首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以麦麸、玉米粉、稻壳、秸秆、甘蔗渣等固体基质为原料,采用单因素和正交试验,对棘孢木霉DQ-1分生孢子固体发酵基质和发酵条件进行了筛选和优化;并通过盆栽试验研究了其发酵产物对黄瓜、辣椒、番茄和西瓜幼苗生长的影响.结果 表明:以单一麦麸为发酵基质时,棘孢木霉DQ--1产孢量最大,发酵5d产孢量为1.51×109 CFU/g...  相似文献   

2.
ABSTRACT Conidial suspensions of Colletotrichum acutatum were prepared in 1:27, 1:45, and 1:81 (wt/vol) dilutions of an extract of strawberry (cv. Tristar) flowers or leaves in water. Strawberry leaves and plastic coverslips were sprayed with the conidial suspensions, incubated at 25 degrees C and continuous wetness for 48 h, and the number of conidia and appressoria were counted. In another experiment, leaves and coverslips were sprayed with a conidial suspension in water, incubated for 72 h to establish C. acutatum populations, and placed in a growth chamber under dry conditions for up to 6 weeks. At each sampling time, leaves and coverslips were sprayed with flower extracts, leaf extracts, or water, incubated for 48 h at 25 degrees C and continuous wetness, and the number of conidia and appressoria were counted. Flower extracts significantly (P 相似文献   

3.
禾长蠕孢菌稗草专化型(Helminthosporium gramineum Rabenh. f. sp. echinochloae,HGE)是一株稗草生防潜力菌,为了获得该生防菌大量孢子用于田间试验,本文研究了其固体发酵产孢最佳培养基配方及其培养条件。通过试验筛选确定了固体发酵培养基所需碳源及其浓度、氮源及其浓度以及底物基质,适合HGE菌孢子生产的培养基最佳组合为:以珍珠岩为底物基质,在其中添加4%米粉、1%豆粕粉、0.2%Na3PO4.12H2O、0.1%MgSO4.7H2O。同时确定了适合HGE菌孢子生产的培养条件:培养基最适含水量为40%,最佳接菌量为8%菌悬液,25℃静置培养11 d,培养期间用黑光灯12 h循环光照。按优化后培养条件放大培养HGE菌,获得最高产孢量可以达到1.5×107孢子·克-1干物质。温室生测结果显示优化条件生产的HGE菌孢子对稗草防效可达80%以上。  相似文献   

4.
前期研究中分离获得深绿木霉Trichoderma atroviride菌株TA-9,其在田间试验中具有较好生物防治效果.本研究通过Plackett-Burman试验设计及Box-Behnken设计-响应曲面法(response surface methodology,RSM)对影响深绿木霉TA-9菌株发酵的培养基和培养...  相似文献   

5.
Controlled-environment studies of conidial production by Phaeoisariopsis personata on groundnut are described. With constant relative humidity (RH), conidia were only produced above a threshold (94·5% RH) and there was a linear increase between 94·5% RH and 100% RH. Conidial production was less with continuous leaf wetness (resembling heavy dew) than with continuous 98–99% RH, but it was similar with intermittent leaf wetness and intermittent 98–99% RH (8 h at 70% RH each day). With alternate high (≥97% RH) and low humidity, daily conidial production depended both on the duration of high RH and on the low RH value. With 99% RH at night (12 h), night-time conidial production decreased with the previous daytime RH. After conidial production had started, small numbers of conidia were produced even when the RH was well below the threshold (94·5%). Conidia were produced in continuous light when the photon flux density was 2 μmol/m2/s, but production was completely inhibited with 60 μmol/m2/s. With constant RH, more conidia were produced with a 12 h photoperiod than in continuous darkness. However, more than 75% of the conidia were produced in the dark. With continuous darkness, more conidia were produced during the night (18.00–06.00 h) than during the day, but this biological rhythm was overcome with a (light-night)/(dark-day) regime. With constant 98–99% RH there was a linear increase in conidial production with temperature between 10 and 28°C, and virtually no conidia were produced at 33°C. The daily production of conidia increased with time for 2 to 6 days, depending on the treatment.  相似文献   

6.
ABSTRACT Alternaria brown spot, caused by Alternaria alternata pv. citri, affects many tangerines and their hybrids, causing loss of immature leaves and fruit and reducing the marketability of the remaining fruit. Conidial production of A. alternata was greatest on mature leaves moistened and maintained at near 100% relative humidity (RH) for 24 h, whereas leaves that had been soaked or maintained at moderate RH produced few conidia. Conidial release from filter paper cultures and infected leaves was studied in a computer-controlled environmental chamber. Release of large numbers of conidia was triggered from both substrates by sudden drops in RH or by simulated rainfall events. Vibration induced release of low numbers of conidia, but red/infrared irradiation had no effect. In field studies from 1994 to 1996, air sampling with a 7-day recording volumetric spore trap indicated that conidia were present throughout the year with periodic large peaks. The number of conidia captured was not closely related to rainfall amounts or average wind speed, but was weakly related to the duration of leaf wetness. Likewise, disease severity on trap plants placed in the field weekly during 1995 to 1996 was not closely related to conidial numbers or rainfall amounts, but was weakly related to leaf wetness duration. Sufficient inoculum appears to be available to allow infection to occur throughout the year whenever susceptible host tissue and moisture are available.  相似文献   

7.
ABSTRACT Growth characteristics of the fungus Trichoderma stromaticum, a mycoparasite on the mycelium and fruiting bodies of Crinipellis perniciosa, the causal agent of witches'-broom disease of cacao, were evaluated under controlled environmental conditions. The ability of T. stromaticum to produce conidia and germinate on dry brooms was evaluated at three constant temperatures (20, 25, and 30 degrees C) and two constant relative humidities (75 and 100%). T. stromaticum produced abundant conidia on brooms at 100% relative humidity and incubation temperatures of 20 and 25 degrees C, but none at 30 degrees C. Sporulation of T. stromaticum was not observed at 75% relative humidity at any temperature. At 100% relative humidity and either at 20 or 25 degrees C, treatment of brooms with T. stromaticum suppressed C. perniciosa within 7 days. In contrast, at 30 degrees C, treatment with T. stromaticum had no effect on the pathogen in brooms maintained at either 75 or 100% relative humidity. Mycelium of C. perniciosa grew from brooms at all temperatures at 100% relative humidity. Conidial germination on broom tissue approximated 80% at temperatures from 20 to 30 degrees C. Results suggest that applying T. stromaticum under high-moisture conditions when the air temperature is below 30 degrees C may enhance the establishment of this mycoparasite in cacao plantations.  相似文献   

8.
Liu Q  Xiao CL 《Phytopathology》2005,95(5):572-580
ABSTRACT Potebniamyces pyri is the causal agent of Phacidiopycnis rot, a postharvest disease of pears. Infection of fruit occurs in the orchard, and symptoms develop during storage. Conidial germination of P. pyri in response to nutrient, temperature, wetness duration, relative humidity (RH), and pH was determined in vitro. Conidia germinated by either budding or developing germ tubes in various concentrations of pear juice solutions. The mode of conidial germination was nutrient-dependent. Low nutrient levels favored budding, whereas high nutrient levels favored germ tube development. Conidia germinated at 0 to 30 degrees C but not at 35 degrees C, with optimum temperature between 20 and 25 degrees C. Wetness durations of 4 to 5 h and 6 to 8 h at optimum temperature were required for budding and developing germ tubes, respectively, and 20 to 24 h of wetness was required to reach germination peaks. Regardless of temperature, conidia germinated primarily by budding in 10% pear juice. Secondary conidia, produced by budding of conidia, initially increased their dimensions and later germinated at 0 to 25 degrees C in the same manner as mother conidia. No germination of secondary conidia occurred at 30 degrees C. Germ tubes from conidia elongated at 0 to 25 degrees C but not at 30 degrees C. No germination occurred at 相似文献   

9.
A rapid, simple and reliable procedure was developed to evaluate biological control of Fusarium wilt of tomato by Penicillium oxalicum . The method consists in growing tomato plants in flasks with nutrient solution in a growth chamber. Plants were previously treated in the seedbed with a conidial suspension (107 conidia mL−1) of P. oxalicum 7 days before transplanting. Fusarium oxysporum f.sp. lycopersici (race 2) was added to the Hoagland solution just before transplanting. Different concentrations and several isolates of F. oxysporum f.sp. lycopersici were tested. Using this method, plants showed typical symptoms of the disease and the effect of the biocontrol agent was clear. Consumption of nutrient solution was reduced in diseased plants, and this reduction was diminished by treatment with P.oxalicum . Consumption of nutrient solution was correlated with other disease-related parameters (AUDPC, weight of aerial parts, stunting) and was an easy and objective parameter to measure.  相似文献   

10.
A study was conducted to determine the feasibility of using sclerotia ofSclerotinia sclerotiorum for producing conidia ofConiothyrium minitans in liquid culture. The medium (SST) was made of water containing 2.0, 1.5, 1.0 or 0.5% (w/v) ground sclerotia ofS. sclerotiorum and 100 μgl −1 thiamine hydrochloride (HCl). One ml of conidial suspension (2 × 107 conidia ml−1) ofC. minitans LRC 2534 was inoculated into 100 ml of SST medium or control (thiamine HCl in water) and incubated at 20 ± 2°C on a shaker at 200 rpm. Subsamples were removed periodically and examined under a compound microscope. Conidia in the SST media germinated within 24 h, developed into branched hyphae within 48 h, produced pycnidia after 3–4 days, and the pycnidia released mature conidia after 7 days. Production of conidia varied with the concentration of sclerotia in the SST medium. It was lower (3.6 × 106 conidia ml−1) at 0.5% but higher (1.2 × 108 conidia ml−1) at 2%. The new conidia were viable and the colonies developing from them showed the original morphological characteristics. It was concluded that using SST liquid medium as a substrate for mass production of conidia ofC. minitans has potential for use in commercial development of this mycoparasite as a biocontrol product. http:www.phytoparasitica.org posting Jan. 23, 2007.  相似文献   

11.
淡紫拟青霉Paecilomyces lilacinus在线虫生物防治上表现出巨大的潜力,但大规模生产技术的不成熟以及产品货架期短限制其工业化生产。为获得淡紫拟青霉M-1固体发酵的最佳条件,并建立其规模化生产工艺,本研究采用单因素和正交试验对淡紫拟青霉M-1固体发酵培养的组成、发酵条件以及烘干条件进行了优化,结果表明淡紫拟青霉M-1固体发酵最佳的培养基组成为麸皮:玉米粉为1:1、蔗糖添加量5%、尿素添加量0.1%、硫酸铵添加量0.1%、料水比1:0.67,固体发酵最佳的培养条件为培养温度28℃、培养时间为7 d、液体接种量为5%、固体接种量为0.5%,固体菌剂最适烘干条件为在35℃烘干24 h,在此条件下淡紫拟青霉M-1固体菌剂的有效活菌数为9.47×109 CFU/g。在此基础上,基于自动化种曲机,建立淡紫拟青霉M-1规模化固体发酵工艺,并通过3个批次规模化生产进行验证,获得将近2 t淡紫拟青霉M-1固体菌剂产品,菌剂有效活菌数能达到15.6×109 CFU/g,杂菌率极低(<0.01%),水分含量为9.68%。由此说明,该工艺可用于淡紫拟青霉M-1工业化生产,且产品质量优异。  相似文献   

12.
ABSTRACT Strawberry leaves (cv. Tristar) inoculated with Colletotrichum acuta-tum conidia were incubated at 10, 15, 20, 25, 30, and 35 degrees C under continuous wetness, and at 25 degrees C under six intermittent wetness regimes. The number of conidia and appressoria was quantified on excised leaf disks. In order to assess pathogen survival, inoculated leaves were frozen and incubated to induce acervular development. Germination, secondary3 conidiation, and appressorial development were significantly (P /= 0.95) related to appressorial populations prior to this treatment and was greatest following periods of continuous wetness. Production of secondary conidia and appressoria of C. acutatum on symptomless strawberry leaves under a range of environmental conditions suggests that these processes also occur under field conditions and contribute to inoculum availability during the growing season.  相似文献   

13.
Hjeljord LG  Tronsmo A 《Phytopathology》2003,93(12):1593-1598
ABSTRACT Trichoderma biocontrol isolates are most effective as highly concentrated inocula. Their antagonism to other fungi may be a result of pregermination respiration. In a nutrient-rich medium, almost all Trichoderma atroviride P1 (P1) conidia initiated germination processes and increased respiration, even in dense suspensions. When 1 x 10(7) P1 conidia/ml were coinoculated with 1 x 10(5) Botrytis cinerea conidia/ml, dissolved oxygen fell to <1% within 2 h and the pathogen failed to germinate. More dilute P1 suspensions consumed oxygen slowly enough to allow coinoculated B. cinerea to germinate. On nutrient-poor media, fewer P1 conidia initiated germination. Oxygen consumption by the inoculum and inhibition of B. cinerea were enhanced when P1 conidia were nutrient activated before inoculation. Pregermination respiration also affected competitive capacity of the antagonist on solid substrates, where respiratory CO(2) stimulated germination rate and initial colony growth. These parameters were directly correlated with inoculum concentration (R(2) >/= 0.97, P < 0.01). After initiating germination, Trichoderma conidia became more sensitive to desiccation and were killed by drying after only 2 h of incubation on a nutrient-rich substrate at 23 degrees C. These results indicate that nutrient-induced changes preceding germination in Trichoderma conidia can either enhance or decrease their biological control potential, depending on environmental conditions in the microhabitat.  相似文献   

14.
ABSTRACT The impact of Brassica napus seed meal on the microbial complex that incites apple replant disease was evaluated in greenhouse trials. Regardless of glucosinolate content, seed meal amendment at a rate of 0.1% (vol/vol) significantly enhanced growth of apple and suppressed apple root infection by Rhizoctonia spp. and Pratylenchus penetrans. High glucosinolate B. napus cv. Dwarf Essex seed meal amendments did not consistently suppress soil populations of Pythium spp. or apple root infection by this pathogen. Application of a low glucosinolate containing B. napus seed meal at a rate of 1.0% (vol/vol) resulted in a significant increase in recovery of Pythium spp. from apple roots, and a corresponding reduction in apple seedling root biomass. When applied at lower rates, B. napus seed meal amendments enhanced populations of fluorescent Pseudomonas spp., but these bacteria were not recovered from soils amended with seed meal at a rate of 2% (vol/vol). Seed meal amendments resulted in increased soil populations of total bacteria and actinomycetes. B. napus cv. Dwarf Essex seed meal amendments were phytotoxic to apple when applied at a rate of 2% (vol/vol), and phytotoxicity was not diminished when planting was delayed for as long as 12 weeks after application. These findings suggest that B. napus seed meal amendments can be a useful tool in the management of apple replant disease and, in the case of Rhizoctonia spp., that disease control operates through mechanisms other than production of glucosinolate hydrolysis products.  相似文献   

15.
Conidia ofSclerospora sorghi, obtained from either systemically-infected or local-lesion-infected leaves of sorghum (cv. Vidan), were capable of inducing typical downy mildew systemic infection, including oospore formation, in sorghum and corn hybrids. Very young inoculated seedlings displayed chlorotic systemic symptoms already on the first leaf, and often died at fourth-leaf stage. Systemic infection was induced by conidia on sorghum 1–14 days old at inoculation. Incidence of infection was much higher and symptoms less delayed when the shoot rather than coleorhizas of young sorghum and corn seedlings were inoculated; in two-week-old sorghum with three leaves, inoculation of the coleoptile or of the base of the second and third blades resulted in systemic infection; with coleoptile inoculation partial leaf chlorosis was delayed until the fourth-or fifth-leaf stage, showing that penetration without symptoms had occurred as far as the meristematic tissues of young leaves still within the leaf tube. Conidial inoculation of young sorghum tillers sprouting after cutting down healthy mother shoots resulted in systemic infection. Conidial inoculum is deemed to be the probable major means for systemic infection of corn and sorghum sown in fields in which oospores are not present; inoculation of new tillers of forage sorghum by conidia from infected plants in a neighboring field can explain the rise in numbers of plants systemically stricken. Two sweet corn hybrids — one considered resistant in the field, the other very susceptible — proved equally susceptible when inoculated with conidia at 5 days of age.  相似文献   

16.
为了提高卵孢白僵菌NEAU30503在固态培养中的产孢量,采用单因素筛选试验和响应面法对卵孢白僵菌NEAU30503固态发酵条件进行优化。在单因素试验确定最适含水量、接种量、培养温度和培养时间的基础上,应用Box-Behnken试验设计和响应面分析方法优化出最佳固态培养条件为:固态培养基含水量为55%,接种量为15mL/100g,培养温度为27℃,培养时间为7.5d,在此条件下卵孢白僵菌NEAU30503烘干前单位产孢量达到36.72×10~8孢子/g。此方法适用于小型企业和生产单位对白僵菌的快速生产。  相似文献   

17.
简青霉Penicillium simplicissimum CEF-818发酵产物能够有效的防治由大丽轮枝菌Verticillium dahliae引起的棉花黄萎病,为获得简青霉CEF-818最佳的发酵条件,本研究采用单因素和正交试验方法对简青霉CEF-818固体发酵培养基的组成以及发酵条件进行了优化。结果表明,简青霉CEF-818固体发酵最适培养物为麦麸,其他添加物为葡萄糖、尿素和氯化钾,添加量按麦麸的质量比分别为2.5%、0.6%和0.6%(M/M),料水比为1:0.5,固体发酵最佳的培养条件为液体接种量为5%(V/M)、初始pH为7、物料厚度为2 cm、培养温度为28℃、培养时间为7 d。在此条件下,简青霉CEF-818的产孢量为8.28×109 CFU/g。  相似文献   

18.
Sphaeropsis pyriputrescens is the cause of Sphaeropsis rot in apples and pears. In this study, effects of temperature, wetness duration, relative humidity (RH), dryness, and interrupted wetness duration on conidial germination of the fungus were evaluated. Conidial germination and germ tube elongation occurred at temperatures from 0°C to 30°C. The optimum temperature for germination and germ tube elongation appeared to be 20°C, at which a minimum wetness period of 5 h was required. Conidia germinated at RH as low as 92% after 36 h at 20°C, but not at 88.5% RH. The effect of dry periods on germination depended on RH. Conidial germination at 85% RH was higher than that at 25% RH within a 4-h dry period, after which time no difference was observed. Less than 10% conidia germinated after a 10-day dry period at both 20°C and 28°C. Conidial germination decreased as the wetness duration prior to dryness increased. Conidia wetted for 6 h prior to dryness died within a 1-h dry period. After a 12-h dry period, no or few conidia germinated at 25% RH, whereas 3% to 10% of the conidia germinated at 85% RH and no further decrease was observed as the dry period increased. The results contribute to our understanding of conditions required for conidial germination of S. pyriputrescens and infection of fruit leading to Sphaeropsis rot.  相似文献   

19.
ABSTRACT The fungus Pleospora papaveracea and Nep1, a phytotoxic protein from Fusarium oxysporum, were evaluated for their biocontrol potential on opium poppy (Papaver somniferum). Four treatments consisting of a control, P. papaveracea conidia, Nep1 (5 mug/ml), and P. papaveracea conidia plus Nep1 (5 mug/ml) were used in detached-leaf and whole-plant studies. Conidia of P. papaveracea remained viable for 38 days when stored at 20 or 4 degrees C. Nep1 was stable in the presence of conidia for 38 days when stored at 4 degrees C or for 28 days at 20 degrees C. The presence of Nep1 did not affect conidia germination or appressoria formation. Nep1 was recovered from drops applied to opium poppy leaves in greenhouse and field studies 24 h after treatment. Opium poppy treated with the combination of Nep1 and P. papaveracea had higher necrosis ratings than the other treatments. There were changes in the intercellular protein profiles, determined by sodium dodecyl sulfate gel electrophoresis and silver staining, due to application of treatments; the most intense occurred in response to the combination of Nep1 and P. papaveracea. The combination of Nep1 and P. papaveracea enhanced the damage caused to opium poppy more than either component alone.  相似文献   

20.
以棘孢木霉Trichoderma asperellum THGY-01(CGMCC No:22422)为试验菌株,对其在聚氨酯海绵载体上固体发酵产孢的培养基种类、浓度及促进产孢元素进行了筛选与优化.以聚氨酯海绵载体的单位质量产孢量为指标,通过单因素试验法对11种碳源、6种氮源和14种无机盐(8种含大量元素,6种含微量元...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号