首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fusarium wilt diseases, caused by the fungus Fusarium oxysporum, lead to significant yield losses of crops. One strategy to control fusarium wilt is the use of antagonistic, root-colonizing Pseudomonas spp. It has been demonstrated that different strains of these bacteria suppress disease by different mechanisms. Therefore, application of a mixture of these biocontrol strains, and thus of several suppressive mechanisms, may represent a viable control strategy. A prerequisite for biocontrol by combinations of biocontrol agents can be the compatibility of the co-inoculated micro-organisms. Hence, compatibility between several Pseudomonas spp. strains, that have the ability to suppress fusarium wilt of radish, was tested in vitro on KB agar plates. Growth of P. fluorescens strain RS111 was strongly inhibited by Pseudomonas spp. strains RE8, RS13, RS56 and RS158, whereas a mutant of strain RS111 (RS111-a) was insensitive to inhibition by these strains. Strains RS111 and RS111-a only slightly inhibited some other strains. Suppression of fusarium wilt of radish in a potting soil bioassay by the incompatible combination of RE8 and RS111 was comparable to the effects of the single strains. However, disease suppression by the compatible combination of RE8 and RS111-a was significantly better as compared to the single strains. In contrast, the incompatible combination of RS56 with RS111 resulted in enhanced disease suppression as compared to the single strains. Increased disease suppression by combinations of RS13 or RS158 with RS111 or RS111-a was not observed. This indicates that specific interactions between biocontrol strains influence disease suppression by combinations of these strains.  相似文献   

2.
In an earlier study, treatment of radish seed with the bacteriumPseudomonas fluorescens WCS374 suppressed fusarium wilt of radish (Fusarium oxysporum f. sp.raphani) in a commercial greenhouse [Leemanet al., 1991b, 1995a]. In this greenhouse, the areas with fusarium wilt were localized or expanded very slowly, possibly due to disease suppressiveness of the soil. To study this phenomenon, fungi were isolated from radish roots collected from the greenhouse soil. Roots grown from seed treated with WCS374 were more abundantly colonized by fungi than were roots from nonbacterized plants. Among these were several species known for their antagonistic potential. Three of these fungi,Acremonium rutilum, Fusarium oxysporum andVerticillium lecanii, were evaluated further and found to suppress fusarium wilt of radish in a pot bioassay. In an induced resistance bioassay on rockwool,F. oxysporum andV. lecanii suppressed the disease by the apparent induction of systemic disease resistance. In pot bioassays with thePseudomonas spp. strains, the pseudobactin-minus mutant 358PSB did not suppress fusarium wilt, whereas its wild type strain (WCS358) suppressed disease presumably by siderophore-mediated competition for iron. The wild type strains of WCS374 and WCS417, as well as their pseudobactin-minus mutants 374PSB and 417PSB suppressed fusarium wilt. The latter is best explained by the fact that these strains are able to induce systemic resistance in radish, which operates as an additional mode of action. Co-inoculation in pot bioassays, ofA. rutilum, F. oxysporum orV. lecanii with thePseudomonas spp. WCS358, WCS374 or WCS417, or their pseudobactin-minus mutants, significantly suppressed disease (except forA. rutilum/417PSB and all combinations with 358PSB), compared with the control treatment, if the microorganisms were applied in inoculum densities which were ineffective in suppressing disease as separate inocula. If one or both of the microorganism(s) of each combination were applied as separate inocula in a density which suppressed disease, no additional suppression of disease was observed by the combination. The advantage of the co-inoculation is that combined populations significantly suppressed disease even when their individual population density was too low to do so. This may provide more consistent biological control. The co-inoculation effect obtained in the pot bioassays suggests that co-operation ofP. fluorescens WCS374 and indigenous antagonists could have been involved in the suppression of fusarium wilt of radish in the commercial greenhouse trials.Abbreviations CFU colony forming units - KB King's B - PGPR plant growth-promoting rhizobacteria - CQ colonization quotient  相似文献   

3.
The mechanisms of suppression of fusarium wilt of carnation by two fluorescentPseudomonas strains were studied.Treatments of carnation roots withPseudomonas sp. WCS417r significantly reduced fusarium wilt caused byFusarium oxysporum f. sp.dianthi (Fod). Mutants of WCS417r defective in siderophore biosynthesis (sid) were less effective in disease suppression compared with their wild-type. Treatments of carnation roots withPseudomonas putida WCS358r tended to reduce fusarium wilt, whereas a sid mutant of WCS358 did not.Inhibition of conidial germination of Fod in vitro by purified siderophores (pseudobactins) of bothPseudomonas strains was based on competition for iron. The ferrated pseudobactins inhibited germination significantly less than the unferrated pseudobactins. Inhibition of mycelial growth of Fod by bothPseudomonas strains on agar plates was also based on competition for iron: with increasing iron content of the medium, inhibition of Fod by thePseudomonas strains decreased. The sid mutant of WCS358 did not inhibit Fod on agar plates, whereas the sid mutants of WCS417r still did. This suggests that inhibition of Fod by WCS358r in vitro was only based on siderophore-mediated competition for iron, whereas also a non-siderophore antifungal factor was involved in the inhibition of Fod by strain WCS417r.The ability of thePseudomonas strains to induce resistance against Fod in carnation grown in soil was studied by spatially separating the bacteria (on the roots) and the pathogen (in the stem). Both WCS417r and its sid mutant reduced disease incidence significantly in the moderately resistant carnation cultivar Pallas, WCS358r did not.It is concluded that the effective and consistent suppression of fusarium wilt of carnation by strain WCS417r involves multiple mechanisms: induced resistance, siderophore-mediated competition for iron and possibly antibiosis. The less effective suppression of fusarium wilt by WCS358r only depends on siderophore-mediated competition for iron.  相似文献   

4.
5.
Fluorescent pseudomonads and nonpathogenic Fusarium oxysporum have been shown to suppress fusarium wilts. This suppression has been related to both microbial antagonism and induced resistance.The aim of the present study was to assess the relative importance of systemic induced resistance in the suppression of fusarium wilt of tomato in commercial-like conditions by a reference strain of each type of microorganism (P. fluorescens WCS417r and nonpathogenic F. oxysporum Fo47). The spatial separation of the pathogen and the biocontrol strains excluded any possible microbial antagonism and implicated the involvement of the systemic induced resistance; whereas the absence of any separation between these microorganisms allowed the expression of both mechanisms. Since systemic induced resistance has often been associated with the synthesis of PR-proteins, their accumulation in tomato plants inoculated with WCS417r or with Fo47 was determined.The analysis of the results indicates that the suppression of fusarium wilt by P. fluorescens WCS417r was ascribed to systemic induced resistance without any detection of the PR-proteins tested (PR-1 and chitinases). In contrast, the suppression achieved by nonpathogenic F. oxysporum Fo47 appeared to be mainly ascribed to microbial antagonism but also to a lesser extent to systemic induced resistance. This induced resistance could be related to the accumulation of PR-1 and chitinases.The possible relationship between the ability of Fo47 to suppress fusarium wilt more efficiently than WCS417r and its ability to show both mechanisms is discussed.  相似文献   

6.
荧光假单胞杆菌的嗜铁素是控制桉树灰霉病的主要因子   总被引:5,自引:0,他引:5  
 本文对3个假单胞杆菌菌株(Pseudomonas spp.)及其嗜铁素(pseudobactin siderophore)缺失突变体防治桉树灰霉病进行了研究.平板拮抗活性测定表明,荧光假单胞杆菌(P.fluorescens) WCS374r菌株和恶臭假单胞杆菌(P.putida) WCS358r菌株通过对铁离子的竞争抑制灰霉菌的生长.在接种灰霉病菌之前10 h将WCS358r、WCS374r和WCS417r施用于受伤的桉树叶片后,可分别降低发病率48.9%、58.3%和40.3%;当将3种生防菌分别与灰霉病菌混合后接种桉树叶片,WCS358r和WCS374r仍然能够显著地降低发病率;在接种灰霉病菌12 h后再施用生防菌,WCS358r和WCS374r对病菌仍具有一定的抑制作用,而在24 h后施用生防菌,3个菌株均未表现显著的防治效果.WCS358r和WCS417r的嗜铁素缺失突变体无防病作用,而WCS374r的嗜铁素缺失突变体虽然还能有效地防治灰霉病,但与WCS374r相比,防病效果减弱.本试验结果说明假单胞杆菌的嗜铁素是控制桉树灰霉病的重要因子.  相似文献   

7.
Pseudomonas fluorescens-mediated induction of systemic resistance in radish against fusarium wilt (Fusarium oxysporum f. sp.raphani) was studied in a newly developed bioassay using a rockwool system. In this bioassay the pathogen and bacterium were confirmed to be confined to spatially separate locations on the plant root, throughout the experiment. Pathogen inoculum obtained by mixing peat with microconidia and subsequent incubation for four days at 22 °C, yielded a better percentage of diseased plants than a microconidial suspension drench, an injection of a microconidial suspension into the hypocotyl, or a talcum inoculum.Pseudomonas fluorescens strain WCS374 applied in talcum or peat, but not as a suspension drench, induced systemic resistance. A minimal initial bacterial inoculum density of 105 CFU WCS374 root–1 was required to significantly reduce the percentage diseased plants. At least one day was necessary between bacterization of strain WCS374 in talcum on the root tips and inoculation of the pathogen in peat on the root base, for an optimal induction of systemic resistance. Strain WCS374 induced systemic resistance in six radish cultivars differing in their susceptibility toF. oxysporum f. sp.raphani. Significant suppression of disease by bacterial treatments was generally observed when disease incidence in the control treatment, depending on pathogen inoculum density, ranged between approximately 40 to 80%. Strains WCS374 and WCS417 ofPseudomonas fluorescens induced systemic resistance against fusarium wilt, whereasP. putida WCS358 did not. This suggests that the induction of systemic resistance byPseudomonas spp. is dependent on strain-specific traits.Abbreviations CFU colony forming units - IFC immunofluorescence colony-staining - ISR induced systemic resistance - PBS phosphate buffered saline - SAR systemic acquired resistance  相似文献   

8.
The aim of this study was to evaluate the ability of nonpathogenic F. oxysporum and Trichoderma isolates from suppressive soils in South Africa to suppress fusarium wilt of banana in the glasshouse. Several biological control agents and commercial biological control products were included in the study. The isolates were first screened in vitro on potato dextrose agar. In glasshouse evaluations, the fungal and bacterial isolates were established on banana roots before they were replanted in pathogen-infested soil, while the commercial biocontrol agents were applied as directed by the supplier. Banana plantlets were evaluated for disease development after 7 weeks. In vitro tests showed none of the nonpathogenic isolates suppressed Fusarium oxysporum f.sp. cubense ( Foc ), while slight suppression was observed with the two Trichoderma isolates. Results of the glasshouse evaluations revealed that two of the nonpathogenic F. oxysporum isolates, CAV 255 and CAV 241, reduced fusarium wilt incidence by 87·4 and 75·0%, respectively. The known biological control agent Fo47 did not suppress Foc significantly. Pseudomonas fluorescens strain WCS 417, known for its ability to suppress other fusarium wilt diseases (WCS 417), reduced disease incidence by 87·4%. These isolates should be further evaluated for potential application in the field, independently and in combination.  相似文献   

9.
拮抗细菌菌株之间的互作关系及其对生物防治效果的影响   总被引:3,自引:0,他引:3  
 木文研究了拮抗细菌菌株之间亲和性和生物防治效果之间的关系。试验结果表明:在2个拮抗细菌之间存在多种互作关系。当混合的2个菌株之间互作关系是亲和的,其生防效果有所提高,如亲和性菌株组合B3-3+J-210的防效为47.1%,明显好于单菌株B3-3(35.3%)和J-210(38.7%)的防效。当混合的2个菌株之间互作关系是不亲和的,有的菌株组合生防效果下降,如不亲和性菌株组合C8-8+J-210的防效为23.5%,明显低于单菌株C8-8(52.8%)和J-210(38.7%)的防效;有的菌株组合生防效果提高,如不亲和性菌株组合Cl-2-10+J-210的防效为50.0%,明显好于单菌株Cl-2-10(29.4%)和J-210(38.7%)的防效。因此,在生物防治的实际应用中,首先要了解单个菌株的拮抗活性和优良性能,然后将不同作用机制的拮抗菌株进行混合,并测定菌株之间的互作关系,筛选能产生协同、增效作用的菌株组合,从而保证研制开发的生防菌组合菌剂具有较好的防治效果和生态适应性。  相似文献   

10.
The ability of selected strains of fluorescent Pseudomonas spp. to cause induced systemic resistance (ISR) in Eucalyptus urophylla against bacterial wilt caused by Ralstonia solanacearum was investigated. Four of the five strains used can produce salicylic acid (SA) in vitro and, therefore, chemical SA, that is known to induce resistance in many plant species, was used as a reference treatment. Whereas a soil drench with SA did induce systemic resistance in E. urophylla, infiltration of SA into leaves did not. None of the fluorescent Pseudomonas spp. strains caused ISR against bacterial wilt when applied to the soil, but two strains, P. putida WCS358r and P. fluorescens WCS374r triggered ISR when infiltrated into two lower leaves 3–7 days before challenge inoculation. A mutant of strain WCS358r defective in the biosynthesis of the fluorescent siderophore pseudobactin, did not cause ISR, while the purified siderophore of WCS358r did, suggesting that pseudobactin358 is the ISR determinant of WCS358. A siderophore-minus mutant of WCS374r induced the same level of disease resistance as its parental strain, but the purified siderophore induced resistance as well, indicating that both the siderophore and another, unknown, inducing determinant(s) of WCS374r can trigger ISR in Eucalyptus. A possible role of WCS374r-produced SA remains uncertain. Transformation of a siderophore-minus mutant of WCS358 with the SA biosynthetic gene cluster from WCS374 did not enable this transformant to cause ISR in E. urophylla.  相似文献   

11.
徐同 Peer  R 《植物病理学报》1989,19(3):179-184
 本文报道萤光假单胞菌(fluorescent Pseudomas spp.) WCSX 13.WCS 417andWCS 358在水培系统中香石竹根部的定殖及其对香石竹镰刀菌枯萎病的抑制作用。细菌处理两周后,WCS 417在感病品种Lena和中抗品种Pallas根部的定殖分别为8.8×102cfu/cm和9.8×102cfu/cm,而WCS 358分别为0.9×102cfu/cm和0.13×102cfu/cm。在通气的三角瓶中水培的Pallas品种,人工接种病原菌香竹石尖镰孢Fusarium oxyspotum f.sp.dianthi (Prill.&Del.) Snyd.&Hans.(Fod)6周后,用WCSX·13和WCS 417根部处理的病指分别为0.19和0.31,未细菌处理的对照为0.58,细菌处理植株的根部及茎内组织的病原菌种群密度低于对照。营养膜技术(NFT)栽培的Lena品种,WCS 417细菌处理的发病率比对照减少13%。  相似文献   

12.
从山东、内蒙古、北京等地土壤中分离筛选出荧光菌 50 0 0余株 ,其中 1 2 0 0余株为抑制性荧光菌。经PCR检测 ,获得 73株 2 ,4 二乙酰基藤黄酚 (2 ,4 DAPG)产生菌。平板筛选结果表明 ,2 ,4 DAPG产生菌CPF 1 0和 2P8对沙打旺根腐病菌Sad1和Sad2均有较好的抑制效果 ,其中CPF 1 0的抑菌带宽分别为 5.0和 1 2 .0mm ;2P8抑菌带宽分别为 3 .5和 7.0mm。温室试验两次调查表明 ,CPF 1 0对沙打旺根腐病防治效果最好 ,达 63 .5%和 67.8% ;2P8防效也在 40 %左右 ,且均达到极显著水平。 2 ,4 DAPG产生菌可以显著促进沙打旺植株根系发育 ,CPF 1 0处理后地上部株高差异不显著 ,但鲜重和干重与对照相比有极显著的增加 ,说明两菌株菌剂处理可以促进植株生长。根部定殖结果表明 ,两菌株在沙打旺根部都有一定的定殖能力 ,在根表种群数量比较稳定 ,根内细菌数量在调查时间内呈逐渐上升的趋势  相似文献   

13.
Seed and soil treatment with Pseudomonas fluorescens RGAF 19, P. fluorescens RG 26, Bacillus megaterium RGAF 51 and Paenibacillus macerans RGAF 101 can suppress fusarium wilt of chickpea ( Cicer arietinum ), but the extent of disease suppression by these rhizobacteria is modulated by soil temperature. In this work, the effect of temperature on plant–rhizobacteria interactions was assessed in relation to biocontrol potential for suppression of fusarium wilt of chickpea. Seed and soil treatment with those rhizobacteria delayed seedling emergence compared with nontreated controls, and either increased or had no deleterious effect on chickpea growth. Pseudomonas fluorescens isolates significantly increased chickpea shoot dry weight at 20°C and root dry weight at 25 and 30°C. All bacterial isolates colonized the chickpea rhizosphere and internal stem tissues at 20, 25 and 30°C, and there was a positive linear trend between bacterial population size in the rhizosphere and temperature increase. The maximum inhibition of mycelial growth and conidial germination of Fusarium oxysporum f. sp. ciceris race 5 in vitro occurred at a temperature range optimal for bacterial growth and production of inhibitory metabolites. These results demonstrate the need to understand the effects of environmental factors on the biological activities of introduced rhizobacteria of significant importance for plant disease suppression.  相似文献   

14.
采用前期筛选出的对黄瓜枯萎病菌有较好拮抗作用的3株木霉菌,即哈茨木霉菌(Trichoderma harzianum)809、拟康氏木霉菌(Trichoderma pseudokoningii)886和棘孢木霉菌(Trichoderma asperellum)525,利用盆栽试验,测定了木霉菌分生孢子和厚垣孢子对黄瓜幼苗抗氧化能力及对枯萎病防效的影响。结果显示:3株木霉菌分生孢子和厚垣孢子对黄瓜枯萎病的盆栽防效均在66.81%以上,且以拟康氏木霉菌886厚垣孢子防效最高,达到81.46%;当黄瓜幼苗长至三叶一心时,与CK(即只接种病原菌)相比,经哈茨木霉菌809、拟康氏木霉菌886、棘孢木霉菌525分生孢子以及厚垣孢子处理后,黄瓜幼苗叶片相对电导率和丙二醛(MDA)含量均呈下降趋势,而保护性酶包括过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)、超氧化物歧化酶(SOD)活性则呈上升趋势,其中以拟康氏木霉菌886厚垣孢子的变化幅度最显著;拟康氏木霉菌886厚垣孢子处理的黄瓜幼苗叶片相对电导率、MDA含量分别比CK下降了47.74%、41.40%;而叶片中的POD、CAT、APX、SOD活性则分别比CK增加了318.11%、155.36%、157.09%和300.34%。研究表明3株木霉菌分生孢子和厚垣孢子均能通过改善黄瓜幼苗叶片抗氧化能力,增加保护酶活性,提高了对黄瓜枯萎病的防治效果。  相似文献   

15.
 研究了化学杀菌剂对木霉菌生长的影响,探讨了几丁质添加物对绿色木霉菌菌株L R、LTR-2、哈茨木霉菌菌株Q1、Q2和粉红粘帚霉菌菌株GLR防治棉花病害效果的影响。多菌灵、苯菌灵和甲基硫菌灵在1.66μg/ml时可以完全抑制Q1和Q2的生长,但在2.68μg/ml时才能完全抑制LR和LTR-2的生长。几丁质添加物使L TR-2和Q1防治棉花立枯病的效果完全丧失,但是能使LR从没有防治效果提高到防治效果为34.6%,而对粉红粘帚霉菌的防治效果没有显著影响;对于防治棉花黄萎病来说,几丁质添加物使木霉菌LR、LTR-2和GLR的防治效果降低,但是提高了Q1的防治效果;对于防治棉花枯萎病来说,几丁质添加物能提高所有测定菌株的防治效果。说明不同的生物防治菌株、添加物和病害组合对于获得良好的防治效果是重要的。  相似文献   

16.
新疆棉花枯萎病菌优势生理小种及其致病型研究   总被引:5,自引:0,他引:5  
 1996~1998年,我们陆续从新疆各主要棉区采集和收集400余株病株样,共分离获得108株棉花枯萎病菌,对其中具有代表性菌株致病性和生理性状研究结果表明,新疆棉花枯萎病菌优势小种仍为7号生理小种,但其致病性较强,新疆棉花枯萎病菌致病型主要分为强、弱2种致病型,强致病型主要分布于南北疆棉区,弱致病型主要分布于东疆棉区。供试棉花枯萎病菌菌系在25℃培养7 d后,菌丝为白色,菌落皿底产生色素多为紫色或浅紫色,大分生孢子为10.4~44.2 μm×2.0~6.1μm,多为马特型,最适生长温度为25℃,除供试6个菌系能在35℃缓慢生长外,多数棉花枯萎病菌菌系30℃以上不易生长,吐鲁番菌系HAI-17在40℃仍能缓慢生长,新疆棉花枯萎病菌较耐高温,在40、45℃高温下并未致死。目前,尚未发现3号生理小种。  相似文献   

17.
连作导致枯萎病等土传病害发生日益严重,已成为我国黄瓜生产的重要限制因素。采用化学防治和农业措施防治土传根部病害,操作都较为困难,迫切需要开发环境友好的生物防治技术。本研究从森林土壤分离鉴定一株短密木霉菌株BF06,通过对峙培养发现该菌株可以附着和缠绕病原菌的菌丝,对引起黄瓜枯萎病、茎基腐病、菌核病、根腐病和疫病的病原菌Fusarium oxysporum f. sp. cucumerinum,Rhizoctonia solani,Sclerotinia sclerotiorum,F. solani f. sp. cucurbitae,and Phytophthora cryptogea具有较强的拮抗作用。温室盆栽试验发现短密木霉菌株BF06可以迅速附着定殖于黄瓜根部表面,对上述5种黄瓜根部病害的防效达60%以上,对黄瓜枯萎病和茎基腐病的防效分别为90.4和88.8%。此外,利用植物组织培养基培养观察发现BF06显著地促进幼苗黄瓜侧根的形成和生长。本研究的结果表明短密木霉菌株BF06是一种可以有效防治黄瓜根部病害的新生防资源。  相似文献   

18.
姜瘟病是一种细菌土传毁灭性病害,目前尚无特别有效的防治药剂.丛枝菌根(Arbuscular mycorrhizal,AM)真菌在作物促生及防治病害方面极具潜力,为充分发掘姜瘟病的生防菌资源,本研究采用盆栽试验方法评价4株AM真菌对生姜的促生作用和对姜瘟病的防治效果,利用形态学和分子生物学相结合的方法对优良菌株进行分类鉴...  相似文献   

19.
Pseudomonas fluorescens F113 and Stenotrophomonas maltophilia W81 protect sugar beet from Pythium -mediated damping-off through production of the antifungal secondary metabolite 2,4-diacetylphloroglucinol and extracellular proteolytic activity, respectively. In this study, the two biocontrol strains were combined in a consortium, with the objective of improving upon the level of protection achieved when using each strain singly. Growth and in vitro production of 2,4-diacetylphloroglucinol by F113 and extracellular lytic enzymes by W81 were not affected when inoculated in combination. The abilities of W81 and F113 to colonize the rhizosphere of sugar beet were essentially similar when the two strains were applied singly or coinoculated onto seeds in a 1 : 1 ratio, both in natural soil microcosms and under field conditions. Concomitantly, single inoculation with W81 or F113 effectively prevented colonization of sugar beet seeds by Pythium spp. in soil microcosms, without the necessity for combining both strains. However, this parity was not reflected in seed emergence where the combination of W81 and F113 significantly enhanced final sugar beet stands (to the level achieved with chemical pesticides) under microcosm conditions at 28 days after sowing. In a field experiment, the only inoculation treatment capable of conferring effective protection of sugar beet was that in which W81 and F113 were coinoculated, and this treatment proved equivalent to the use of chemical fungicides. In conclusion, when compared with single inoculations of either biocontrol strain, the combined use of a phloroglucinol-producing P. fluorescens and a proteolytic S. maltophilia improved protection of sugar beet against Pythium -mediated damping-off.  相似文献   

20.
Ran LX  van Loon LC  Bakker PA 《Phytopathology》2005,95(11):1349-1355
ABSTRACT The role of bacterially produced salicylic acid (SA) in the induction of systemic resistance in plants by rhizobacteria is far from clear. The strong SA producer Pseudomonas fluorescens WCS374r induces resistance in radish but not in Arabidopsis thaliana, whereas application of SA leads to induction of resistance in both plant species. In this study, we compared P. fluorescens WCS374r with three other SA-producing fluorescent Pseudomonas strains, P. fluorescens WCS417r and CHA0r, and P. aeruginosa 7NSK2 for their abilities to produce SA under different growth conditions and to induce systemic resistance in A. thaliana against bacterial speck, caused by P. syringae pv. tomato. All strains produced SA in vitro, varying from 5 fg cell(-1) for WCS417r to >25 fg cell(-1) for WCS374r. Addition of 200 muM FeCl(3) to standard succinate medium abolished SA production in all strains. Whereas the incubation temperature did not affect SA production by WCS417r and 7NSK2, strains WCS374r and CHA0r produced more SA when grown at 33 instead of 28 degrees C. WCS417r, CHA0r, and 7NSK2 induced systemic resistance apparently associated with their ability to produce SA, but WCS374r did not. Conversely, a mutant of 7NSK2 unable to produce SA still triggered induced systemic resistance (ISR). The possible involvement of SA in the induction of resistance was evaluated using SA-nonaccumulating transgenic NahG plants. Strains WCS417r, CHA0r, and 7NSK2 induced resistance in NahG Arabidopsis. Also, WCS374r, when grown at 33 or 36 degrees C, triggered ISR in these plants, but not in ethylene-insensitive ein2 or in non-plant pathogenesis- related protein-expressing npr1 mutant plants, irrespective of the growth temperature of the bacteria. These results demonstrate that, whereas WCS374r can be manipulated to trigger ISR in Arabidopsis, SA is not the primary determinant for the induction of systemic resistance against bacterial speck disease by this bacterium. Also, for the other SAproducing strains used in this study, bacterial determinants other than SA must be responsible for inducing resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号