首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
野生二粒小麦(Triticum dicoccoides)是小麦抗病育种的重要资源库之一。来自以色列Mount Hermon的野生二粒小麦材料IW3 和IW10对我国小麦白粉病菌生理小种E09表现高抗。对硬粒小麦Langdon与IW3和IW10两个杂交组合F2分离群体和F3家系的遗传分析表明,IW3和IW10对小麦白粉菌E09的抗性均受显性单基因控制,暂被命名为MlIW3和MlIW10。采用BSA法和SSR标记分析,筛选到与抗白粉病基因MlIW3和MlIW10连锁的5个SSR标记,这两个基因均位于Xbarc84和Xwmc326之间,顺序为Xbarc84–4.6 cM–MlIW3–1.6 cM–Xwmc326和Xbarc84–6.6 cM–MlIW10–0.6 cM–Xwmc326。根据SSR分子标记的遗传图谱和在中国春的缺体—四体、双端体和缺失系的定位结果,这两个抗白粉病基因被定位在3BL染色体的末端。根据MlIW3和MlIW10的来源和分子标记定位结果,推断这两个基因可能是小麦抗白粉病基因Pm41或其等位基因或位于同一个基因簇中。  相似文献   

2.
野生二粒小麦(Triticum dicoccoides)是小麦抗病育种的重要资源库之一。来自以色列Mount Hermon的野生二粒小麦材料IW3 和IW10对我国小麦白粉病菌生理小种E09表现高抗。对硬粒小麦Langdon与IW3和IW10两个杂交组合F2分离群体和F3家系的遗传分析表明,IW3和IW10对小麦白粉菌E09的抗性均受显性单基因控制,暂被命名为MlIW3和MlIW10。采用BSA法和SSR标记分析,筛选到与抗白粉病基因MlIW3和MlIW10连锁的5个SSR标记,这两个基因均位于Xbarc84和Xwmc326之间,顺序为Xbarc84–4.6 cM–MlIW3–1.6 cM–Xwmc326和Xbarc84–6.6 cM–MlIW10–0.6 cM–Xwmc326。根据SSR分子标记的遗传图谱和在中国春的缺体—四体、双端体和缺失系的定位结果,这两个抗白粉病基因被定位在3BL染色体的末端。根据MlIW3和MlIW10的来源和分子标记定位结果,推断这两个基因可能是小麦抗白粉病基因Pm41或其等位基因或位于同一个基因簇中。  相似文献   

3.
野生二粒小麦(Triticum turgidumvar. dicoccoides)是小麦抗白粉病遗传改良的重要基因资源。利用野生二粒小麦WE18与普通小麦品种(系)连续多次杂交和自交,育成对白粉病菌生理小种E09高度抵抗的小麦新品系3D249(京双27//燕大1817/WE18/3/温麦4,F7)。利用高感白粉病品系薛早和3D249组配杂交组合,获得杂种F1代、F2分离群体和F3代家系,进行苗期白粉病抗性鉴定和遗传分析。结果表明,小麦品系3D249对E09小种的抗性受显性单基因控制,暂命名该基因为MlWE18。利用集群分离分析法(BSA)和分子标记分析,发现4个简单重复序列(SSR)标记(Xwmc525、Xwmc273、Xcfa2040和Xcfa2240)、1个EST-STS标记(Xmag1759)和1个EST-STS序列标记(XE13-2)与抗白粉病基因MlWE18连锁,在遗传连锁图谱上的顺序为Xwmc525–Xcfa2040–Xwmc273–XE13-2–Xmag1759–MlWE18–Xcfa2240。SSR标记的染色体缺失系物理定位结果表明,抗白粉病基因MlWE18位于小麦7A染色体长臂末端的Bin 7AL 16–0.85–1.00。与已知定位于该染色体区域的Pm基因遗传连锁图谱比较表明,MlWE18与抗白粉病基因Pm1、MlIW72、PmU、Mlm2033和Mlm80均位于7AL相同染色体区段。  相似文献   

4.
An Israeli accession (TTD140) of wild emmer, Triticum turgidum var. dicoccoides, was found resistant to several races of powdery mildew. Inoculation of the chromosome-arm substitution lines (CASLs) of TTD140, in the background of the Israeli common wheat cultivar ‘Bethlehem’ (BL), with five isolates of powdery mildew revealed that only the line carrying the short arm of chromosome 2B of wild emmer (CASL 2BS) exhibited complete resistance to four of the five isolates. To map and tag the powdery mildew resistance gene, 41 recombinant substitution lines, derived from a cross between BL and CASL 2BS, were used to construct a linkage map at the gene region. The map, which encompasses 69.5 cM of the distal region of chromosome arm 2BS, contains six RFLP markers, a morphological marker (glaucousness inhibitor, W1 I), and the powdery mildew resistance gene. Segregation ratios for resistance in F2 of BL × CASL 2BS and in the recombinant lines, combined with the susceptability of F1 progeny to all tested isolates, indicate that resistance is controlled by a single recessive allele. This alleleco-segregated with a polymorphic locus detected by the DNA marker Xwg516, 49.4 cM from the terminal marker Xcdo456. The new powdery mildew resistance gene was designated Pm26. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Powdery mildew caused by Erysiphe graminis f. sp. tritici is one of the most important wheat diseases in many regions of theworld. A powdery mildew resistance gene, originating from wild emmerwheat (Triticum dicoccoides) accession `C20', from Rosh Pinna, Israel,was successfully transferred to hexaploid wheat through crossing andbackcrossing. Genetic analysis indicated that a single dominant genecontrols the powdery mildew resistance at the seedling stage. SegregatingBC1F2 progenies of the cross 87-1/C20//2*8866 wereused for bulked segregant analysis (BSA). The PCR approach was used togenerate polymorphic DNA fragments between the resistant and susceptibleDNA pools by use of 10-mer random primers, STS primers, and wheatmicrosatellite primers. Three markers, Xgwm159/430,Xgwm159/460, and Xgwm159/500, were found to be linked tothe resistance gene. After evaluating the polymorphic markers in twosegregating populations, the distance between the markers and the mildewresistance gene was estimated to be 5–6 cM. By means of ChineseSpring nullisomic-tetrasomics and ditelosomics, the polymorphic markersand the resistance gene were assigned to chromosome arm 5BS and werephysically mapped on the gene rich regions of fragment length (FL) 0.41–0.43 by Chinese Spring deletion lines. As no powdery mildew resistancegene has been reported on chromosome arm 5BS, the mildew resistancegene originating from C20 should be a new gene and is designated Pm30.  相似文献   

6.
Summary A new source of resistance to wheat powdery mildew caused by Erysiphe graminis has been transferred to hexaploid bread wheat, Triticum aestivum, from the wild tetraploid wheat, Triticum dicoccoides. The donor was crossed to bread wheat and the pentaploid progeny was then self-pollinated. Plants having a near stable hexaploid chromosome complement were selected in the F3 progeny and topcrossing and backcrossing of these to a second wheat cultivar to improve the phenotype was undertaken. Monosomic analysis of early backcross lines showed the transferred gene to be located on chromosome 4A. The gene has been designated Pm16.  相似文献   

7.
Summary Aegilops umbellulata acc. Y39 and Triticum carthlicum acc. PS5, immune to many powdery mildew isolates, were crossed to make an amphidiploid line Am9. The powdery mildew resistance of Am9 was transferred to common wheat cultivar Laizhou953 by crossing and backcrossing. In this study, the origin of powdery mildew resistance in a BC3F4:5 population derived from a cross of Am9 and Laizhou953 was identified. Microsatellite markers analysis showed that markers Xgwm257, Xgwm296, and Xgwm319, co-segregated with the powdery mildew resistance, whereas markers Xgwm210, Xgwm388/140, Xgwm388/170 and Xgwm526 were related to susceptibility and linked to resistance in repulsion. Of three markers related to resistance, Xgwm257 and Xgwm319 were codominant, whereas Xgwm296 was dominant. All three markers were Ae. umbellulata-specific indicating that resistance in the test population originated from Ae. umbellulata acc. Y39. The chromosome location and mapping of these linked microsatellite markers, the chromosome numbers of derived BC3F4:6 families, and chromosome pairing in F1 plants from a cross of a homozygous resistant BC3F4:5 plant and Laizhou953, showed that wheat chromosome 2B was substituted by Ae. umbellulata chromosome 2U. This is the first gene conferring powdery mildew resistance transferred to wheat from Ae. umbellulata, and it should be a novel resistance gene to powdery mildew. It was temporarily designated PmY39.The first two authors made equal contributions  相似文献   

8.
小麦白粉病是严重影响小麦生产的重要病害之一,培育和应用抗病品种是有效控制和减少病害的最经济有效的方法。野生二粒小麦是硬粒小麦和普通小麦的四倍体野生祖先种,是小麦抗病性遗传改良的重要基因资源。本研究利用来自以色列的野生二粒小麦WE29与普通小麦杂交,再用普通小麦连续回交和自交,育成高抗白粉病(Blumeria graminis f. sp. tritici)小麦新品系3D258(系谱为燕大1817/WE29//5*87-1, BC4F6)。将3D258和高感小麦白粉病的普通小麦品种薛早配制杂交组合,对其F1、F2代分离群体和F3代家系进行白粉病抗性鉴定和遗传分析。结果表明3D258携带抗白粉病显性单基因,暂命名为MlWE29。利用集群分离分析法(BSA)和分子标记分析,发现6个SSR标记(Xgwm335、Xgwm213、Xgwm639、Xwmc415、Xwmc289和Xwmc75)和5个EST-STS标记(BE494426、BE442763、CD452476、BE445282和BE407068)与抗白粉病基因MlWE29连锁。利用中国春缺体-四体系、双端体系和缺失系将抗白粉病基因MlWE29标记物理定位于5BL染色体的0.59–0.79区域。这一普通小麦抗白粉病种质资源的创制及其连锁分子标记的建立为小麦抗病基因分子标记辅助选择、基因积聚和分子育种提供了新的物质基础。  相似文献   

9.
小麦地方品种小白冬麦抗白粉病基因分子标记   总被引:1,自引:0,他引:1  
薛飞  翟雯雯  段霞瑜  周益林  吉万全 《作物学报》2009,35(10):1806-1811
小麦农家品种小白冬麦对小麦白粉病具有良好抗性,对病原菌拥有较广的抗谱,并与其他已知抗白粉病基因的抗谱不同,遗传分析证实小白冬麦的苗期抗性由一个隐性抗白粉病基因控制。为了寻找与小白冬麦所携带抗白粉病基因连锁的分子标记,采用小白冬麦和感病品种Chancellor(CC)正反交组合,在2个F2群体125和107个单株上进行验证。结果显示,抗白粉病基因mlxbd与引物Xgwm577、Xgwm1267等紧密连锁,通过中国春及其第7部分同源群缺体-四体系,双端体系和缺失系将其定位在7B染色体长臂末端区域(7BL-10,Bin 0.78~1.00), 利用与mlxbd最近的引物Xgwm577扩增23个含有已知抗白粉病基因的小麦品种,检测发现这个引物不能单独用于分子标记辅助选择育种。  相似文献   

10.
小麦白粉病是严重影响小麦生产的重要病害之一,培育和应用抗病品种是有效控制和减少病害的最经济有效的方法。野生二粒小麦是硬粒小麦和普通小麦的四倍体野生祖先种,是小麦抗病性遗传改良的重要基因资源。本研究利用来自以色列的野生二粒小麦WE29与普通小麦杂交,再用普通小麦连续回交和自交,育成高抗白粉病(Blumeria graminis f. sp. tritici)小麦新品系3D258(系谱为燕大1817/WE29//5*87-1, BC4F6)。将3D258和高感小麦白粉病的普通小麦品种薛早配制杂交组合,对其F1、F2代分离群体和F3代家系进行白粉病抗性鉴定和遗传分析。结果表明3D258携带抗白粉病显性单基因,暂命名为MlWE29。利用集群分离分析法(BSA)和分子标记分析,发现6个SSR标记(Xgwm335、Xgwm213、Xgwm639、Xwmc415、Xwmc289和Xwmc75)和5个EST-STS标记(BE494426、BE442763、CD452476、BE445282和BE407068)与抗白粉病基因MlWE29连锁。利用中国春缺体-四体系、双端体系和缺失系将抗白粉病基因MlWE29标记物理定位于5BL染色体的0.59–0.79区域。这一普通小麦抗白粉病种质资源的创制及其连锁分子标记的建立为小麦抗病基因分子标记辅助选择、基因积聚和分子育种提供了新的物质基础。  相似文献   

11.
The powdery mildew resistance allele Pm5d in the backcross-derived wheat lines IGV1-455 (CI10904/7*Prins) and IGV1-556 (CI10904/7*Starke) shows a wide spectrum of resistance and virulent pathotypes have not yet been detected in Germany. Although this allele may be distinguished from the other documented Pm5 alleles by employing a differential set of Blumeria graminis tritici isolates, the use of linked molecular markers could enhance selection, especially for gene pyramiding. Pm5d was genetically mapped relative to six microsatellite markers in the distal part of chromosome 7BL using 82 F3 families of the cross Chinese Spring × IGV1-455. Microsatellite-based deletion line mapping placed Pm5d in the terminal 14% of chromosome 7BL. The closely linked microsatellite markers Xgwm577 and Xwmc581 showed useful variation for distinguishing the different Pm5 alleles except the ones originating from Chinese wheat germplasm. Their use, however, would be limited to particular crosses because they are not functional markers. The occurrence of resistance genes closely linked to the Pm5 locus is discussed. Ghazaleh Nematollahi and Volker Mohler equally contributed to this work.  相似文献   

12.
TIBL-1RS wheat-rye translocation cultivars utilized in wheat programmes worldwide carry powdery mildew resistance gene Pm8. Cultivar‘Amigo’possesses resistance gene Pm17 on its TIAL-1RS translocated chromosome. To be able to use Pm17efficiently in breeding programmes, this gene was transferred to a TIBL-1RS translocation in line Helami-105, and allelism between Pm8 and Pm17was studied. The progenies of the hybrids in the F2 generation and F3 families provided evidence that the two genes are allelic. Genetic studies using monosomic analyses confirmed that in cultivar‘Amigo', Pm17 and leaf rust resistance gene Lr24 are located on a translocated chromosome involving 1 A and 1B, respectively.  相似文献   

13.
The inheritance of the powdery mildew resistance gene Pm9 originating from the hexaploid spring wheat cultivar ‘Normandie’ was analyzed in relation to Pm1 and Pm2. Two leaf segments of individual P1?, P2?, F1? and F2-plants of the cross ‘Normandie’ (Pm1, 2, 9) בFederation’ (no known Pm gene) were inoculated separately with two powdery mildew isolates. Using powdery mildew isolate No. 6 virulent for Pm1 and Pm2 but avirulent for Pm9, a 1 resistant (r): 3 susceptible (s) F2-segregation was found for the Pm9 gene. Using powdery mildew isolate No. 3 virulent for Pm1 and Pm9 but avirulent for Pm2, a 3 (r): 1 (s) F2-segregation was found for the Pm2 gene. Combining the data of both experiments (leaf segments of identical plants had been used), a 9 (sr): 3 (ss): 3 (rr): 1 (rs) segregation resulted for the F2 of this cross: therefore, independent inheritance of the genes Pm2 and Pm9 can be concluded. Similarly, the cross ‘Mephisto’ (Pm1, 2, 9) בAmor’ (no known Pm gene) was analyzed. The Pm9 gene again showed a monogenically recessive inheritance, whereas Pm1 showed a monogenically intermediate segregation upon inoculation with powdery mildew isolate No. 9a virulent for Pm2 and Pm9 but avirulent for Pm1. Combining the single gene segregations, linkage between both genes was found among the progenies. A distance of 8.5 cM was calculated. Analyzing a set of spring wheat cultivars with seven defined powdery mildew isolates, the presence of Pm1, Pm2 and Pm9 in these lines was verified; in most cases, Pm1 occurred together with Pm9.  相似文献   

14.
Yellow rust (stripe rust), caused by Puccinia striiformis Westend f. sp. tritici, is one of the most devastating diseases of wheat throughout the world. Wheat-Haynaldia villosa 6AL.6VS translocation lines R43, R55, R64 and R77, derived from the cross of three species, carry resistance to both yellow rust and powdery mildew. An F2 population was established by crossing R55 with the susceptible cultivar Yumai 18. The yellow rust resistance in R55 was controlled by a single dominant gene, which segregated independently of the powdery mildew resistance gene Pm21 located in the chromosome 6VS segment, indicating that the yellow rust resistance gene and Pm21 are unlikely to be carried by the same alien segment. This yellow rust resistance gene was considered to beYr26, originally thought to be also located in chromosome arm 6VS. Bulked Segregation Analysis and microsatellite primer screens of the population F2 of Yumai 18 × R55 identified three chromosome 1B microsatellite locus markers, Xgwm11, Xgwm18 and Xgwm413, closely linked to Yr26. Yr26 was placed 1.9 cM distal of Xgwm11/Xgwml8, which in turn were 3.2 cM from Xgwm413. The respective LOD values were 21 and 36.5. Therefore, Yr26 was located in the short arm of chromosome 1B. The origin and distribution of Yr26 was investigated by pedigree, inheritance of resistance and molecular marker analysis. The results indicated that Yr26 came from Triticum turgidum L. Three other 6AL.6VS translocation lines, R43, R64 and R77, also carried Yr26. These PCR-based microsatellite markers were shown to be very effective for the detection of the Yr26 gene in segregating populations and therefore can be applied in wheat breeding. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
小麦种质N9134抗白粉病基因的SSR标记和染色体初步定位   总被引:8,自引:7,他引:1  
普通小麦种质N9134含有野生二粒小麦AS846的抗白粉病基因,该种质对陕西省关中地区白粉病流行小种关中四号表现高抗。用高感小麦白粉病的普通小麦品种陕160和陕优225与N9134杂交,F1代对白粉病表现高抗,F2代抗病和感病植株的比例符合3∶1, 表明N9134苗期白粉病抗性由1对完全显性基因控制,暂定名为PmAS846。采用66个小麦SSR  相似文献   

16.
A segregating population of doubled-haploid lines issued from the cross between the wheat (Triticum aestivum L. em. Thell) cultivars Courtot, resistant to several isolates of powdery mildew (Blumeria graminis DC. f. sp. tritici Em. Marchal), and Chinese Spring (susceptible) was used to map Mlar, a gene carried by Courtot and conferring resistance to this pathogen. The assignation of Mlar using monosomic lines of Courtot was confirmed by the mapping analysis. Mlar was located on the short arm of the chromosome 1A, in the vicinity of the locus XGli-A5 coding for storage proteins. This result was in accordance with those demonstrating that Mlar was an allele of the Pm3 locus (Pm3g), a gene also involved in the resistance to powdery mildew. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
X. M. Chen    Y. H. Luo    X. C. Xia    L. Q. Xia    X. Chen    Z. L. Ren    Z. H. He    J. Z. Jia 《Plant Breeding》2005,124(3):225-228
The use of resistant cultivars is a most economical way to control powdery mildew (Blumeria graminis f.sp. tritici) in wheat (Triticum aestivum L.). Identification of molecular markers closely linked to resistance genes can greatly increase the efficiency of pyramiding resistance genes in wheat cultivars. The objective of this study was to identify molecular markers closely linked lo the powdery mildew resistance gene Pm16. An F2 population with 156 progeny was produced from the cross‘Chancellor’(susceptible) ב70281’ (resistant), A total of 45 SSR markers on chromosomes 4A and 5B of wheat and 15 SSRs on chromosome 3 of rice was used lo lest the parents, as well as the resistant and susceptible bulks: the resulting polymorphic markers were used to genotype the F2 progeny. Results indicated that the SSR marker Xgwm159, located on the short arm of chromosome 5B, is closely linked to Pm16 (genetic distance: 5.3 CM). The cytogenetical data presented in an original report, in combination with this molecular analysis, suggests that Pm16 may he located on a translocated 4A.5BS chromosome.  相似文献   

18.
12个小麦品种(系)白粉病抗性的遗传分析   总被引:4,自引:3,他引:1  
利用17个不同来源和毒力的白粉菌菌株对12个小麦品种(系)进行苗期抗性鉴定和抗病性遗传分析,同时利用Pm2和Pm8基因的特异分子标记检测了相应基因。供试的12个品种至少能够抗11个白粉菌菌株。用E09、E20和Bg2菌株接种F2群体,抗感植株分离比例和适合性测验证明这12个品种对不同白粉菌菌株的抗性均受1对显性基因控制。抗谱分析和基因紧密连锁分子标记(Xcfd81)分析表明良星66很可能含有Pm2或其等位基因。ω-黑麦碱基因(1RS染色体)和Glu-B1基因(1BS染色体)特异分子标记分析结果证明,山农20和郑麦9962含有T1BL·1RS易位染色体,即可能携带Pm8基因。由于Pm8基因对大多数菌株表现感病,所以这2个品种除Pm8外,还具有其他抗病基因。偃展4110与天民668对参试菌株的反应型表现一致,其他材料对不同菌株的反应型表现不同。  相似文献   

19.
小麦新品种济麦22抗白粉病基因的分子标记定位   总被引:4,自引:2,他引:2  
为明确济麦22携带抗白粉病基因的染色体位置,利用济麦22与感病亲本中国春杂交,用小麦白粉菌(Blumeria graminis f. sp. tritici)强毒性小种E20对F2抗、感分离群体和F2:3家系进行抗病鉴定和遗传分析。结果表明,济麦22携带1个显性抗白粉病基因, 暂被命名为PmJM22。运用SSR和EST标记及分离群体分组分析法(bulked segregant analysis, BSA),将其定位在2BL染色体上,与4个SSR和5个EST标记间的连锁距离为7.7 cM (Xwmc149)到31.3 cM (Xbarc101)。通过分析2BL上其他抗白粉病基因的来源、染色体位置和抗性反应,认为PmJM22不同于Pm6、Pm26、Pm33和MlZec1。  相似文献   

20.
The powdery mildew resistance gene Pm6, transferred to common wheat from the tetraploid Triticum timopheevii, is effective in most epidemic areas for powdery mildew in China. RFLP probe BCD135 was previously associated with Pm6. In the present research, four STS primers (NAU/STSBCD135-1, NAU/STSBCD135-2, STS003 and STS004) were designed from the sequence data of BCD135. These primers were used for PCR amplification using the genomic DNA of resistant near-isogenic lines with Pm6 and their recurrent parent, cv. Prins. No polymorphic product was observed using primers STS003 and STS004; however, primers NAU/STSBCD135-1 and NAU/STSBCD135-2 amplified two and one bands, respectively, polymorphic between the resistant near-isogenic-lines and Prins. The two primers were then used to amplify the F2 population from the cross IGV1-465 (FAO163b/7*Prins) × Prins. The amplification and the powdery mildew resistance identification data were analyzed using the software Mapmaker 3.0. The results indicated that both NAU/STSBCD135-1 and NAU/STSBCD135-2 were closely linked to Pm6 with a genetic distance of 0.8 cM. A total of 175 commercial varieties without Pm6 from different ecological areas of China were tested using marker NAU/STSBCD135-2 and none of them amplified the 230 bp-specific band. This marker thus has high practicability and can be used in MAS of Pm6 in wheat breeding programs for powdery mildew resistance. Jianhui Ji and Bi Qin contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号