首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Temporal changes in soil chemical and nutritional properties were evaluated in a long-term experiment conducted on Alfisols in West Africa. Effects of land use and cropping duration on soil chemical properties at 0–5 cm and 5–10 cm depths were evaluated for five treatments: (1) alley cropping with Leucaena leucocephala established on the contour at 4-m intervals; (2) mucuna (Mucuna utilis) fallowing for 1 year followed by maize (Zea mays)-cowpea (Vigna unguiculata) cultivation for 2 years on severely degraded land; (3) fallowing with mucuna on moderately degraded soils; (4) ley farming involving growing improved pastures for 1 year, grazing for the second year, and growing maize-cowpea for the third year on severely degraded land; (5) ley farming on moderately degraded soils. Soil chemical properties were measured once every year from 1982 through 1986 during the dry season, and included pH, soil organic carbon (SOC), total soil nitrogen (TSN), Bray-P, exchangeable cations, and effective cation exchange capacity (CEC). Regardless of the cropping system treatments, soil chemical quality decreased with cultivation time. The rate of decrease at 0–5 cm depth was 0·23 units year−1 for pH, 0·05 per cent year−1 for SOC, 0·012 per cent year−1 for TSN, 0·49 cmol kg−1 year−1 for Ca2+, 0·03 cmol kg−1 year−1 for Mg2+, 0·018 cmol kg−1 year−1 for K+, and 0·48 cmol kg−1 year−1 for CEC. Although there was also a general decrease in soil chemical quality at 5–10 cm depth, the trends were not clearly defined. In contrast to the decrease in soil properties given above, there was an increase in concentration at 0–5 cm depth of total acidity with cultivation time at the rate of 0·62 cmol kg−1 year−1, and of Mn3+ concentration at the rate of 0·081 cmol kg−1 year−1. Continuous cropping also increased the concentration of Bray-P at 0–5 cm depth due to application of phosphatic fertilizer. Trends in soil chemical properties were not clearly defined with regards to cropping system treatments. In general, however, soil chemical properties were relatively favorable in ley farming and mucuna fallowing treatments imposed on moderately degraded soils. Results are discussed in terms of recommended rates of fertilizer use, in view of soil test values, expected yields, and critical limits of soil properties.  相似文献   

2.
Tillage and soil management effects on soil physical and chemical qualities were monitored for eight years from 1979 through 1987 in a long-term experiment involving 17 consecutive crops of maize. Effects of no-till and plow-till methods of seedbed preparation were compared at two levels of residue management (residue removed versus residue returned) and two levels of fertilizer application (without fertilizer versus recommended fertilizer). Soil chemical quality was better for no-till compared with plow-till methods. Mean soil chemical properties of 0–5 cm depth for no-till and plow-till treatments respectively were 18·6 g kg−1 versus 12·2 g kg−1 for soil organic carbon content, 1·9 g kg−1 versus 1·1 g kg−1 for total soil nitrogen, 0·14 units yr−1 versus 0·18 units yr−1 rate of decline in soil pH, 63·1 mg kg−1 versus 31·8 mg kg−1 for Bray-P, and 6·0 cmol kg−1 versus 2·3 cmol kg−1 for Ca+2. Soil chemical quality consistently declined, although the rate of decline differed among tillage and fertilizer treatments. There were also differences in soil physical quality. Soil bulk density increased with cultivation duration in both tillage methods, and use of furadan in no-till plots drastically increased soil bulk density. Infiltration rate and soil moisture retention at all suctions was consistently more for no-till than plow-till treatments. Decline in soil quality with cultivation was reflected in decrease in crop yields. © 1998 John Wiley & Sons, Ltd.  相似文献   

3.
This paper evaluates soil loss due to water erosion in an area of 32,362 ha with a predominant land use of vineyards (Alt Penedès–Anoia region, Catalonia, Spain). The Soil and Water Assessment Tool (SWAT) was used incorporating daily climatic data for the period 2000–2010 and also detailed soil and land use maps. Particular attention was given to the universal soil loss equation cover and management factor (C factor) of vineyards, with a minimum value of 0·15 being determined for this crop. The model was calibrated using daily flow data for the year 2010, which yielded satisfactory results. Even so, significant differences were obtained on days with high‐intensity rainfall events, when the model overestimated runoff and peak discharge. In these vineyards, the simulated average soil losses per sub‐basin ranged between 0·13 and 9·73 Mg ha−1 y−1, with maximum values of between 26·32 and 42·60 Mg ha−1 y−1 registered in fine‐loamy soils developed on unconsolidated Tertiary marls. Other findings were related to problems associated with SWAT calibration under Mediterranean conditions characterised by major climate variability and high‐intensity rainfall events. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Soil organic carbon (SOC) pools are important for maintaining soil productivity and reducing the net CO2 loading of the atmosphere. An 18‐year old long‐term field experiment involving pearl millet‐cluster bean‐castor sequence was conducted on an Entisol in western India to examine the effects of chemical fertilizers and manuring on carbon pools in relation to crop productivity and C sequestration. The data showed that even the addition of 33.5 Mg ha−1 C inputs through crop residues as well as farm yard manure could not compensate the SOC depletion by oxidation and resulted in the net loss of 4.4 Mg C ha−1 in 18 years. The loss of SOC stock in the control was 12 Mg C ha−1. Conjunctive use of chemical fertilizers along with farm yard manure produced higher agronomic yields and reduced the rate of SOC depletion. The higher average seed yields of pearl millet (809 kg ha−1), cluster bean (576), and castor (827) over six cropping seasons were obtained through integrated use of fertilizers and manure. For every Mg increase in profile SOC stock, there was an overall increase of 0.46 Mg of crop yield, comprising increase in individual yield of pearl millet (0.17 Mg ha−1 y−1 Mg−1 SOC), cluster bean (0.14) and castor (0.15). The magnitude of SOC build up was proportional to the C inputs. Carbon pools were significantly correlated with SOC, which increased with application of organic amendments. Threshold C input of 3.3 Mg C ha−1 y−1 was needed to maintain the SOC stock even at the low antecedent level. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Spatiotemporal heterogeneity of soil available nitrogen (AN) (sum of NO3–N and NH4+–N) is the essential basis for soil management and highly correlates to crop yield. Both geostatistical and traditional analyses were used to describe the spatiotemporal distribution of AN in the 0–20‐cm soil depth on typical Mollisol slopes (S1 and S2) in Northeast China. The concentration of NO3–N dynamics at slope positions was typically opposite to NH4+–N. The peak values of AN typically moved from the summit of the slope to the bottom from spring to autumn and were mainly influenced by the content of NO3–N (S1, 7·9–18·9 mg kg−1; S2, 1·2–103·6 mg kg−1), both of NO3–N (S1, 3·9–8·3 mg kg−1; S2, 2·2–28·0 mg kg−1) and NH4+–N (S1, 21·4–30·5 mg kg−1; S2, 2·1–23·3 mg kg−1), and NH4+–N (S1, 10·5–28·9 mg kg−1; S2, 5·0–39·0 mg kg−1) in the seedling stage, vegetative growth stage, and reproductive growth stage, respectively. The spatial autocorrelation of AN was strong and was mainly influenced by structural factors during crop growth stages. This was mainly determined by soil erosion–deposition (SED) and soil temperature–moisture (STM) in the seedling stage; this was also mainly influenced by SED, STM, crop type, and crop growth in the vegetative growth stage and by early STM and early SED in the reproductive growth stage. Generally, the content of AN, NO3–N, and NH4+–N on the whole slope was mainly determined by the early SED and local fertilizer application, while their spatiotemporal heterogeneity, especially the evenness, was mainly changed by SED, STM, crop growth, and crop types on the slope scale. In order to increase more crop yields, additional N fertilizer application on both the summit and the bottom during the vegetative growth stage and conservation tillage systems or additional soil amendments on the back slopes was necessary. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Restoration of degraded soils is a development strategy to reduce desertification, soil erosion and environmental degradation, and alleviate chronic food shortages with great potential in sub‐Saharan Africa (SSA). Further, it has the potential to provide terrestrial sinks of carbon (C) and reduce the rate of enrichment of atmospheric CO2. Soil organic carbon (SOC) contents decrease by 0 to 63 per cent following deforestation. There exists a high potential for increasing SOC through establishment of natural or improved fallow systems (agroforestry) with attainable rates of C sequestration in the range of 0·1 to 5·3 Mg C ha−1 yr−1. Biomass burning significantly reduces SOC in the upper few centimeters of soil, but has little impact below 10 to 20 cm depth. The timing of burning is also important, and periods with large amounts of biomass available generally have the largest losses of SOC. In cultivated areas, the addition of manure in combination with crop residues and no‐till show similar rates of attainable C sequestration (0 to 0·36 Mg C ha−1 yr−1). Attainable rates of SOC sequestration on permanent cropland in SSA under improved cultivation systems (e.g. no‐till) range from 0·2 to 1·5 Tg C yr−1, while attainable rates under fallow systems are 0·4 to 18·5 Tg C yr−1. Fallow systems generally have the highest potential for SOC sequestration in SSA with rates up to 28·5 Tg C yr−1. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
Reclamation of disturbed soils is done with the primary objective of restoring the land for agronomic or forestry land use. Reclamation followed by sustainable management can restore the depleted soil organic carbon (SOC) stock over time. This study was designed to assess SOC stocks of reclaimed and undisturbed minesoils under different cropping systems in Dover Township, Tuscarawas County, Ohio (40°32·33′ N and 81°33·86′ W). Prior to reclamation, the soil was classified as Bethesda Soil Series (loamy‐skeletal, mixed, acid, mesic Typic Udorthent). The reclaimed and unmined sites were located side by side and were under forage (fescue—Festuca arundinacea Schreb. and alfa grass—Stipa tenacissima L.), and corn (Zea mays L.)—soybean (Glycine max (L.) Merr.) rotation. All fields were chisel plowed annually except unmined forage, and fertilized only when planted to corn. The manure was mostly applied on unmined fields planted to corn, and reclaimed fields planted to forage and corn. The variability in soil properties (i.e., soil bulk density, pH and soil organic carbon stock) ranged from moderate to low across all land uses in both reclaimed and unmined fields for 0–10 and 10–20 cm depths. The soil nitrogen stock ranged from low to moderate for unmined fields and moderate to high in some reclaimed fields. Soil pH was always less than 6·7 in both reclaimed and unmined fields. The mean soil bulk density was consistently lower in unmined (1·27 mg m−3 and 1·22 mg m−3) than reclaimed fields (1·39 mg m−3 and 1·34 mg m−3) planted to forage and corn, respectively. The SOC and total nitrogen (TN) concentrations were higher for reclaimed forage (33·30 g kg−1; 3·23 g kg−1) and cornfields (21·22 g kg−1; 3·66 g kg−1) than unmined forage (17·47 g kg−1; 1·98 g kg−1) and cornfield (17·70 g kg−1; 2·76 g kg−1). The SOC stocks in unmined soils did not differ among forage, corn or soybean fields but did so in reclaimed soils for 0–10 cm depth. The SOC stock for reclaimed forage (39·6 mg ha−1 for 0–10 cm and 28·6 mg ha−1 for 10–20 cm depths) and cornfields (28·3 mg ha−1; 32·2 mg ha−1) were higher than that for the unmined forage (22·7 mg ha−1; 17·6 mg ha−1) and corn (21·5 mg ha−1; 26·8 mg ha−1) fields for both depths. These results showed that the manure application increased SOC stocks in soil. Overall this study showed that if the reclamation is done properly, there is a large potential for SOC sequestration in reclaimed soils. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
Increase in atmospheric concentration of CO2 from 285 parts per million by volume (ppmv) in 1850 to 370 ppm in 2000 is attributed to emissions of 270 ± 30 Pg carbon (C) from fossil fuel combustion and 136 ± 55 Pg C by land‐use change. Present levels of anthropogenic emissions involve 6·3 Pg C by fossil fuel emissions and 1·8 Pg C by land‐use change. Out of the historic loss of terrestrial C pool of 136 ± 55 Pg, 78 ± 12 Pg is due to depletion of soil organic carbon (SOC) pool comprising 26 ± 9 Pg due to accelerated soil erosion. A large proportion of the historic SOC lost can be resequestered by enhancing the SOC pool through converting to an appropriate land use and adopting recommended management practices (RMPs). The strategy is to return biomass to the soil in excess of the mineralization capacity through restoration of degraded/desertified soils and intensification of agricultural and forestry lands. Technological options for agricultural intensification include conservation tillage and residue mulching, integrated nutrient management, crop rotations involving cover crops, practices which enhance the efficiency of water, plant nutrients and energy use, improved pasture and tree species, controlled grazing, and judicious use of inptus. The potential of SOC sequestration is estimated at 1–2 Pg C yr−1 for the world, 0·3–0·6 Pg C yr−1 for Asia, 0·2–0·5 Pg C yr−1 for Africa and 0·1–0·3 Pg C yr−1 for North and Central America and South America, 0·1–0·3 Pg C yr−1 for Europe and 0·1–0·2 Pg C yr−1 for Oceania. Soil C sequestration is a win–win strategy; it enhances productivity, improves environment moderation capacity, and mitigates global warming. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
This study analyzes effects of soil and water conservation (SWC) on soil quality and implications to climate change adaptation and mitigation in the Upper Blue Nile River Basin of Ethiopia by using the Anjeni watershed as a case study site. Disturbed and undisturbed soil samples were collected from two sub‐watersheds of Anjeni: the Minchet sub‐watershed (with SWC measures) and the Zikrie sub‐watershed (without SWC measures). Soil samples were taken from 30‐cm depth from five representative landscape positions and analyzed following the standard soil lab analysis procedures. The results show that soils from the conserved sub‐watershed had improved quality indicators compared with those from the non‐conserved site. Significant improvement due to SWC measures was observed in the soil hydrological [total moisture content (+5·43%), field capacity (+5·35%), and available water capacity (+4·18%)] and chemical [cation exchange capacity (+4·40 cmol(+) kg−1), Mg2+ (+1·90 cmol(+) kg−1), Na+ (+0·10 cmol(+) kg−1)] properties. SWC interventions significantly reduced soil erosion by 57–81% and surface runoff by 19–50% in the conserved sub‐watershed. Reduction in soil erosion can maintain the soil organic carbon stock, reduce the land degradation risks, and enhance the C sequestration potential of soils. Therefore, adoption of SWC measures can increase farmers' ability to offset emissions and adapt to climate change. However, SWC measures that are both protective and sufficiently productive have not yet been implemented in the conserved sub‐watershed. Therefore, it is important that SWC structures be supplemented with other biological and agronomic measures in conjunction with soil fertility amendments appropriate to site‐specific conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
为明确国产化盐碱地改良剂在重度盐碱地的施用效果,采用田间试验和室内分析相结合的方法,以牧草和绿肥兼用型紫花苜蓿为供试作物,研究重度盐碱地施用国产1号(2 250 kg·hm-2)、国产2号(7 960kg·hm-2)和脱硫石膏(22 500 kg·hm-2)3种改良剂对土壤理化性质、紫花苜蓿(Medicago sativa L.)出苗率和鲜草产量的影响,以及施用脱硫石膏对土壤(0~20 cm)和紫花苜蓿茎、叶中重金属含量的影响。结果表明,与对照(不施改良剂)相比,施用改良剂处理的紫花苜蓿出苗率提高18.4%~31.7%,3茬鲜草总产量提高18.9%~43.5%;土壤pH下降0.11~1.46,容重降低0.01~0.06 g·cm-3、孔隙率提高1.15%~10.15%,土壤理化性状得到改善;施用脱硫石膏和含有脱硫石膏的国产2号使土壤和紫花苜蓿中汞、铅和铬含量有显著提高,但土壤重金属含量未超过国家《农业土壤环境质量标准》GB15618—2001规定的二级土壤使用标准,紫花苜蓿中汞、镉、铅和铬的含量检测符合国家饲料卫生指标(GB13078—2001)的规定。本研究表明,3种盐碱地改良剂以国产2号的施用效果最好,可在同类型盐碱地大力推广应用。  相似文献   

11.
Field runoff plots were established in 1984 to evaluate the effects of slope length on runoff, soil erosion and crop yields on newly cleared land for four consecutive years (1984–1987) on an Alfisol at Ibadan, Nigeria. The experimental treatments involved six slope lengths (60 m to 10 m at 10-m increments) and two tillage methods (plough-based conventional tillage and a herbicide-based no-till method) of seedbed preparation. A uniform crop rotation of maize (Zea mays)/cowpeas (Vigna unguiculata) was adopted for all four years. An uncropped and ploughed plot of 25 m length was used as a control. The water runoff from the conventional tillage treatment was not significantly affected by slope length, but runoff from the no-till treatment significantly increased with a decrease in slope length. The average runoff from the no-till treatment was 1·85 per cent of rainfall for 60 m, 2·25 per cent for 40 m, 2·95 per cent for 30 m, 4·7 per cent for 20 m and 5·15 per cent for 10 m slope length. In contrast to runoff, soil erosion in the conventional tillage treatment decreased significantly with a decrease in slope length. For conventional tillage, the average soil erosion was 9·59 Mg ha−1 for 60 m, 9·88 Mg ha−1 for 50 m, 6·84 Mg ha−1 for 40 m, 5·69 Mg ha−1 for 30 m, 1·27 Mg ha−1 for 20 m and 2·19 Mg ha−1 for 10 m slope length. Because the no-till method was extremely effective in reducing soil erosion, there were no definite trends in erosion with regard to slope length. The average sediment load (erosion:runoff ratio) also decreased with a decrease in slope length from 66·3 kg ha−1 mm−1 for 60 m to 36·3 kg ha−1 mm−1 for 10 m slope length. The mean C factor (ratio of soil erosion from cropped land to uncropped control) also decreased with a decrease in slope length. Similarly, the erosion:crop yield ratio decreased with a decrease in slope length, and the relative decrease was more drastic in conventional tillage than in the no-till treatment. The slope length (L) and erosion relationship fits a polynomial function (Y=c+aL+bL2). Formulae are proposed for computing the optimum terrace spacing in relation to slope gradient and tillage method. © 1997 John Wiley & Sons, Ltd.  相似文献   

12.
Nearly all of Europe is affected by soil erosion. A major policy response is required to reverse the impacts of erosion in degraded areas, particularly in light of the current climate change and water crisis. Soil loss occurs not because of any lack of knowledge on how to protect soils, but a lack in policy governance. The average rate of soil loss by sheet and rill erosion in Europe is 2·46 Mg ha−1 yr−1. To mitigate the impacts of soil erosion, the European Union's Common Agricultural Policy has introduced conservation measures which reduce soil loss by water erosion by 20% in arable lands. Further economic and political action should rebrand the value of soil as part of ecosystem services, increase the income of rural land owners, involve young farmers and organize regional services for licensing land use changes. In a changing World of 9 billion people with the challenge of climate change, water scarcity and depletion of soil fertility, the agriculture economy should evolve taking into account environmental and ecological aspects. © 2016 The Authors Journal of Land Degradation & Development Published by John Wiley & Sons Ltd.  相似文献   

13.
Sustainability of mined‐land reclamation is of growing importance, with over 600,000 ha of the Appalachian coal region disturbed since 1977. Long‐term evaluation of soil under various reclamation strategies is also important. Aggregation and organic matter (OM) influence both soil structure and function and can be of use in evaluating reclaimed systems. The objective of this study was to examine these two parameters in a long‐term experiment (27 years) where various types (control‐CON, topsoil‐TS, sawdust‐SD and biosolids‐BS) and rates of soil amendments (biosolids: BS‐22, BS‐56, BS‐112 and BS‐224 Mg ha−1) have been applied. Macroaggregates (>250 µm) comprised >95% of total aggregation across all treatments, indicating the importance of this size class for soil development. Macroaggregate carbon (C) and nitrogen (N) pools contributed more to stabilization of OM in these soils than microaggregate pools. All BS treatments contained higher concentrations of aggregate C (96·8–127 g C kg−1 aggregate) and N (6·80–8·22 g N kg−1 aggregate) relative to CON; however, mass of C and N did not vary among application rates. Though few differences were expressed in C and N pool sizes among treatments, there was some indication that amendments impact reclaimed sites early in soil development (~ < 10 years), while vegetation may exert more dominance in subsequent years. It is important to select appropriate management strategies to favor not only the establishment of desirable vegetation but also preservation of soil macroaggregate structure to improve long‐term nutrient supply, physical soil properties and potential C‐sequestration in reclaimed soils. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Effects of six slope lengths, 60 m to 10 m with 10-m increments, on soil physical properties were evaluated for plough-based conventional till and no-till seedbed preparation on field runoff plots for three consecutive years from 1984 to 1987. Soil physical properties measured included texture, bulk density, infiltration capacity, and soil moisture retention characteristics. Conventional till treatment caused a rapid increase in soil bulk density and penetration resistance, and decrease in available water capacity and equilibrium infiltration rate. Gravel content increased with cultivation duration. Soil bulk density of 0–5 cm depth was 1·20 Mg m−3 for 1984, 1·39 Mg m−3 for 1985 and 1·46 Mg m−3 for 1986 for conventional till; and 1·13 Mg m−3 for 1984, 1·33 Mg m−3 for 1985, and 1·27 Mg m−3 for 1986 for the no-till treatment. The penetration resistance of the no-till treatment was relatively low and increased with cultivation duration. Mean penetration resistance for 0–5 cm depth was 2·2 kg cm−2 in 1984, 2·71 kg cm−2 in 1985, and 3·79 kg cm−2 in 1986. The available water capacity decreased in both tillage methods without any consistent trends with regard to slope length. The equilibrium infiltration rate declined drastically for long slopes and conventional till methods. The data support the conclusion that these soils should be managed with short slope lengths and a no-till method of seedbed preparation. © 1997 John Wiley & Sons, Ltd.  相似文献   

15.
Development of alternative sources through wastewater reuse is important to meet water demands in arid regions. However, effects of wastewater irrigation on soil properties and crop performance must be evaluated before advocating its widespread use. Objectives of this study were to evaluate: (i) effects of prior evaporative disposal of saline‐sodic blowdown water (BW) on soil (fine‐loamy, mixed, and thermic Typic Calciorthods) properties in the disposal area, and (ii) effects of flood irrigation with three water qualities (control, BW 1X, and BW 2X) on soil salinity and alfalfa performance using a greenhouse soil column study (soil collected from same study area as objective (i)). Results indicated that although prior land disposal of BW had increased salinity and sodicity of soil, they were within the tolerance limits of the intended crop, alfalfa. Mass balance calculations indicated measured (15·6 Mg ha−1) and calculated (13·2 Mg ha−1) salt accumulation at the test site used for evaporative disposal were similar. Alfalfa grown using BW under greenhouse conditions produced prime quality hay and biomass yield similar to the control treatment (8·3 g column−1 vs. 10·5 g column−1 in control). Although 3·6 years equivalent of flood irrigation with BW 1X did not result in saline soil (BW 1X irrigated soils EC ranged from 2·2 to 3·5 dS m−1), BW 2X irrigation resulted in saline soils. Sodicities of irrigated soils were greater in fine textured deep soils than coarse textured surface soils (e.g., SAR of 6·1 at 0–5 cm vs. 19·5 mmol1/2 L−1/2 at 30–60 cm in BW 1X), indicating the need for high solubility Ca amendments for long‐term irrigation with BW on fine texture soils within the soil profile. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
The effect of soil management and land use change are of interest to the sustainable land management for improving the environment and advancing food security in developing countries. Both anthropogenic changes and natural processes affect agriculture primarily by altering soil quality. This paper reviews and synthesizes the available literatures related to the influence of soil management and land use changes on soil carbon (C) stock in Ethiopia. The review shows that topsoil C stock declines approximately 0–63%, 0–23%, and 17–83% upon land use conversion from forest to crop land, to open grazing, and to plantation, respectively. An increase of 1–3% in soil C stock was observed within 10 years of converting open grazed land to protected enclosures. However, there was a little change in soil C stock below 20 cm depth. There is a large potential of increasing SOC pool with adoption of land restorative measures. Total potential of soil C sequestration with the adoption of restoration measures ranges 0·066–2·2 Tg C y−1 on rain‐fed cropland and 4·2–10·5 Tg C y−1 on rangeland. Given large area and diverse ecological conditions in Ethiopia, research data available in published literature are rather scanty. Therefore, researchable priorities identified in this review are important. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Agricultural by-products applied as soil amendments have the potential to improve crop production on low organic matter (OM) soils. This two-year study investigated the use of two readily available sugarcane (Saccharum spp.) milling by-products, mill mud, and mill ash, as soil amendments to improve first sugarcane crop (plant cane) and subsequent crop (first ratoon) grown on a sandy Spodosol. Sugarcane was grown in lysimeters receiving mill mud, mill ash, and a 50:50 (v:v) mill mud to mill ash mix. Amendments were applied at low, medium, and high application rates (5, 10, and 15 cm depths, respectively) and then incorporated 30 cm deep. Amendment effects on plant nutrition, soil characteristics, and crop yield were determined. High rate applied mill mud and mill ash had the highest soil OM content for both years and soil OM did not significantly change between crops for all treatments except for high rate mill mud, which increased the second year (ratoon crop). Leaf nutrient levels for nitrogen (N), iron (Fe), and copper (Cu) for all treatments both years were insufficient; nutrient levels for magnesium (Mg), manganese (Mn), and silicon (Si) were within marginal to sufficient range for all treatments both years. All amendments produced significantly higher biomass and sucrose yields for plant cane and first ratoon crops compared to the control. Mill ash treatments produced the greatest increase in sucrose and biomass yields from plant cane to ratoon crops, which corresponded with an increase in potassium (K) in leaf tissue. However, mid and high rates of mix produced the highest sugarcane biomass and sucrose yields for the both the plant cane and ratoon crops.  相似文献   

18.
Assessments of the effects of deforestation, post-clearance tillage methods and farming systems treatments on soil properties were made from 1978 through 1987 on agricultural watersheds near Ibadan, southwestern Nigeria. These experiments were conducted in two phases: Phase I from 1978 through 1981 and Phase II from 1983 to 1987, with 1 year (1982) as a transition phase when all plots were sown with mucuna (Mucuna utilis). There were six treatments in Phase I involving combinations of land clearing and tillage methods: (1) manual clearing with no-till (MC-NT); (2) manual clearing with plough-till (MC-PT); (3) shear-blade clearing with no-till (SB-NT); (4) tree-pusher/root rake clearing with no-till (TP-NT); (5) tree-pusher/root-rake clearing with plough-till (TP-PT); (6) traditional farming (TF). The six treatments were replicated twice in a completely randomized design. The traditional treatment of Phase I was discontinued during Phase II. The five farming systems studied during Phase II with a no-till system in all treatments were: (1) alley cropping with Leucaena leucocephala established on the contour at 4-m intervals; (2) and (3) fallowing with Mucuna utilis on severely degraded and moderately degraded watersheds, respectively, for 1 year followed by maize-cowpea rotation for another; (4) and (5) ley farming involving establishment of pasture in the first year on severely and moderately degraded plots, respectively, controlled grazing in the second year, and growing maize (Zea mays)-cowpea (Vigna unguiculata) in the third year. All treatments, imposed on watersheds of 2–4 ha each, were replicated twice. The soil properties analyzed were particle size distribution, total aggregation and mean weight diameter of aggregates, soil bulk density, penetrometer resistance, water retention characteristics, infiltration capacity and saturated hydraulic conductivity. These properties were measured under the forest cover in 1978, and once every year during the dry season thereafter during Phases I and II. Prior to deforestation, mean soil bulk density was 0·72 Mg m−3 and 1·30 Mg m−3, soil penetration resistance was 32·4 KPa and 90·7 KPa, and mean weight diameter of aggregates was 3·7 mm and 3·2 mm for 0–5 cm and 5–10 cm depths, respectively. The infiltration rate was excessive (54–334 cm hr−1) and saturated hydraulic conductivity was rapid (166–499 cm hr−1) under the forest cover. Furthermore, water transmission properties varied significantly even over short distances of about 1 m. Deforestation and cultivation increased soil bulk density and penetration resistance but decreased mean weight diameter of aggregates. One year after deforestation in 1980, mean soil bulk density was 1·41 Mg m−3 for 0–5 cm depth and 1·58 Mg m−3 for 5–10 cm depth. Soil bulk density and penetration resistance were generally higher for NT than for PT methods, and the penetration resistance was extremely high in all treatments by 1985. During Phase II, soil bulk density was high during the grazing cycle of the ley farming treatment. Sand content at 0–5 cm depth increased and clay content decreased with cultivation duration. Soon after deforestation, saturated hydraulic conductivity and equilibrium infiltration rate in cleared and cultivated land declined to only 20–30 per cent of that under forest. Mean saturated hydraulic conductivity following deforestation was 46·0 cm hr−1 for 0–5 cm depth and 53·7 cm hr−1 for 5–10 cm depth. Further, infiltration rate declined with deforestation and cultivation duration in all cropping systems treatments. During Phase I, mean infiltration rate was 115·8 cm hr−1 under forest cover in 1978, 20·9 cm hr−1 in 1979, 17·4 cm hr−1 in 1980 and 20·9 cm hr−1 in 1981. During Phase II, mean infiltration rate was 8·5 cm hr−1 in 1982, 11·9 cm hr−1 in 1983, 11·0 cm hr−1 in 1984, 11·3 cm hr−1 in 1985 and 5·3 cm hr−1 in 1986. Infiltration rate was generally high in ley farming and mucuna fallowing treatments. Natural fallowing drastically improved the infiltration rate from 19·2 cm hr−1 in 1982 to 193·2 cm hr−1 in 1986, a ten-fold increase within 5 years of fallowing. High-energy soil water retention characteristics in Phase I were affected by those treatments that caused soil compaction by mechanized clearing and no-till systems. Soil water retention at 0·01 MPa potential in 1979 was 19·2 per cent (gravimetrics) for SB, 17·9 per cent for TP, 15·9 per cent for MC and 17·8 per cent for TF methods. With regards to tillage, soil water retention was 17·8 per cent for NT compared with 16·8 per cent for PT. During Phase II, water retention characteristics were not affected by the farming system treatments. Mean soil water retention (average of 4 years' data from 1982 to 1986) at 0·01 MPa for 0–5 cm depth was 16·6 per cent for alley cropping, 16·7 per cent for mucuna fallowing and 16·8 per cent for ley farming. Mean soil water retention for 1·5 MPa suction was 9·3 per cent for alley cropping, 8·7 per cent for mucuna fallowing, and 9·3 per cent for ley farming. Water retention at 1·5 MPa suction correlated with the clay and soil organic carbon content.  相似文献   

19.
ABSTRACT

Crop wastes or by-products can have the potential to be used as effective amendments to improve agricultural soil quality and/or crop yields subject to appropriate screening and testing. Sugarcane (Saccharum officinarum L.) waste by-products from an ethanol production plant, including boiler ash, filter cake, and vinasse, were applied as soil amendments at 5%, 10%, 20%, and 40% (w/w) to study the relationship between pH and organic matter (OM) on cadmium (Cd) bioavailability and adsorption via organic matter using the Cd sequential extraction procedure. Soil pH was significantly affected by aging of the treatment with boiler ash, filter cake, and vinasse. At the end of the experiment, the Cd concentrations with all treatments were mainly released in the first two extraction steps of the sequential procedure, i.e., most mobile and easily mobilized fractions. Pearson correlation analyses revealed a negative relationship between pH and bioavailable Cd and between OM and oxidizable Cd. The pH reduction induced by the amendments was a major factor affecting soil Cd bioavailability. The effect of OM on Cd fractionation could not be clearly observed and interpreted in this study.  相似文献   

20.
Land degradation is a global problem. Best management of degraded land can be done by evaluating the spatial variability of soil properties including chemical properties of degraded land and mapping such variations. Since, a significant portion of arable land in India is chemically degraded due to soil acidity; the present study was conducted to study the spatial variability of soil acidity (pH), electrical conductivity (EC), soil organic carbon (OC) content, exchangeable potassium (K+), calcium (Ca2+) and magnesium (Mg2+) contents in some cropped acid soils of India. A total of four hundred (one hundred from each series) representative surface (0–0.15 m depth) soil samples were collected from arable soils representing four soil series namely Hariharapur, Debatoli, Rajpora and Neeleswaram situated in Orissa, Jharkhand, Himachal Pradesh and Kerala states of India, respectively, and were analyzed. Soil acidity (pH between 3.90 and 6.45) showed a low variability, in contrast to other soil properties, which showed moderate variability. The coefficients of variation varied from 32.4 to 74.3, 31.2 to 50.9, 45.6 to 100, 71.9 to 93.0 and 59.0 to 79.8% for EC (mean between 0.05 and 0.09 dS m−1), OC (mean between 0.29 to 1.86%), exchangeable K+ (mean between 39.1 and 77.7 mg kg−1), Ca2+ (mean between 148 and 293 mg kg−1) and Mg2+ (mean between 111 and 191 mg kg−1), respectively. Soil pH and OC content were positively and significantly correlated with exchangeable K+, Ca2+ and Mg2+ content. Geostatistical analysis revealed that the best fit models were gaussian, exponential and spherical for different soil properties with moderate to strong spatial dependency. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号