首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
The effect of soils suppressive to Gaumannomyces graminis var. tritici (Ggt) on the severity of root and crown rots caused by Rhizoctonia solani, Gibberella zeae, Pythium irregulare, Cochliobolus sativus and Fusarium culmorum was tested in pot bioassays. An induced suppressive soil was obtained from the rhizosphere of wheat plants grown at 15°C for 28 days in fumigated soil inoculated with live inoculum (colonized oat grain) of Ggt.Root rot caused by R. solani was significantly less in soil amended with either induced or naturally suppressive soil. Disease caused by the other pathogens was also reduced by the induced suppressive soil, with the least reduction occurring with F. culmorum.Colonization of the surfaces of seminal roots of wheat plants by Gaeumannomyces graminis var. graminis (Ggg) and a Phialophora-like fungus (Plf 119) was also studied using the line-intercept method. In non-suppressive soil the maximum area of the primary seminal root colonized by Ggg was 7.4 per cent and by Plf 119 was 3.3 per cent. Colonization of roots by Ggg and Plf 119 was reduced substantially by the addition of induced suppressive soil.  相似文献   

2.
Glasshouse experiments have shown that the prior colonisation of wheat roots by Gaeumannomyces graminis var. graminis, a fungus closely related to the wheat and oat take-all fungi but non-pathogenic to temperate cereals, reduced take-all infection along the roots. Cross-protected wheat plants produced grain yields significantly greater than those of unprotected plants but not significantly different to those of healthy wheat plants. A Phialophora-like fungus from grass roots did not confer the same degree of protection. There is some evidence that the cross-protection mechanism may be a specific host response nduced by var. graminis. The possible use of var. graminis in the biological control of take-all is discussed.  相似文献   

3.
This study provides evidence that egg-parasitic nematophagous fungi, Pochonia chlamydosporia, Pochonia rubescens and Lecanicillium lecanii, can also reduce root colonisation and root damage by a fungal pathogen. Interactions of nematophagous fungi with the take-all fungus, Gaeumannomyces graminis var. tritici (Ggt), and their influence on severity of the root disease it causes were studied in laboratory and pot experiments. In Petri dish experiments the three nematophagous fungi reduced colonisation of barley roots by Ggt and also reduced necrotic symptoms. On the contrary, root colonisation by nematophagous fungi was unaffected by Ggt. In growth tube experiments, the three nematophagous fungi again reduced Ggt root colonisation and increased effective root length of barley seedlings. This was true for both simultaneous and sequential inoculation of nematophagous fungi versus Ggt. In the pot experiments the inoculum of the tested fungi in soil was applied in the same pot, as a mixture or in layers, or in coupled pots used for wheat grown with a split-root system. The nematophagous fungi P. chlamydosporia (isolate 4624) and L. lecanii (isolate 4629), mixed with Ggt or in split root systems with the pathogen, promoted growth of wheat (i.e. increased shoot weight), although no disease reduction was found. In split root systems, lower levels of peroxidase activity were found in seedlings inoculated with Ggt in combination with the nematophagous isolates 4624 and 4629 than when the take-all fungus was applied alone.Our results show that nematophagous fungi reduce root colonisation by Ggt, root damage and stress induced senescence in Ggt-inoculated plants.  相似文献   

4.
Establishment of vesicular-arbuscular mycorrhizal fungi in plant roots involves a pre-infection phase of propagule germination, hyphal growth and appressorium formation, followed by growth of the fungus within the root. The effect of soil temperature on the pre-infection stage was examined by counting the numbers of fungal “entry-points” on the main roots of Medicago truncatula and Trifolium subterraneum, grown at soil temperatures of 12°, 16°, 20° and 25°C for periods up to 12 days. Increased root temperature was positively associated with increased numbers of “entry-points”. This effect was more marked between 12° and 16°C than at higher temperatures, as shown by comparing plants at the same stage of development (emergence of spade leaf) and by calculating the results as entry points per cm root.The first root nodules appeared sooner at higher temperatures (20° and 25°), but subsequent development of nodules (measured as nodule number and aggregate volume of nodules per plant, up to 21 days) was best at 16°C for both host Rhizobium combinations in non-sterile and autoclaved soil. There was no evidence that competition between mycorrhizal fungi and Rhizobium for infection sites occurred.A method of obtaining numbers of infective propagules of vesicular-arbuscular mycorrhizal fungi in soil is described.  相似文献   

5.
The C and N transformations during decomposition over 26 d of root material from two lines of tobacco plants (Nicotiana tabacum L.) were compared in soil with or without earthworms (Lumbricus terrestris L.). The tobacco plants were either unmodified or genetically modified to reduce the activity of caffeic acid O-methyl transferase (COMT), which leads to plants with altered lignin structure and composition. In the absence of earthworms, C mineralization and net N immobilization were greater for the soil amended with reduced COMT roots than with the unmodified roots. In the presence of earthworms, C mineralization was still significantly greater for reduced COMT roots than for unmodified roots, but the difference was smaller, and the net N immobilization did not differ significantly between the two lines of plants.  相似文献   

6.
Seminal roots of wheat and barley seedlings were inoculated with G. graminis var tritici on regions 0, 5- and 15-days old, and assessed for intensity and extent of infection after standard times. Wheat roots were most heavily infected on young regions, whereas barley roots were most heavily infected on old ones. The effect of root age in wheat was similar in both unsterile and aseptic conditions, so it could not be ascribed to saprophytic rhizosphere micro-organisms interacting with G. graminis.The contrasting results for wheat and barley are explained by a single hypothesis, based on decreasing host-resistance in the root cortex but increasing resistance at or near the endodermis as the roots age. It is suggested that, under some conditions, even small amounts of non-pathogenic root cortex death can enhance infection by G. graiminis. This interpretation may explain several aspects of take-all and its biological control by other dark mycelial parasites.  相似文献   

7.
Plant roots normally release a complex mixture of chemicals which have important effects in the rhizosphere. Among these different root-emitted compounds, volatile isoprenoids have received very little attention, yet they may play important and diverse roles in the rhizosphere, contributing to the regulation of microbial activity and nutrient availability. It is therefore important to estimate their abundance in the rhizosphere, but so far, there is no reliable sampling method that can be used to measure realistic rates of root emissions from plants growing in field conditions, or even in pots. Here, we measured root content of volatile isoprenoids (specifically monoterpenes) for Pinus pinea, and explored the feasibility of using a dynamic bag enclosure method to measure emissions from roots of intact pot-grown plants with different degrees of root cleaning. We also investigated a passive diffusion method for exploring monoterpenes in soil at incremental distances from mature Pinus sylvestris trees growing in field conditions. Total monoterpene content of P. pinea roots was 415±50 μg g−1 fresh wt in an initial screening study, and between 688±103 and 1144±208 μg g−1 dry wt in subsequent investigations. Emissions from shaken-clean roots of intact plants and roots of intact plants washed to remove remaining soil after shaken-clean experiments were 119±14 and 26±5 μg g−1 dry wt h−1, respectively. Emissions from intact roots in soil-balls were an order of magnitude lower than from shaken-clean roots, and probably reflected the amount of emitted compounds taken up by physical, chemical or biological processes in the soil matrix surrounding the roots. Although monoterpene content was not significantly different in droughted roots, emission rates from droughted roots were generally significantly lower than from well-watered roots. Finally, passive sampling of monoterpenes in the soil at different distances from mature P. sylvestris trees in field conditions showed significantly decreasing sampling rates with increasing distance from the trunk. We conclude that it is feasible to measure volatile isoprenoid emissions from roots but the method of root preparation affects magnitude of measured emissions and therefore must be decided according to the application. We also conclude that the rhizosphere of Pinus species is a strong and previously un-characterized source of volatile isoprenoid emissions and these are likely to impact significantly on rhizosphere function.  相似文献   

8.
Runner hyphae of Gaeumannomyces graminis (Sacc.) Arx & Olivier var. tritici Walker on seminal roots of wheat seedlings were photographed and their length measured. As well, their length was estimated using the line-intercept method. The correlation of 0.904 between measured and estimated lengths of hyphae was highly significant. This line intercept method was used to estimate the density (length/unit area) of hyphae on roots of plants growing in the presence and absence of a soil suppressive to G. graminis var. tritici. Estimations were made eight times during 28 days growth at 15°C. In fumigated soil (non-suppressive) inoculated with 0.1% ground oat grain infested with G. graminis var. tritici, the density of hyphae on roots started to increase at five days compared with 15 days when soil there was a 10.8% cover of the root surface after 15 days when the hyphae had reached maximum density. Suppression to G. graminis var. tritici is normally detected by a difference in disease rating of roots at 28 days but this study has shown that suppression can be demonstrated by the difference in the density of hyphae if roots are examined between seven and 19 days.  相似文献   

9.
This study is the first report assessing the effect of soil inoculation on the signalling interaction of Bradyrhizobium japonicum, arbuscular mycorrhizal fungi (AMF) and soybean plants throughout the early stages of colonisation that lead to the tripartite symbiosis. In a study using soil disturbance to produce contrasting indigenous AMF treatments, the flavonoids daidzein, genistein and coumestrol were identified as possible signals for regulating the establishment of the tripartite symbiosis. However, it was unclear whether soil disturbance induced changes in flavonoid root accumulation other than through changing the potential for AMF colonization. In this study, soil treatments comprising all possible combinations of AMF and B. japonicum were established to test whether (1) modifications in root flavonoid accumulation depend on the potential for AMF colonization, and (2) synthesis and accumulation of flavonoids in the roots change over time as a function of the early plant-microbial interactions that lead to the tripartite symbiosis. The study was comprised of two phases. First, maize was grown over 3-week periods to promote the development of the AM fungus Glomus clarum. Second, the interaction between soybean, G. clarum and B. japonicum was evaluated at 6, 10, 14 and 40 days after plant emergence. Root colonization by G. clarum had a positive effect on nodulation 14 days after emergence, producing, 30% more nodules which were 40% heavier than those on roots solely inoculated with B. japonicum. The tripartite symbiosis resulted in 23% more N2 being fixed than did the simpler symbiosis between soybean and B. japonicum. The presence of both symbionts changed accumulation of flavonoids in roots. Daidzein and coumestrol increased with plant growth. However, development of the tripartite symbiosis caused a decrease in coumestrol; accumulation of daidzein, the most abundant flavonoid, was reduced in the presence of AMF.  相似文献   

10.
Bacteria with possible relevance to the growth of the take-all fungus were counted from surfaces of lesioned and healthy roots of wheat growing in soil from a field monoculture system. Numbers showed short-term seasonal and long-term monocultural changes, which seemed to be genuinely associated with the monoculture. Bacteria were more numerous on lesioned than healthy roots. Only bacteria inhibitory to growth of Gaeumannomyces graminis on agar and Pseudomonas spp showed consistent changes irrespective of the source of the roots. Relationships were considered between the microflora on lesioned tissue and (a) severity of disease on roots supplying the lesions, and (b) infection produced on axenic seedlings inoculated with the lesioned tissue. Only total bacterial counts on the lesions from tillering and mature plants were positively correlated with disease on the donor roots. Only inhibitory bacteria on lesions from tillering and mature plants were positively correlated with disease on test seedlings. Pseudomonas spp showed no correlations. Interpretation of data differed with age of plant and the sequence in the monoculture from which plants or soil came.  相似文献   

11.
 A soil microcosm experiment was performed to assess the uptake of Hg from various Hg-spiked food sources (soil, leaf litter and root litter of Trifolium alexandrinum) by two earthworm species, Lumbricus terrestris (anecic) and Octolaseon cyaneum (endogeic). Treatments were applied in which one of the three food sources was Hg spiked and the other two were not. Additional treatments in which all or none of the food sources were Hg spiked were used as controls. Uptake of Hg from soil into tissues of both earthworm species was significantly higher than uptake of Hg from leaf litter or root litter, indicating that soil may be the most important pool for the uptake of Hg into earthworms. In addition, the anecic L. terrestris significantly accumulated Hg from all Hg-spiked food sources (leaf litter, root litter and soil), whereas the endogeic O. cyaneum took up Hg mainly from soil particles. Interestingly, there was no further increase in Hg in L. terrestris when all food sources were Hg spiked compared to the single Hg-spiked sources. This may be attributed to the relatively high Hg content in the soil, which may have influenced the feeding behavior of the earthworms, although their biomass did not significantly decline. We suggest that, in addition to the physiological differences, feeding behavior may also play a role in the contrasting uptake of Hg by the two earthworm species.  相似文献   

12.
The role of rhizoplane-inhabiting Pseudomonas spp as inhibitors of take-all on wheat was investigated. Apparent numbers of pseudomonads in wheat rhizoplanes and numbers that were antagonistic in vitro toward Gaeumannomyces graminis var, tritici did not differ when wheat was supplied with NH+4-N or NO?3-N. More intense antagonism was expressed by colonies selected from soil treated with NH+4-N than with NO?3-N, and from isolation media prepared at pH 5.5 rather than at 7.0. Antagonists were not recovered from methyl bromide-treated soil. Highly antagonistic pseudomonads were recovered from a wheat-monoculture soil which is considered suppressive toward the pathogen in the field, and were not recovered from a “nonsuppressive” soil. Pseudomonad antagonism ratings were inversely correlated with take-all severity in the suppressive soil, but not in the nonsuppressive soil. Pseudomonads were considered to be antagonists of G. graminis on rhizoplanes of wheat in a soil exhibiting the “take-all decline” phenomenon, but the significance of this interaction remains to be determined.  相似文献   

13.
The alterations brought about in the carbohydrate spectrum of root exudates of wheat in response to six foliar treatments, and their influence on the fungal population of the rhizosphere have been correlated. Pronounced suppression of ribose, maltose and raffinose exudation, which were liberated abundantly from root-rot infected roots, was recorded in response to foliar treatments with chloramphenicol and KCl. Chloramphenicol and to a lesser extent 2,4-D also reduced the rhizosphere population, including the test pathogen Helminthosporium saticiun. Previous and present investigations, therefore, indicate that the composition of root exudates could effectively be altered by foliar sprays, in an attempt to control the activity of Helminthosporium sativum, causing root-rot of wheat, in soil.  相似文献   

14.
The effects of an arbuscular mycorrhizal (AM) fungus (Glomus etunicatum) on atrazine dissipation, soil phosphatase and dehydrogenase activities and soil microbial community structure were investigated. A compartmented side-arm (‘cross-pot’) system was used for plant cultivation. Maize was cultivated in the main root compartment and atrazine-contaminated soil was added to the side-arms and between them 650 or 37 μm nylon mesh was inserted which allowed mycorrhizal roots or extraradical mycelium to access atrazine in soil in the side-arms. Mycorrhizal roots and extraradical mycelium increased the degradation of atrazine in soil and modified the soil enzyme activities and total soil phospholipid fatty acids (PLFAs). Atrazine declined more and there was greater stimulation of phosphatase and dehydrogenase activities and total PLFAs in soil in the extraradical mycelium compartment than in the mycorrhizal root compartment when the atrazine addition rate to soil was 5.0 mg kg−1. Mycelium had a more important influence than mycorrhizal roots on atrazine degradation. However, when the atrazine addition rate was 50.0 mg kg−1, atrazine declined more in the mycorrhizal root compartment than in the extraradical mycelium compartment, perhaps due to inhibition of bacterial activity and higher toxicity to AM mycelium by atrazine at higher concentration. Soil PLFA profiles indicated that the AM fungus exerted a pronounced effect on soil microbial community structure.  相似文献   

15.
Transverse sections of lesioned tissue taken from wheat roots grown in soil naturally infested with Gaeumannomyces graminis var, Tritici were stained with trypan blue and the area of stele occupied by hyphae or by brown host deposits was measured. The area of mycelium in lesioned pieces taken from seedling or tillering plants and used as inoculum in host infectivity tests was positively correlated with the disease produced and the area of brown deposits in lesioned pieces taken from tillering or mature plants was negatively correlated. Whole pieces of lesioned tissue were examined cytochemically for glutamic and succinic dehydrogenases in the invading hyphae. Groups of host cells in the endodermal region were filled with hyphae showing positive reactions for both dehydrogenases (active) and separated by areas of brown discoloured host tissue containing few active hyphae. Less than half the discoloured lesion was occupied by active hyphae. The area of lesion containing hyphae with dehydrogenase enzymes was positively correlated with the measure of disease severity of the roots and with the infectiveness of the lesioned tissue when inoculated on to axenic wheat seedlings. The progress of infection in axenie seedlings inoculated at 3 or 8 cm from the seed differed with the two placements, notably in the host response and the growth of active hyphae in the cortex.  相似文献   

16.
Verticillium wilt is an increasing problem in European cauliflower production. In this study, several crop residues were screened for their ability to reduce the viability of microsclerotia when incorporated into soil. In addition, the role of fungitoxic volatiles and lignin in the crop residue-mediated reduction in microsclerotia viability was studied.Broccoli (Brassica oleracea var. italica), cauliflower (B. oleracea var. botrytis), Indian mustard (Brassica juncea), ryegrass (Lolium perenne) and corn (Zea mays) were incorporated in naturally infested soil samples collected from two cauliflower fields in Belgium, labelled Is1 and S3. The effectiveness in reducing the viability of microsclerotia depended on the soil sample and on the type of residue. In the Is1 soil, broccoli, cauliflower and ryegrass incorporation significantly reduced the inoculum level by more than 90%, while Indian mustard significantly reduced numbers of viable microsclerotia by 50%. In the S3 soil, broccoli, cauliflower and Indian mustard were not effective, whereas ryegrass and corn incorporation reduced the microsclerotia level by 50% or more. In conclusion, incorporation of ryegrass and corn was more effective than incorporation of crucifer residues.In the conditions tested, fungicidal volatile compounds did not play an important role in Verticillium microsclerotia reduction in soil. Volatiles from broccoli and cauliflower did not affect microsclerotia viability in an in vitro bioassay, whereas the volatiles from Indian mustard killed the microsclerotia. Indian mustard incorporation in soil, however, only had a minor effect on microsclerotia viability.In the S3 soil, 1% (w/w) Kraft pine lignin, a waste product of the paper industry, had to be added to observe a significant reduction on the viability of microsclerotia, whereas in the Is1 soil, a significant effect was observed when 0.1% (w/w) Kraft pine lignin was added. Acid-insoluble lignin was extracted from all crop residues previously tested. Crop residues with high lignin content seemed to be more effective than crop residues with low lignin content. The reduction of Verticillium microsclerotia viability depended on lignin type and on crop structure, since lignin extracted from cauliflower leaves was more effective than lignin extracted from cauliflower stems and corn leaves were more effective than corn roots. Microsclerotia reduction was higher after fresh residue incorporation than after incorporation of their extracted acid-insoluble lignin, indicating that the effect of crop residue incorporation on microsclerotia viability cannot be explained solely by the effects of lignin.Incorporation of lignin-rich substrates in soil may open up new perspectives for integrated control of Verticillium.  相似文献   

17.
Interactions between the arbuscular mycorrhizal (AM) fungus Glomus intraradices and bacteria from the genus Paenibacillus (P. macerans and P. polymyxa) were examined in a greenhouse pot experiment with Cucumis sativus with and without organic matter amendment (wheat bran). P. polymyxa markedly suppressed AM fungus root colonization irrespective of wheat bran amendment, whereas P. macerans only suppressed AM fungus root colonization in combination with wheat bran amendment. Dual inoculation with P. macerans and G. intraradices in combination with wheat bran amendment also caused severe plant growth suppression. Inoculation with G. intraradices was associated with increased levels of dehydrogenase activity and available P in the growth substrate suggesting that mycorrhiza formation accelerated the decomposition of organic matter resulting in mobilization of phosphorus. Inoculation with both Paenibacillus species increased all measured microbial fatty acid biomarkers in the cucumber rhizosphere, except for the AM fungus biomarker 16:1ω5, which was reduced, though not significantly. Similarly, inoculation with G. intraradices increased all measured microbial fatty acid biomarkers in the cucumber rhizosphere, except for the Gram-positive bacteria biomarker 15:0 anteiso, which was overall decreased by G. intraradices inoculation. In combination with wheat bran amendment G. intraradices inoculation caused a 39% reduction in the amount of 15:0 anteiso in the treatment with P. polymyxa, suggesting that G. intraradices suppressed P. polymyxa in this treatment. In conclusion, plant growth promoting species of Paenibacillus may have suppressive effects of AM fungi and plant growth, especially in combination with organic matter amendment. The use of an inert plant growth media in the present study allowed us to study rhizosphere microbial interactions in a relative simple substrate with limited interference from other soil biota. However, the results obtained in the present work mainly show potential interactions and should not be directly extrapolated to a soil situation.  相似文献   

18.
Zinc (Zn) deficiency is more common in corn (Zea mays L.) than in sorghum [Sorghum bicolor (L.) Moench] or wheat (Triticum sp.). The ability of wheat to withstand low soil Zn conditions is related to increased release of phytosiderophore from its roots. The reasons for sorghum's ability and corn's inability to utilize low levels of soil Zn have not been explored adequately. The objectives of this research were to 1) ascertain if Zn deficiency could be induced in sorghum, wheat, and corn grown in a chelator‐buffered nutrient solution and 2) determine relative releases of phytosiderophore from roots of sorghum, wheat, and/or corn under Zn‐deficiency conditions. Sorghum, wheat, and corn were grown hydroponically in the greenhouse with a chelator‐buffered nutrient solution designed to induce Zn deficiency, while supplying adequate amounts of other nutrients. Root exudates were collected over time to measure phytosiderophore release. Shoot Zn concentrations and shoot and root dry matter yields were determined also. The technique was effective for inducing Zn deficiency in sorghum, wheat, and corn, as evidenced by reduced shoot and root dry matter yields, shortened internodes, reduced shoot Zn concentrations, and plant Zn concentrations below the suggested critical values for these species. Sorghum and wheat plants increased the release of phytosiderophore in response to Zn deficiency, but com did not. The total amount of phytosiderophore released by the roots was in the order wheat>sorghum>corn. The absence of a “phytosiderophore”; response to Zn deficiency of corn, coupled with the evidence that this species requires, or at least accumulates, more Zn than wheat or sorghum, provides an explanation as to why Zn deficiencies are more prevalent for corn than wheat or sorghum under field conditions.  相似文献   

19.
Populations of Pseudomonas solanacearum biovar 3 were monitored in a clay loam soil sampled from the root zone of infected tomato plants during 1978, 1979 and 1980. Soil numbers increased during symptom development and declined with the death of infected plants. The decline in population size in the soil was continuous where no cover crop was planted between the autumn and spring crops. This decline in population size was interrupted, however, following the planting of an oats cover crop numbers decreased with the ploughing under of the oats. Rainfall was associated with high soil numbers but soil temperature did not appear to directly affect population size. Soil populations in the root zone of susceptible tomato plants cultivar Floradel reached a maximum 1000-fold greater than in soil from the root zone of a resistant line. P. solanacearum survived in bare fallow soil for 21 months. Tomatoes planted 2 months later wilted rapidly.  相似文献   

20.
The progressive colonization of wheat seminal roots by Gaeumannomyces graminis var. tritici was monitored following inoculation by single inoculum units. G. graminis grew equally well above and below inoculation sites prior to blockage of the stele but after this growth was favoured up roots, above inoculation sites, rather than down, resulting in an asymmetrical pattern of root colonization. This asymmetrical pattern was common to superficial and cortical runner hyphae. It is suggested that cessation of host assimilate supply to the distal portion of infected roots inhibited further extensive growth of G. graminis. This hypothesis was tested by comparing extents of colonization by G. graminis on seminal roots of wheat with normal, enhanced and diminished assimilate supplies. A diminished assimilate supply to infected roots retarded the extent of pathogen colonization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号