)。【结论】将可见近红外光谱技术应用于土壤游离铁含量高效快速地预测具有良好的可行性。广西旱地土壤光谱反射率与土壤游离铁含量具有高度的相关性,应用逐步多元线性回归方法可以很好地建立土壤游离铁含量反演模型。  相似文献   

15.
土壤有机质高光谱特征与波长变量优选方法   总被引:6,自引:0,他引:6  
【目的】探究土壤有机质的高光谱特征及响应规律,优选土壤有机质的敏感波长,降低土壤有机质高光谱估测模型复杂度,提高模型稳健性,为利用高光谱技术对农田土壤肥力的定量监测提供理论支撑。【方法】采集江汉平原潮土土样130个,将其中40个样本作为训练集,测量其去有机质前、后的土壤有机质含量及光谱数据,计算差值及变化率,分析土壤有机质含量变化对光谱特征的影响,结合无信息变量消除(uninformative variables elimination,UVE)、竞争适应重加权采样(competitive adaptive reweighted sampling,CARS)变量优选方法确定土壤有机质敏感波长;采用45个建模集样本,基于偏最小二乘回归(partial Least Squares Regression,PLSR)和反向传播神经网络(back propagation neural network,BPNN)建立土壤有机质含量的估算模型;利用45个验证集样本检验敏感波长对同类土壤的适用性。【结果】通过有机质去除试验,供试土壤的平均光谱反射率在全波段均有所增加,在可见光波段变化率高于近红外波段;比较UVE、CARS、UVE-CARS、CARS-UVE这4种变量优选方法,得到最佳变量优选方法为UVE-CARS,该方法从2001个波长变量中优选得到84个变量作为土壤有机质的敏感波长,分布于561—721、1 920—2 280 nm波段覆盖范围;基于敏感波长的PLSR、BPNN模型性能均优于全波段模型,其中,基于敏感波长的BPNN模型的估测能力高于PLSR,模型验证集R~2、RMSE、RPD、MAE、MRE值分别为0.74、1.33 g·kg~(-1)、2.02、1.04 g·kg~(-1)、6.2%,可实现土壤有机质含量的有效估测。【结论】通过训练集获得的土壤有机质敏感波长,能够实现对该试验区同种土壤类型样本土壤有机质含量的有效估测;利用去有机质试验结合变量优选方法确定的敏感波长建模,不仅将输入波长压缩至全波段波长数目的 4.2%,而且提升了模型估测精度,降低了变量维度和模型复杂度,为快速准确评估农田土壤有机质含量提供了新途径。  相似文献   

16.
目前对植物叶片花青素含量的测定主要是湿化学法和高效液相色谱法(high performance liquid chromatography,HPLC),为简化测定方法,降低成本和提高精度,提出一种利用数码相机获取照片提取的颜色参数构建模型无损估测植物叶片花青素含量的方法。试验测定166份紫叶李叶片的花青素含量及其RGB特征值,对15种颜色参数进行皮尔逊相关分析,构建逐步多元线性回归(stepwise multiple linear regression,SMLR)、一元线性回归(single linear regression,SLR)和BP神经网络(BP neural network,BPNN)估算模型;同时对模型进行验证和比较。结果表明,1)BP神经网络模型建模集的R2、RMSE和MAE分别为0.883、0.412、0.323,验证集的R2、RMSE和MAE分别为0.796、0.462和0.353,相关系数均达到极显著水平;一元线性回归模型中,参数G-B与花青素含量的线性相关性最强,相关系数为-0.820,达到极显著水平;逐步多元线性回归模型的相关系数均达极显著水平,其中建模集的R2、RMSE和MAE分别为0.724、0.630、0.459,验证集的R2、RMSE和MAE分别为0.643、0.616和0.509。2)颜色参数与花青素含量之间具有明显的相关性,利用数码相机获取的颜色特征值估测紫叶李叶片花青素含量具有可行性;3)3种模型中,BP神经网络模型的估测效果最好,能有效地估测紫叶李叶片花青素含量,其次为逐步多元线性回归,一元线性回归模型的预测效果相对较差。  相似文献   

17.
【目的】基于高光谱特征初步判别油菜摘薹情况,为实现高光谱反演籽粒油酸含量提供理论指导。【方法】使用FieldSpec 3地物光谱仪采集油菜盛花期叶片光谱数据,采用Agilent GC-MS 7980B气相色谱仪分析摘薹和未摘薹处理的籽粒油酸含量,比较2组处理的平均原始光谱反射率特征,及其油菜叶片原始及一阶微分光谱反射率与籽粒油酸含量相关性,在此基础上构建基于原始光谱特征波长的支持向量机(SVM)判别模型、基于光谱参数的油酸含量二项式模型、基于一阶微分光谱特征波长的油酸含量多元线性逐步回归(MLSR)及偏最小二乘回归(PLSR)预测模型,并利用独立样本T检验对模型精度进行验证。【结果】发现未摘薹及摘薹处理的平均原始光谱反射率曲线在760~1080nm波段存在一定差异。未摘薹及摘薹处理的原始光谱反射率与籽粒油酸含量相关性曲线存在一定差异,未摘薹处理的原始光谱反射率在484~956和1001~1146 nm波段与籽粒油酸含量呈正相关,摘薹处理的原始光谱反射率在1882~2111和2324~2499 nm波段与油菜籽粒油酸含量呈正相关,说明摘薹会影响油菜光谱反射率与籽粒油酸含量的相关性表现。选取位于760~1080 nm波段4个拐点波长(760、920、970和1080 nm)的原始光谱反射率作为自变量,用以构建SVM判别模型,经过多次随机取样比较构建所有SVM判别模型,发现最佳判别模型的训练集样本总体精度为86.1%,验证集样本总体精度为77.8%,说明利用高光谱技术判别油菜是否摘薹具有一定的可行性。光谱参数模型中RVI模型对未摘薹处理油菜籽粒油酸含量的反演效果最佳,且该模型与未摘薹处理籽粒油酸含量的相关系数(-0.705)最高。比较全部油菜籽粒油酸含量预测模型类型,PLSR模型对未摘薹处理籽粒油酸含量预测精度最高,其训练集R2=0.590、RMSE=0.610,MLSR模型对摘薹处理籽粒油酸含量预测精度最高,其训练集R2=0.773、RMSE=0.874。利用独立样本T检验对二者模型测试集样本进行验证,未摘薹样本P=0.839,摘薹样本P=0.858,二者样本实测值与预测值均无显著差异(P>0.05),模型合理,说明利用高光谱技术对油菜籽粒油酸含量进行预测可行。【建议】引入随机森林等机器学习算法,更好地选取特征波长(显著相关波长或全波段等),提高光谱数据对油菜籽粒油酸含量的预测能力。后期的试验应侧重于多品种油菜籽粒油酸含量估测研究,探索高光谱技术估测油菜籽粒油酸含量是否具备普遍的可行性。利用高光谱技术反演其他油菜籽粒品质指标,为高光谱遥感监测油菜品质提供理论依据。  相似文献   

18.
基于导数光谱的小麦冠层叶片含水量反演   总被引:3,自引:0,他引:3  
【目的】以高光谱技术实现小麦含水量信息的快速、无损与准确获取,为小麦灌溉的精确管理提供科学依据。【方法】利用水氮胁迫试验条件下小麦主要生长期的导数光谱构建了16种新指数,将其与NDII、WBI以及NDWI等常用指数进行比较分析,筛选小麦叶片含水量反演最佳光谱指数,并利用其建立反演模型进行小麦含水量的遥感填图。【结果】在各指数中,FD730-955对小麦冠层叶片含水量的估测结果最佳,其估测模型(对数形式)校正决定系数(C-R2)与检验决定系数(V-R2)分别达0.749与0.742,优于NDII等常用指数;FD730-955所建模型对32个未知样的预测结果与实测值相似度较高,其回归拟合模型R2达0.763,RMSE仅为0.024,取得了良好预测结果,且对叶片含水量以及LAI值较高与较低的样本均具备良好的预测能力,可有效避免样本取值范围以及冠层郁闭度等因素对含水量估测的影响;反演模型对OMIS影像的填图结果与地面实测值拟合模型R2达0.647,RMSE仅为0.027,具有较高的反演精度。【结论】导数光谱可实现小麦冠层叶片含水量信息的准确估测,其中FD730-955系反演的优选指数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号