首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The ocean is an electrically conducting fluid that generates secondary magnetic fields as it flows through Earth's main magnetic field. Extracting ocean flow signals from remote observations has become possible with the current generation of satellites measuring Earth's magnetic field. Here, we consider the magnetic fields generated by the ocean lunar semidiurnal (M2) tide and demonstrate that magnetic fields of oceanic origin can be clearly identified in satellite observations.  相似文献   

3.
Recent space-geodetic observations have revealed daily and subdaily variations in the Earth's rotation rate. Although spectral analysis suggests that the variations are primarily of tidal origin, comparisons to previous theoretical predictions based on various ocean models have been less than satisfactory. This disagreement is partly caused by deficiencies in physical modeling. Rotation predictions based on a reliable tidal-height model, with corresponding tidal currents inferred from a modified form of Laplace's momentum equations, yield predictions of tidal variations in Universal Time that agree with very long baseline interferometer observations to 2 microseconds. This agreement resolves a major discrepancy between theory and observation and establishes the dominant role of oceanic tides for inducing variation in the Earth's rotation at these frequencies.  相似文献   

4.
Simulation of recent southern hemisphere climate change   总被引:4,自引:0,他引:4  
Recent observations indicate that climate change over the high latitudes of the Southern Hemisphere is dominated by a strengthening of the circumpolar westerly flow that extends from the surface to the stratosphere. Here we demonstrate that the seasonality, structure, and amplitude of the observed climate trends are simulated in a state-of-the-art atmospheric model run with high vertical resolution that is forced solely by prescribed stratospheric ozone depletion. The results provide evidence that anthropogenic emissions of ozonedepleting gases have had a distinct impact on climate not only at stratospheric levels but at Earth's surface as well.  相似文献   

5.
The geological record of ocean acidification   总被引:1,自引:0,他引:1  
Ocean acidification may have severe consequences for marine ecosystems; however, assessing its future impact is difficult because laboratory experiments and field observations are limited by their reduced ecologic complexity and sample period, respectively. In contrast, the geological record contains long-term evidence for a variety of global environmental perturbations, including ocean acidification plus their associated biotic responses. We review events exhibiting evidence for elevated atmospheric CO(2), global warming, and ocean acidification over the past ~300 million years of Earth's history, some with contemporaneous extinction or evolutionary turnover among marine calcifiers. Although similarities exist, no past event perfectly parallels future projections in terms of disrupting the balance of ocean carbonate chemistry-a consequence of the unprecedented rapidity of CO(2) release currently taking place.  相似文献   

6.
Stochastic late accretion to Earth, the Moon, and Mars   总被引:1,自引:0,他引:1  
Core formation should have stripped the terrestrial, lunar, and martian mantles of highly siderophile elements (HSEs). Instead, each world has disparate, yet elevated HSE abundances. Late accretion may offer a solution, provided that ≥0.5% Earth masses of broadly chondritic planetesimals reach Earth's mantle and that ~10 and ~1200 times less mass goes to Mars and the Moon, respectively. We show that leftover planetesimal populations dominated by massive projectiles can explain these additions, with our inferred size distribution matching those derived from the inner asteroid belt, ancient martian impact basins, and planetary accretion models. The largest late terrestrial impactors, at 2500 to 3000 kilometers in diameter, potentially modified Earth's obliquity by ~10°, whereas those for the Moon, at ~250 to 300 kilometers, may have delivered water to its mantle.  相似文献   

7.
Postseismic viscoelastic rebound   总被引:3,自引:0,他引:3  
Nur A  Mavko G 《Science (New York, N.Y.)》1974,183(4121):204-206
The sudden appearance of a dislocation, representing an earthquake, in an elastic layer (the lithosphere) overriding a viscoelastic half space (the asthenosphere) is followed by time-dependent surface deformation, which is very similar to in situ postseismic deformation. The spectacular postseismic deformation following the large Nankaido earthquake of 1946 yields for the asthenosphere a viscosity of 5 x 10(19) poise and a 50 percent relaxation of the shear modulus. Large thrust type earthquakes may provide, in the future, a new method for exploring the rheology of the earth's upper mantle.  相似文献   

8.
T Okuchi 《Science (New York, N.Y.)》1997,278(5344):1781-1784
Because of dissolution of lighter elements such as sulfur, carbon, hydrogen, and oxygen, Earth's outer core is about 10 percent less dense than molten iron at the relevant pressure and temperature conditions. To determine whether hydrogen can account for a major part of the density deficit and is therefore an important constituent in the molten iron outer core, the hydrogen concentration in molten iron was measured at 7.5 gigapascals. From these measurements, the metal-silicate melt partitioning coefficient of hydrogen was determined as a function of temperature. If the magma ocean of primordial Earth was hydrous, more than 95 mole percent of H2O in this ocean should have reacted with iron to form FeHx, and about 60 percent of the density deficit is reconciled by adding hydrogen to the core.  相似文献   

9.
Anthropogenic warming of Earth's climate system   总被引:3,自引:0,他引:3  
We compared the temporal variability of the heat content of the world ocean, of the global atmosphere, and of components of Earth's cryosphere during the latter half of the 20th century. Each component has increased its heat content (the atmosphere and the ocean) or exhibited melting (the cryosphere). The estimated increase of observed global ocean heat content (over the depth range from 0 to 3000 meters) between the 1950s and 1990s is at least one order of magnitude larger than the increase in heat content of any other component. Simulation results using an atmosphere-ocean general circulation model that includes estimates of the radiative effects of observed temporal variations in greenhouse gases, sulfate aerosols, solar irradiance, and volcanic aerosols over the past century agree with our observation-based estimate of the increase in ocean heat content. The results we present suggest that the observed increase in ocean heat content may largely be due to the increase of anthropogenic gases in Earth's atmosphere.  相似文献   

10.
The month-to-month variability of tropical temperatures is larger in the troposphere than at Earth's surface. This amplification behavior is similar in a range of observations and climate model simulations and is consistent with basic theory. On multidecadal time scales, tropospheric amplification of surface warming is a robust feature of model simulations, but it occurs in only one observational data set. Other observations show weak, or even negative, amplification. These results suggest either that different physical mechanisms control amplification processes on monthly and decadal time scales, and models fail to capture such behavior; or (more plausibly) that residual errors in several observational data sets used here affect their representation of long-term trends.  相似文献   

11.
Compositional stratification in the deep mantle   总被引:2,自引:0,他引:2  
A boundary between compositionally distinct regions at a depth of about 1600 kilometers may explain the seismological observations pertaining to Earth's lower mantle, produce the isotopic signatures of mid-ocean ridge basalts and oceanic island basalts, and reconcile the discrepancy between the observed heat flux and the heat production of the mid-ocean ridge basalt source region. Numerical models of thermochemical convection imply that a layer of material that is intrinsically about 4 percent more dense than the overlying mantle is dynamically stable. Because the deep layer is hot, its net density is only slightly greater than adiabatic and its surface develops substantial topography.  相似文献   

12.
利用2002-2014年的公海柔鱼类(Ommastrephidae)渔场的渔获资料结合同期海洋环境数据,采用渔获产量重心算法和广义加性模型(GAM)方法,分析了北太平洋巴特柔鱼(Ommastrephes bartramii)、西南大西洋阿根廷滑柔鱼(Illex argentinus Castellanos)和东太平洋秘鲁茎柔鱼(Dosidicus gigas)三大公海柔鱼类渔场重心的变化趋势,探讨了主要海洋环境因子(海表温度、叶绿素a浓度和海流)对渔场的影响关系。结果表明:北太平洋柔鱼渔场高产的最适海表温度区间为15~20℃,最适叶绿素a浓度为0.20~0.60 mg/m3;西南大西洋的阿根廷滑柔鱼渔场最适海表为9~14℃,最适叶绿素a浓度为0.60~1.65 mg/m3;东太平洋秘鲁茎柔鱼渔场最适海表温度为18~23℃,最适叶绿素a浓度为0.16~0.40 mg/m3。GAM模型检验结果显示海表温度与资源丰度有显著的相关性,对中心渔场具有关键的指示作用。渔场位置一般出现在不同海流流隔的交汇区,研究认为可根据渔场变化的海况信息及时调整渔场的作业区域,提高生产效率。  相似文献   

13.
Rheology of the upper mantle: a synthesis   总被引:4,自引:0,他引:4  
Karato S  Wu P 《Science (New York, N.Y.)》1993,260(5109):771-778
Rheological properties of the upper mantle of the Earth play an important role in the dynamics of the lithosphere and asthenosphere. However, such fundamental issues as the dominant mechanisms of flow have not been well resolved. A synthesis of laboratory studies and geophysical and geological observations shows that transitions between diffusion and dislocation creep likely occur in the Earth's upper mantle. The hot and shallow upper mantle flows by dislocation creep, whereas cold and shallow or deep upper mantle may flow by diffusion creep. When the stress increases, grain size is reduced and the upper mantle near the transition between these two regimes is weakened. Consequently, deformation is localized and the upper mantle is decoupled mechanically near these depths.  相似文献   

14.
Earth's modern climate, characterized by polar ice sheets and large equator-to-pole temperature gradients, is rooted in environmental changes that promoted Antarctic glaciation ~33.7 million years ago. Onset of Antarctic glaciation reflects a critical tipping point for Earth's climate and provides a framework for investigating the role of atmospheric carbon dioxide (CO(2)) during major climatic change. Previously published records of alkenone-based CO(2) from high- and low-latitude ocean localities suggested that CO(2) increased during glaciation, in contradiction to theory. Here, we further investigate alkenone records and demonstrate that Antarctic and subantarctic data overestimate atmospheric CO(2) levels, biasing long-term trends. Our results show that CO(2) declined before and during Antarctic glaciation and support a substantial CO(2) decrease as the primary agent forcing Antarctic glaciation, consistent with model-derived CO(2) thresholds.  相似文献   

15.
Atmospheric black carbon (BC) warms Earth's climate, and its reduction has been targeted for near-term climate change mitigation. Models that include forcing by BC assume internal mixing with non-BC aerosol components that enhance BC absorption, often by a factor of ~2; such model estimates have yet to be clearly validated through atmospheric observations. Here, direct in situ measurements of BC absorption enhancements (E(abs)) and mixing state are reported for two California regions. The observed E(abs) is small-6% on average at 532 nm-and increases weakly with photochemical aging. The E(abs) is less than predicted from observationally constrained theoretical calculations, suggesting that many climate models may overestimate warming by BC. These ambient observations stand in contrast to laboratory measurements that show substantial E(abs) for BC are possible.  相似文献   

16.
NASA global satellite data provide observations of Earth's albedo, i.e., the fraction of incident solar radiation that is reflected back to space. The satellite data show that the last four years are within natural variability and fail to confirm the 6% relative increase in albedo inferred from observations of earthshine from the moon. Longer global satellite records will be required to discern climate trends in Earth's albedo.  相似文献   

17.
Spreading of the ocean floor: new evidence   总被引:3,自引:0,他引:3  
Vine FJ 《Science (New York, N.Y.)》1966,154(3755):1405-1415
It is suggested that the entire history of the ocean basins, in terms of oceanfloor spreading,is contained frozen in the oceanic crust. Variations in the intensity and polarity of Earth's magnetic field are considered to be recorded in the remanent magnetism of the igneous rocks as they solidified and cooled through the Curie temperature at the crest of an oceanic ridge, and subsequently spread away from it at a steady rate. The hypothesis is supported by the extreme linearity and continuity of oceanic magnetic anomalies and their symmetry about the axes of ridges. If the proposed reversal time scale for the last 4 million years is combined with the model, computed anomaly profiles show remarkably good agreement with those observed, and one can deduce rates of spreading for all active parts of the midoceanic ridge system for which magnetic profilesor surveys are available. The rates obtained are in exact agreement with those needed to account for continental drift. An exceptionally high rate of spreading (approximately 4.5 cm/year) in the South Pacific enables one to deduce by extrapolation considerable details of the reversal time scale back to 11.5 million years ago. Again, this scale can be applied to other parts of the ridge system. Thus one isled to the suggestion that the crest of the East Pacific Rise in the northeast Pacific has been overridden and modified by the westward drift of North America, with the production of the anomalous width and unique features of the American cordillera in the western United States. The oceanicmagnetic anomalies also indicate that there was a change in derection of crustal spreading in this region during Pliocene time from eastwest to southeast-northwest. A profile from the crest to the boundary of the East Pacific Rise, and the difference between axial-zone and flank anomalies over ridges, suggest increase in the frequency of reversal of Earth's magnetic field, together, possibly, with decrease in its intensity, approximately 25 million years ago. Within the framework of ocean-floor spreading, it is suggested that magnetic anomaliesmay indicate the nature of oceanic fracture zones and distinguish the parts of the ridge system that are actively spreading. Thus data derived during the past year lend remarkable support to thehypothesis that magnetic anomalies may reveal the history of the ocean basins.  相似文献   

18.
Phonon density of states of iron up to 153 gigapascals   总被引:4,自引:0,他引:4  
We report phonon densities of states (DOS) of iron measured by nuclear resonant inelastic x-ray scattering to 153 gigapascals and calculated from ab initio theory. Qualitatively, they are in agreement, but the theory predicts density at higher energies. From the DOS, we derive elastic and thermodynamic parameters of iron, including shear modulus, compressional and shear velocities, heat capacity, entropy, kinetic energy, zero-point energy, and Debye temperature. In comparison to the compressional and shear velocities from the preliminary reference Earth model (PREM) seismic model, our results suggest that Earth's inner core has a mean atomic number equal to or higher than pure iron, which is consistent with an iron-nickel alloy.  相似文献   

19.
Helium loss, tectonics, and the terrestrial heat budget   总被引:1,自引:0,他引:1  
It has been known for the last decade that primordial helium incorporated in Earth at the time of its formation is still being degassed during the formation of new ocean crust at spreading ocean ridges. It is now clear that somewhat contrary to expectation, substantial degassing is also taking place through the continental crust. In western Europe the escape of mantle volatiles seems to occur largely where the crust is undergoing active extension. Although it is known that melting is the principal process for extracting and concentrating helium from the mantle at ocean ridges, the equivalent subcontinental process remains poorly understood. The same elements that are responsible for most of Earth's radiogenic heating (uranium and thorium) are also responsible for the generation of radiogenic helium. The present rate of mantle heat loss, however, is out of equilibrium with the rate of helium loss-too large by about a factor of 20. Either radiogenic helium is accumulated in the mantle while heat escapes or current models for the bulk chemistry of Earth are in error and much of the terrestrial heat loss is nonradiogenic.  相似文献   

20.
An extensive plume of water enriched with helium-3 has been discovered in the deep Pacific Ocean at latitude 15 degrees S on the East Pacific Rise. In the core of the plume, at a depth of 2500 meters over the ridge crest, the helium-3/helium-4 ratio is 50 percent higher than the ratio in atmospheric helium, indicating a strong injection of mantle or primordial helium at the spreading center axis through local hydrothermal systems. The helium-3 plume is completely absent east of the rise, but it can be traced over 2000 kilometers to the west above a newly observed physical feature: a density discontinuity here caled the "ridge-crest front." The injected plume provides a unique deep-sea tracer with an asymmetric distribution which shows that the deep circulation across the rise is from east to west. The striking intensity and lateral extent of this helium-3 anomaly, compared to observations at known oceanic hydrohrmal sites, suggest that the largest hydrothermal fields in the ocean are yet to be discovered and that they will be found near 15 degrees S on the East Pacific Rise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号