首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M. H. Rahman 《Plant Breeding》2002,121(4):357-359
The fatty acid composition of seed oil of four interspecific hybrids, resulting from crosses between zero erucic acid Brassica rapa (AA), and high erucic acid Brassica alboglabra/Brassica oleracea (CC) and Brassica carinata (BBCC), void of erucic acid genes in their A‐genomes was examined. The erucic acid content in resynthesized Brassica napus (AACC) lines derived from these crosses was only about half that of the high erucic acid CC genome parents, indicating equal contributions of the two genomes to oil (fatty acid) synthesis and accumulation. The differences in C18 fatty acid synthesis between the parents were also evident in the resulting resynthesized B. napus plants. Hexaploid Brassica plants of the genomic constitution AABBCC, in which the AA genome was incapable of erucic acid synthesis, had lower erucic acid contents than the B. carinata (BBCC) parent. This is plausible considering the fact that the zero erucic acid AA genome contributes to oil synthesis in AABBCC plants, thus reducing erucic acid content.  相似文献   

2.
Ethiopian mustard (Brassica carinata Braun) is a potential oil crop in which genes for low erucic acid content of the seed oil have not yet been found. In order to solve this problem the potential of rapeseed (B. napus L.) varieties as a source of these genes has been tested. Reciprocal F1 hybrids between B. carinata and a low erucic acid variety of B. napus, F2, and backcrosses with B. carinata were obtained. The fatty acid composition was determined in half seeds of F1 and segregating generations from reciprocal interspecific crosses. The genetic analysis indicated that the erucic acid content of the seed oil of B. carinata is controlled by two genes with no dominance and additive in action.  相似文献   

3.
Ethiopian mustard (Brassica carinata Braun) is a potential oil crop for the Mediterranean area. The objective of this study was to develop an efficient system of mutagenesis using ultraviolet (UV) light irradiation of isolated microspores from Brassica carinata. From the survival curve based on embryo yield after irradiation of the microspores with UV light, the LD50 was estimated to be an exposure of 8 min. Total content of glucosinolates and fatty acid composition were analysed in the seeds of the doubled haploid homozygous plants with the purpose of selecting lines with modified glucosinolate and erucic acid contents. Three groups of doubled haploid lines exhibiting low and high glucosinolate contents, and high erucic acid content have been identified from a population of 270 doubled haploid lines. In eight lines, the content of glucosinolates was reduced from an average of 80.6 mol g-1 seed to 37.5 mol g-1 seed, whereas in four lines, the content of glucosinolates was increased up to 99.2 mol g-1 seed. In six additional lines, the content of erucic acid was increased from 42.8% in the nontreated lines to 49.5% of the totalfatty acid composition in some of the mutant lines. All lines showed stablelevels of erucic acid in two generations, the M2 and M3.  相似文献   

4.
Ethylmethane sulphonate (EMS) was applied to seeds of the Ethiopian mustard (Brassica carinata A. Braun) line C-101. Bulk samples of M3 seeds from 8331 M2 plants were evaluated for the fatty acid composition of their oil by near-infrared reflectance spectroscopy (NIRS) and by further gas chromatography on selected samples. A putative mutant, N2-6230, showing very low oleic acid content (4.7% vs. average of 8.6% in C-101) and erucic acid content within the range of variation of the line C-101 (40-49.3%) was identified. The M3 progeny of this mutant showed a wide segregation for erucic acid content (39.1-57.9% vs. 41.8-50.3% in C-101), and maintained levels of oleic acid lower than in line C-101. Selection for high erucic acid content in the M3 and M4 generations led to the fixation of this mutation in the M5 generation (52.2-59.3% vs. 39.0-47.6% in C-101). This is the first high erucic acid line obtained in Brassica species through mutation breeding. Its utility in future programmes to develop very high erucic acid lines is discussed.  相似文献   

5.
Ethiopian mustard (Brassica carinata Braun) is a potential oil crop for the rain-fed Mediterranean area. However, its usage is limited by the high erucic and high glucosinolate content of the oil and meal, respectively. In the course of a mutagenesis programme, an agronomically good line of Ethiopian mustard was treated with EMS in order to widen the natural variability of nutritional traits in this species. As a result of this programme several low erucic mutants were isolated; two of these mutants showed erucic acid values in the M4 generation in the range 5–10% of total fatty acids. Near-infrared reflectance spectroscopy (N1RS) was successfully applied as a rapid screening method for erucic acid in this breeding programme.  相似文献   

6.
Effects of Brassica napus (N) and B. juncea (J) cytoplasm on seed characteristics of B. carinata (C) were examined. Alloplasmic lines of B. carinata were produced from N × C and J × C hybrids by recurrent backcrossing to the BC8 generation. Fourteen sets of reciprocal crosses were used. Compared with their euplasmic sibs, alloplasmic B. carinata line seeds with B. napus cytoplasm showed reduced dormancy, higher seed weight, lower germination rate at high temperatures, higher germination rate at low temperatures, and had lower erucic acid and higher linoleic acid contents. Alloplasmic B. carinata line seeds with B. juncea cytoplasm had higher seed weight but lower germination rate than their corresponding euplasmic sibs. These results showed a cytoplasmic effect on seed development, and an influence on seed weight, dormancy, and fatty acid composition. B. carinata was more deleteriously affected by cytoplasm from B. napus than by cytoplasm of B. juncea.  相似文献   

7.
N. Alemayehu  H. C. Becker   《Plant Breeding》2001,120(4):331-335
Ethiopian mustard possesses a number of agronomic advantages over other oilseed crops with similar ecological adaptation in Ethiopia. However, its high erucic acid content is undesirable for a vegetable oil. Although efforts have been made to improve its quality, much has to be done to use natural variations that might exist within the species for fatty acid contents. This project was undertaken to study the variability of fatty acid contents, primarily erucic acid, in germplasm collections of Ethiopian origin, with an attempt to develop low (zero) erucic acid genotypes. The study used inbred lines as well as F2 populations of 10 crosses between six parental lines. A wide variation in fatty acids was found. Oleic acid content varied from 5 to 34% and erucic acid content from 6 to 51%. Linoleic and linolenic acid contents were less variable. The high‐oleic genotypes exhibited not only low erucic but also higher linoleic (25%) and considerably lower linolenic acid (8%) contents. It was possible to classify the F2 populations with the lowest erucic acid into three distinct classes. While the first class had an erucic acid content of 6–12%, the second and third classes had contents of 18–32% and 36–42%, respectively. The existence of a multiple allelic series of erucic acid in Ethiopian mustard would enable its fixation at zero levels without necessarily going into interspecific crossing.  相似文献   

8.
C. M. Lu    B. Zhang    F. Kakihara  M. Kato 《Plant Breeding》2001,120(5):405-410
Fifteen lines of Brassica napus were resynthesized via ovule culture through 24 interspecific crosses between four Brassica oleracea and three Brassica campestris accessions. The degree of success in the interspecific crosses was significantly influenced by maternal genotypes. The interspecific hybrid production rate (HPR) varied with combinations from 0 to 76.9%, with a mean HPR of 24.7% for the crosses with B. campestris as the female parent and 6.9% for the crosses with B. oleracea as female parent. Twenty‐four crosses between seven natural and six resynthesized B. napus gave, on average, 10.3 seeds per pod, and ranged from 1.2 to 22.0 seeds per pod, depending on genotypes of both parents. Resynthesized lines of B. napus showed high erucic acid content and variable content of linolenic acid, ranging from 3.4% to 9.9%. The fatty acid composition in hybrid seeds between natural and resynthesized B. napus was dominated by the embryo genotypes; an additive mode was shown for erucic acid and positive over‐dominance for linolenic acid content.  相似文献   

9.
A large industrial oil market has recently developed for high erucic acid (>500 g kg−1) rape (Brassica napus L.) cultivars. This research was conducted to: (i) determine genetic effects for five fatty acids, (ii) determine if maternal effects influence fatty acid content of progeny, and (iii) estimate correlations among fatty acid contents in hybrid progeny. Lines with very high erucic acid content and very low erucic acid content were used to develop eight generations to estimate additive, dominance, and epistatic effects for fatty acid content using Generation Means Analyses. Mean oleic, linoleic, linolenic, eicosenoic and erucic acid content differed among generations and additive genetic effects were important for control of all five fatty acids, contributing from 84% to 97% of the total sums of squares for each fatty acid. Epistasis was observed in the inheritance of eicosenoic acid. Maternal effects were not detected.  相似文献   

10.
Summary Microspore culture of rapeseed (Brassica napus L.) has provided a powerful tool not only for breeding but also in developmental studies. In this study, microspore-derived embryos (MDE) of B. napus were evaluated as a model in seed for studying accumulations of triacylglyceride (TAG) fatty acids in both a low and high erucic acid rapeseed line; and accumulations of TAG and free fatty acids (FFA) in a high erucic acid rapessed line. The accumulation patterns confirmed that MDE had a similar TAG fatty acid profile to seed during the embryo development within each genotype. The oil accumulation in MDE after 36 days in culture (DIC) approached levels similar to those in zygotic seed 25 days after flowering (DAF). Significant differences were detected in contents of both total free fatty acids and specific free fatty acids between MDE and seed. During the developmental period, total free fatty acids changed from 16% to 2.1% in MDE, but from 10.5% to 0.1% in seed. MDE had much higher percentage of free linolenic and erucic acids than seed, particularly during the late developmental stages. The current study indicated that MDE can be used as a model to study TAG and TAG fatty acids in seed but caution must be taken to study free fatty acid metabolism.  相似文献   

11.
W. Rygulla    W. Friedt    F. Seyis    W. Lühs    C. Eynck    A. von Tiedemann    R. J. Snowdon 《Plant Breeding》2007,126(6):596-602
Resynthesized (RS) forms of rapeseed (Brassica napus L.; genome AACC, 2n = 38) generated from interspecific hybridization between suitable genotypes of its diploid progenitors Brassica rapa L. (syn. campestris; genome AA, 2n = 20) and Brassica oleracea L. (CC, 2n = 18) represent a potentially useful resource to introduce resistance against the fungal pathogen Verticillium longisporum into the gene pool of oilseed rape. Numerous cabbage (B. oleracea) accessions are known with resistance to V. longisporum; however, B. oleracea generally has high levels of erucic acid and glucosinolates in the seed, which reduces the suitability of resulting RS rapeseed lines for oilseed rape breeding. In this study resistance against V. longisporum was identified in the cabbage accession Kashirka 202 (B. oleracea convar. capitata), a zero erucic acid mutant, and RS rapeseed lines were generated by crossing the resistant genotype with two spring turnip rape accessions (B. rapa ssp. olerifera) with zero erucic acid. One of the resulting zero erucic acid RS rapeseed lines was found to have a high level of resistance to V. longisporum compared with both parental accessions and with B. napus controls. A number of other zero erucic acid RS lines showed resistance levels comparable to the parental accessions. In the most resistant RS lines the resistance and zero erucic acid traits were combined with variable seed glucosinolate contents. Erucic acid‐free RS rapeseed with moderate seed glucosinolate content represents an ideal basic material for introgression of quantitative V. longisporum resistance derived from B. oleracea and B. rapa into elite oilseed rape breeding lines.  相似文献   

12.
Erucic acid heredity in Brassica juncea - some additional information   总被引:1,自引:0,他引:1  
Genetic studies were undertaken to reassess erucic acid heredity in Brassica juncea. Analysis of segregation in F2 and BC1 generations from two zero × high erucic acid crosses indicated that higher erucic acid in B. juncea was controlled by two dominant genes with additive effects, whereas segregation in a cross involving ‘CCWF 16′, a genotype having intermediate erucic acid (25.6%), and a zero erucic acid strain, indicated monogenic dominant control for intermediate erucic acid content. The B. juncea strain ‘CCWF 16’ was developed by hybridizing high‐erucic acid B. juncea cv.‘WF‐1’ with a ‘0’ erucic B. rapa cv.‘Candle’ followed by backcrossing with ‘WF‐1’ and half‐seed selection for low erucic acid in each backcross generation. This strategy resulted in substitution of the high erucic acid allele present in the A genome of B. juncea (AABB) by the zero erucic acid allele associated with ‘A’ genome of ‘Candle’. The intermediate erucic acid content in ‘CCWF 16’ was thus attributed to a gene present in the ‘BB’ genome. Experimental data clearly suggested that the gene (E2) associated with the A genome had a greater contribution to the total erucic acid content in B. juncea than the gene (E1) located on the B genome. This provided experimental evidence for a previous suggestion of unequal contributions of two dominant genes (E1= 12%, E2= 20%) to high erucic acid content in conventional digenomic Brassica species.  相似文献   

13.
Generation of novel genetic diversity for maximization of heterosis in hybrid production is a significant goal in winter oilseed rape breeding. Here, we demonstrate that doubled haploid (DH) production using microspore cultivation can simultaneously introgress favourable alleles for double‐low seed quality (low erucic acid and low‐glucosinolate content) into a genetically diverse Brassica napus genetic background. The DH lines were derived from a cross between a double‐low quality winter rapeseed variety and a genetically diverse semisynthetic B. napus line with high erucic acid and high glucosinolates (++ quality). Twenty‐three low‐glucosinolate lines were identified with a genome component of 50–67% derived from the ++ parent. Four of these lines, with a genome component of 50–55% derived from the ++ parent, also contained low erucic acid. Heterosis for seed yield was confirmed in test‐crosses using these genetically diverse lines as pollinator. The results demonstrate the potential of marker‐assisted identification of novel genetic pools for breeding of double‐low quality winter oilseed rape hybrids.  相似文献   

14.
Development of yellow-seeded Brassica napus of double low quality   总被引:3,自引:0,他引:3  
M. H. Rahman    M. Joersbo  M. H. Poulsen   《Plant Breeding》2001,120(6):473-478
Two yellow‐seeded white‐petalled Brassica napus F7 inbred lines, developed from interspecific crosses, containing 26–28% emcic acid and more than 40 μmol glucosinolates (GLS)/g seed were crossed with two black/dark brown seeded B. napus varieties of double low quality and 287 doubled haploid (DH) lines were produced. The segregation in the DH lines indicated that three to four gene loci are involved in the determination of seed colour, and yellow seeds are formed when all alleles in all loci are in the homozygous recessive state. A dominant gene governed white petal colour and is linked with an erucic acid allele that, in the homozygous condition, produces 26–28% erucic acid. Four gene loci are involved in the control of total GLS content where low GLS was due to the presence of recessive alleles in the homozygous condition in all loci. From the DH breeding population a yellow‐seeded, yellow‐petalled, zero erucic acid line was obtained. This line was further crossed with conventional B. napus varieties of double low quality and, following pedigree selection, a yellow seeded B. napus of double low quality was obtained. The yellow seeds had higher oil plus protein content and lower fibre content than black seeds. A reduction of the concentration of chromogenic substances was found in the transparent seed coat of the yellow‐seeded B. napus.  相似文献   

15.
Summary Microspore embryogenesis technology allows plant breeders to efficiently generate homozygous micros-pore-derived breeding populations of oilseed rape (Brassica napus L.) without traditional generations of inbreeding. This study was conducted to compare the frequency distribution of microspore-derived population and single seed descent populations with respect to fatty acids of seed oil. Both microspore-derived populations and single seed descent populations were produced from each of three crosses made between selected parents containing contrasting amount of erucic, oleic, linoleic and linolenic acids. The fatty acid content of F3 plants derived lines (F5 seed) developed by single seed descent was compared to that of microspore-derived populations. The means, ranges and distribution pattern of seed fatty acid contents were similar in both populations for each fatty acid studied, although a few heterozygous lines were observed in the single seed descent populations. The results indicated that microspore-derived population form random, homozygous F1 plant derived gametic arrays for all fatty acids evaluated. Selection for altered fatty acid composition in microspore-derived and single seed descent homozygous populations should be equally efficient, in the absence of linkage of traits investigated.  相似文献   

16.
J. Tang  R. Scarth 《Plant Breeding》2004,123(3):254-261
Acyl‐acyl carrier protein (ACP) thioesterase (TE) is involved in the biosynthetic fatty acid pathway of plants. Conventional canola lines transformed individually with the bay‐TE (Uc FatB1), elm‐TE (Ua FatB1), nutmeg‐TE (Mf FatB1) or Cuphea‐TE transgene (Ch FatB1), produce seed oil with modified fatty acid compositions. This study assessed the effects of genetic background, cytoplasm, maternal parent, and interaction of different TE transgenes, on the target fatty acids using F1 seeds and double haploid (DH) lines. The F1 seeds were produced by crossing four TE transgenic parental lines and three non‐transgenic cultivars with distinct fatty acid compositions. The DH lines were developed from microspores of F1 plants. DH lines from different crosses showed that genetic background does not have an effect on the relative levels of the target fatty acids of the same TE, indicating the stability of the substrate specificity of the TE within canola. However, significant effects of genetic background on the content of the major target fatty acids, lauric acid (C12:0) or palmitic acid (C16:0) depending on the TE, were observed. Expression of the TE in low erucic acid (C22:1) genotypes resulted in higher target fatty acid levels than expression in high C22:1 genotypes. Reciprocal crosses showed maternal effects, but not cytoplasmic effects. In addition, co‐expression of two different TE transgenes in the same seeds was observed. These results indicate the importance of selection for appropriate genetic backgrounds in order to maximize the expression of the target fatty acids of TE transgenes, and also indicate potential uses of TE co‐expression in modifying canola seed oil.  相似文献   

17.
R. Ecker  Z. Yaniv 《Euphytica》1993,69(1-2):45-49
Summary Inheritance of fatty acid composition was studied in an F1 diallel cross in Sinapis alba. Crosses were made among accessions having contrasting amounts of oleic (C18:1) and erucic (C22:1) acid. Concentrations of oleic, linoleic (C18:2), eicosenoic (C20:1) and erucic (C22:1) acids were determined by gas-chromatography for each mating combination. Genetic analysis confirmed that the composition of the fatty acids was controlled mainly by the nuclear genes of the embryo. Additive gene action with partial dominance for the reducing alleles was noted for oleic and linoleic acids, while erucic acid showed an additive mode of inheritance with partial dominance for the enhancing alleles. Positive heterosis was demonstrated for eicosenoic acid content. Erucic acid content was strongly negatively correlated with oleic acid, suggesting a genetic interdependence between the two fatty acids. Broad-sense and narrow-sense heritability estimates for each of oleic, linoleic and erucic acids were very high, due to low between-plants non-genetic component of variance.Contribution No. 3662-E, 1992 series.  相似文献   

18.
Summary In order to assess the potential of Crambe hispanica, either in breeding programmes of C. abyssinica or as an oilseed crop in itself, 36 accessions of C. hispanica (29 of var. hispanica and 7 of var. glabrata) were grown in a greenhouse and evaluated for morphological characteristics, earliness, plant habit, seed characteristics and fatty acid composition. Four lines of C. abyssinica were included for reference. The 29 accessions of var. hispanica showed significant variation for all observed characteristics. Besides morphological characteristics, large variation was found for earliness, number of primary branches, seed yield, 1000 seed weight and volume, and linoleic, linolenic and erucic acid content. Morphological characteristics, earliness and plant habit did not show any high correlations with seed characteristics or fatty acid composition, except for seed hull (pericarp) mottling, which was related to a high oil and erucic acid content. The seven accessions of var. glabrata showed little variation. The large genetic variation in combination with promising figures for several characteristics, found in C. hispanica, may be useful in breeding programmes of the oilseed crop C. abyssinica, for which the available genetic variation is limited. Prospects of selection for high-erucic acid genotypes are discussed. Compared to C. abyssinica, both botanical varieties of C. hispanica are characterized by a cordate shape of the basal leaves, lack of seed retention and a lower DNA content. Plants of var. glabrata differed from var. hispanica in a sparsely hispid upper leaf surface and round stems and branches covered with a waxy layer. These clear differences and lack of success in intercrossing both varieties of C. hispanica strongly suggest that their taxonomic classification should be reconsidered.  相似文献   

19.
This study was conducted to assess the cytoplasm effects of Brassica napus and B. juncea on the some characteristics of B. carinata, as well as the phylogenetic distances separating the three species. Alloplasmic lines of B. carinata were developed from B. napus × B. carinata and B. juncea × B. carinata hybrids by recurrent backcrossing to the BC7 generation. Sixteen populations from three generations were compared for a number of characteristics. Plants with the cytoplasm of B. napus flowered later, had shorter filaments and longer pistils, lower pollen amount, lower seed set, lower petal length and width and different petal color; plants with the cytoplasm of B. juncea had shorter pistils and filaments, and lower petal length and width than their corresponding euplasmic sibs, respectively. The results suggest that the cytoplasm is involved in the development of flower organs. The natural species, B. carinata showed a balance between the nucleus and cytoplasm. The cytoplasm from B. napus showed a stronger disturbing effect than that of B. juncea, suggesting that B. carinata might be genetically closer to B. juncea than to B. napus. The significant difference in the alloplasmic effect of the cytoplasms of B. napus and B. juncea also suggests that in B. carinata the B genome may play a greater role than the C genome. An erratum to this article can be found at  相似文献   

20.
A microspore mutagenesis protocol was developed for Brassica rapa, Brassica napus and Brassica juncea for the production of double haploid lines with novel fatty acid profiles in the seed oil. Freshly isolated Brassica microspores were first cultured with ethyl methane sulphonate (EMS) for 1.5 h. The EMS was removed and the microspores were then cultured according to the standard Brassica microspore culture protocol. This protocol was used to generate over 80 000 Brassica haploid/double haploid plants. Field evaluation of B. napus and B. juncea double haploids was conducted between 2000 and 2003. Fatty acid analysis of the B. napus double haploid lines showed that saturated fatty acid proportions ranged from 5.0% to 7.7%. For B. juncea, saturate proportions ranged from 5.4% to 9.5%. Of the 7000 B. rapa lines that were analysed, 197 lines had elevated oleic acid (>55%), 69 lines had reduced α‐linolenic acid (<8%) and 157 lines had low saturated fatty acid proportions (<5%), when compared with the parental lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号