首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Purpose: The aim of this study was to realize whether soil mulching, with different plastic mulch colors, is a suitable practice for the culture of pickling cucumber.

Materials and Methods: The crop was cultured or not with black, silver/black, white/black, and aluminum/black plastic films, treatments were evaluated in randomized complete block design, to determine their effect on soil temperature, gas exchange, nutrient concentration, growth, and fruit yield.

Results and Conclusions: Black, silver/black, and aluminum/black plastic mulches were higher (p?≤?0.05) in plant height, leaf area, and shoot dry weight than bare soil at 15 days after sowing, whose results were similar than using white/black film. Maximum, minimum, and mean soil temperatures were higher with all plastic mulches except for aluminum/black, in which the maximum soil temperature was similar to the one in bare soil. There was no difference in net photosynthesis and there was very little difference in nutrient concentration between plants in plastic mulches and plants in bare soil; however, early and total yield showed a higher (p?≤?0.05) yield in all plastic mulches, and lower with bare soil and white/black plastic mulch. Our results confirm that soil mulching impacts the pickling cucumber yield. We suggest a carefull selection of the color plastic mulch.  相似文献   

2.
Abstract

Iron (Fe) chlorosis is a common symptom in many soybean (Glycine max L. Merr.) producing areas throughout the United States. On the Blackland soils found in northeast Texas, Fe chlorosis occasionally appears during vegetative growth, but often abates by the time plants flower. However, it is not clear whether preplant additions of Fe will enhance soybean growth or yield on this soil or whether different sources of Fe give different responses. In a greenhouse study, soil from a pH 8.4 Houston Black clay (fine, smectitic, thermic Udic Haplusterts), with a DTPA‐extractable concentration of 11.7 mg Fe kg?1, was treated with FeSO4 (0, 3, 10, 30, and 100 ppm Fe), sodium ferric diethylenetriamine pentaacetate (FeDTPA) (0, 0.3, 1.0, 3, and 10 ppm Fe) or sodium ferric ethylenediamine‐di (o‐hydroxyphenylacetate) (FeEDDHA) (0, 0.3, 1.0, 3, and 10 ppm Fe). Pot size was 19 L and soil dry mass was 10 kg. Soybean (cv. Hutcheson) seed were planted in November 2000 and seedlings were thinned to three per pot at the first true leaf stage. The third uppermost fully expanded leaf of each plant was harvested at growth stage R3 for nutrient analysis. Between 20 and 100 days after planting, six nondestructive leaf chlorophyll readings were obtained from the third uppermost fully expanded leaf. Entire plants were harvested at R6 (mid podfill) for nutrient and biomass yield determination. Leaf blade Fe concentration ranged from 79 to 87 mg kg?1 in the untreated check plants to a high of 109 mg kg?1 for the 10 ppm FeDTPA‐Fe treatment, all of which were greater than the acknowledged critical level of 60 mg kg?1. No visible Fe‐deficiency symptoms appeared during the study. Chlorophyll (SPAD 502) values during the R3 to R5 growth stages were greater for all of the FeSO4 treatments than for the 0 ppm treatment. The 10 ppm FeDTPA‐Fe treatment and the 3 ppm FeEDDHA‐Fe treatment exhibited higher leaf chlorophyll readings than the untreated checks during the R3 to R5 growth stage. The average seed yield from the 12 Fe fertilized treatments at growth stage R6 was only 12% greater (not significant) than the untreated check. Total biomass (root plus shoot) was not affected by the treatments. There was no evidence that the higher rates of Fe caused reduced growth. Overall, our results do not suggest that soil‐applied Fe will consistently stimulate soybean growth or yield on this soil, at least when DTPA‐extractable soil Fe is at 12 mg kg?1 or higher. However, because of the trends for increased seed yield in some of the Fe treatments, field studies using soil‐ and/or foliar‐applied Fe are warranted.  相似文献   

3.
Crop production in many parts of the world is increasingly affected by soil salinization, especially in the irrigated fields of arid and semi-arid regions. The effects of four magnesium levels [0, 0.5, 1, and 22 millliMolar (mM) magnesium as magnesium sulfate (MgSO4.5H2O)], and three salinity levels [0, 45 and 90 mM sodium chloride (NaCl)] on growth and the chemical composition of pistachio seedlings (Pistacia vera L.) cv. ‘Badami-e-Zarand’ was studied in sand culture under greenhouse conditions. The experiment was set up as a completely randomized design (CRD) with four replications. After 28 weeks the growth parameters of biomass, leaf number, leaf area and stem height were measured. The results demonstrated that salinity decreased biomass, leaf area and stem height; the application of 2 mM magnesium (Mg) significantly reduced biomass, leaf number, leaf area and stem height; salinity stress increased concentrations of sodium (Na) and potassium (K) in shoot as well as Na concentration in root; however, it decreased Mg and calcium (Ca) concentrations in shoot, as well as Mg, Ca, and K concentrations in root. The application of 2 mM Mg reduced K and Ca concentrations in shoot and Na and K concentrations in root.  相似文献   

4.
Sour orange (Citrus aurantium L.) seedlings were grown for 3 months in diethylenetriamine pentaacetate (DTPA)‐buffered nutrient solutions to study the effect of Zn stress on the plants’ sensitivity to high boron concentration in the root environment. There were three zinc treatments: 21 μM Zn (LOW Zn‐DTPA), 69 μM Zn (NORMAL Zn‐DTPA) in the nutrient solution, or 12 weekly foliar sprays with ZnSO4 (FOLIAR‐Zn). In the FOLIAR‐Zn treatment, the nutrient solution contained 21 μM Zn. Zn activities calculated with a chemical equilibrium model, Geochem PC, and expressed as pZn=‐log(Zn+2), were 10.2 and 9.7 in the LOW Zn‐DTPA and NORMAL Zn‐DTPA nutrient solutions, respectively. One half of the plants in each Zn treatment were grown in 51 μM B (NORMAL‐B) and the other half in 200 μM B (HIGH‐B) nutrient solution. Seedlings grown in LOW Zn‐DTPA/NORMAL‐B nutrient solution developed Zn deficiency symptoms such as: reduced shoot growth, small and chlorotic leaves, and white roots with visibly shorter and thicker laterals than in Zn sufficient plants. The HIGH‐B treatment decreased shoot growth, leaf and stem dry weight, leaf area, and induced severe leaf B toxicity on seedlings grown in the LOW Zn‐DTPA nutrient solution but the effect was either absent or less pronounced in the NORMAL Zn‐DTPA or FOLIAR‐Zn treatments. Seedlings in the LOW Zn‐DTPA FOLIAR‐Zn treatments but they had lower B concentration on a whole plant basis indicating less B uptake per unit of dry weight. The FOLIAR‐Zn and NORMAL Zn‐DTPA treatments were equally effective in alleviating leaf B toxicity symptoms. The FOLIAR‐Zn treatment, however, was less effective than the NORMAL Zn‐DTPA treatment in alleviating the deleterious effect of high B on leaf dry weight even though the B concentrations in leaves, stems, and roots of the foliar‐sprayed seedlings were similar to the NORMAL Zn‐DTPA seedlings. Leaf concentrations of phosphorus, potassium, magnesium, iron, mangenese, and copper were within the optimal range for citrus with the exception of Ca which was low. Although B and particularly Zn treatments modified the concentration of some of these elements in leaves and roots, these changes were too small to explain the observed growth responses. The observation that B toxicity symptoms in Zn‐deficient citrus could be mitigated with Zn applications is of potential practical importance as B toxicity and Zn deficiency are simultaneously encountered in some soils of semiarid zones.  相似文献   

5.
Abstract

This study evaluated the effects of plastic mulched ridge-furrow cropping on soil biochemical properties and maize (Zea mays L.) nutrient uptake in a semi-arid environment. Three treatments were evaluated from 2008 to 2010: no mulch (narrow ridges with crop seeded next to ridges), half mulch (as per no mulch, except narrow ridges were mulched), and full mulch (alternate narrow and wide ridges, all mulched with maize seeded in furrows). Compared to the no mulch treatment, full mulch increased maize grain yield by 50% in 2008 and 25% in 2010, but reduced yield by 21% in 2009 after low precipitation in early growth. Half mulch had a similar grain yield to no mulch in the three cropping years, suggesting half mulch is not an effective pattern for maize cropping in the area. Mulch treatments increased aboveground nitrogen (N) uptake by 21?34% and phosphorus (P) uptake by 21?42% in 2008, and by 16?32% and 14?29%, respectively, in 2010; but in 2009 mulching did not affect N uptake and decreased P uptake. Soil microbial biomass and activities of urease, β-glucosidase and phosphatase at the 0?15 cm depth were generally higher during vegetative growth but lower during reproductive growth under mulch treatments than no mulch. Mulching treatments increased carbon (C) loss of buried maize residues (marginally by 5?9%), and decreased light soil organic C (15?27%) and carbohydrate C (12?23%) concentrations and mineralizable C and N (8?36%) at harvest in the 0?20 cm depth compared with no mulch, indicating that mulching promotes mineralization and nutrient release in soil during cropping seasons. As a result of these biological changes, mineral N concentration under mulch was markedly increased after sowing in upper soil layers compared with no mulch. Therefore, our results suggest that mulched cropping stimulated soil microbial activity and N availability, and thus contributed to increasing maize grain yield and nutrient uptake compared with no mulch.  相似文献   

6.
The effects of bark mulch and NPK fertilizers on yield and leaf and soil nutrient status of ‘Korona’ strawberry plants (Fragaria×ananassa Duch.), were studied over a period of three years. A significant effect of mulching was found in the first harvest year, but additional fertilizer did not affect total yield. Bark mulch slightly decreased the level of leaf nitrogen, but increased the level of leaf phosphorus and potassium in all years. Bark had a significant, negative effect on soil nitrate and ammonium content in the two first seasons. Mulching increased the soil moisture content in all years.  相似文献   

7.
Although agaves are commercially important worldwide and ecologically interesting, their nutrient responses have not been extensively studied under controlled conditions. Here, nutrient responses of seedlings and adult plants of Agave deserti were examined, with particular emphasis on nitrogen. Growth of seedlings in hydroponics was enhanced by increasing potassium, phosphate, and especially nitrate. Seedling growth in sand culture was also enhanced by adding nitrate, leading to just over 2% N by dry weight in the leaves. Seedlings had optimal growth in soil having about 0.1% N by dry weight and a pH between 6 and 8. In going from irrigation with no added nutrients to full‐strength Hoagland solution for mature plants in soil, leaf unfolding (a non‐destructive measure of productivity) approximately doubled. The rate of leaf unfolding in the field was also doubled by adding 100 kg N hectare‐1, higher levels proving inhibitory.  相似文献   

8.
A field experiment was carried out to evaluate the effectiveness of mycorrhizal inoculation with three arbuscular mycorrhizal (AM) fungi (Glomus intraradices Schenck & Smith, Glomus deserticola (Trappe, Bloss. & Menge), and Glomus mosseae (Nicol & Gerd.) Gerd. & Trappe) and the addition of composted sewage sludge (SS) with respect to the establishment of Retama sphaerocarpa L. seedlings, in a semiarid Mediterranean area. Associated changes in soil chemical (nutrient content and labile carbon fractions), biochemical (enzyme activities), and physical (aggregate stability) parameters were observed. Six months after planting, both the addition of composted SS and the mycorrhizal‐inoculation treatments had increased total N content, available‐P content, and aggregate stability of the soil. Values of water‐soluble C and water‐soluble carbohydrates were increased only in the mycorrhizal‐inoculation treatments. Rhizosphere soil from the mycorrhizal‐inoculation treatments had significantly higher enzyme activities (dehydrogenase, protease‐BAA, acid phosphatase, and β‐glucosidase) than the control soil. In the short‐term, mycorrhizal inoculation with AM fungi was the most effective treatment for enhancement of shoot biomass, particularly with G. mosseae (about 146% higher with respect to control plants). The addition of the composted SS alone was sufficient to restore soil structural stability but was not effective with respect to improving the performance of R. sphaerocarpa plants.  相似文献   

9.
Apple seedling (Malus domestica Borkh.) growth and nutrition were compared over a range of nutrient level treatments using A different experimental nutritional methods: nutrient‐film, soil, sand, and solution culture. A 2‐ to 10‐fold difference in nutrient level caused significant differences between experimental methods on seedling growth. Higher nutrient levels resulted in reduced growth in the nutrient‐film and soil cultures, increased growth in sand cultures and little effect on growth in solution cultures. Tissue Ca, of the nutrients studied, was significantly different depending upon the experimental method. Alternating the nutrient level either by elevating K or reducing Ca/Mg resulted in significant interactions on tissue Ca depending upon the experimental method used. The results showed that under similar environmental and treatment conditions, data on growth and nutrition of apple seedlings can vary significantly depending on the type of experimental method employed.  相似文献   

10.
Abstract

Coffea arabica L. seedlings (cv. S.L.34) were sprayed with varying concentrations of cuprous oxide at 0.0, 0.25, 0.50 and 0.75% for 30 days. Significant increases in the total mean fresh and dry weight; rate of transpiration; stomatal apertures; the total leaf area and plant vigor were observed on the seedlings with increasing concentrations of Cu treatments. The content of N, K, Ca and Cu were significantly increased in the seedlings at Cu spray treatments of 0.50 and 0.75% It is possible that the growth promoting effects produced in coffee by spraying high concentrations of copper is partly nutritional. This is brought about by the catalysing effects of the absorbed Cu ions, by accelerating enzymatic activities within the plant and hence increasing nutrient uptake.  相似文献   

11.
A study was conducted to determine the effects of legume companion crops and phosphorus (P) fertilizer on the growth and survival characteristics of newly established loblolly pine (Pinus taeda L.) seedlings. At 12 months post‐establishment, there was no legume effect (P>0.05) on root lateral development or ropting depth for pine seedlings. Likewise, there was no legume effect (P>0.05) on aboveground biomass production of pine seedlings. Partridge pea (Cassia fasciculata Michx.) had a negative effect (P<0.05) on pine seedling total root biomass compared to other treatments. Pine seedlings grown with legumes allocated less resources to root development compared to pine seedlings grown alone. Pine seedlings grown alone or with cowpea [Vigna unguiculata (L.) Walp.] were subject to less mortality (P<.05) than seedlings grown with alyceclover [Alysicarpus vaginalis (L.) DC] or partridge pea. Phosphorus fertilization enhanced dry matter (DM) yield of legumes but had no effect on rooting depth of pine seedlings during the first 12 months of growth. After 12 months post‐establishment, the most pronounced effect of P fertilization was that of increased nitrogen (N) content of leaf, stem, and roots of pine seedlings. Native, annual herbaceous grass biomass in the control plots (no legume) reduced the amount of soil N to below pre‐planting levels, while soil N levels in all legume plots exceeded pre‐trial levels.  相似文献   

12.
Seedlings of ‘Lovell’ peach [Prunus persica (L.) Batsch], and in vitro propagated plums, ‘St. Julien A GF 655–2’ [Prunus institia (L.) Bullace] (655–2), ‘Damas GF 1869’ [Prunus domestica (L.)] (D1869), and ‘Clark Hill Red Leaf’ [Prunus saliciana (Lindl) x Prunus cerasifera (EHRH)] (CH redleaf) were grown in the greenhouse 45 or 51 days in nutrient solutions containing 2, 6, 22, 200, and 400 μM Ca. Terminal length, number of laterals, trunk cross‐sectional area, and root volume were increased by the 22 μM Ca treatments at harvest 1. The CH redleaf and 655–2 plums had the largest increase in growth for harvest 1, but the ‘Lovell’ peach seedlings and D1869 plum had the largest increase in growth for harvest 2. There were no leaf symptoms of Ca deficiency when the leaf Ca concentration in the tissue exceeded 2500 μg/g (dry wt.) Calcium concentration was increased from 1406 to 4109 μg/g (dry wt.) in the stems, and from 540 to 2633 μg/g (dry wt) in the roots by Ca treatments of 400 μM after 45 days of growth. Calcium uptake rate for ‘Lovell’ seedlings was greater than were rates for CH redleaf and 655–2 plums at all solution concentrations during the first 45 days of growth. The Ca uptake rate for D1869 plum was greater than the rate for ‘Lovell’ seedlings during the second growth period. An interaction between Ca concentration and plant species occurred for P, K, and Mg uptake rates at both harvest dates. The in vitro propagated D1869 plum was equal to the ‘Lovell’ seedlings in growth, tissue Ca concentration, and Ca uptake rates.  相似文献   

13.
Seedball is a cheap “seed‐pelleting‐technique” that combines local materials, seeds and optionally additives such as mineral fertilizer to enhance pearl millet (Pennisetum glaucum (L.) R. Brown) early growth under poor soil conditions. The major objective here was to study the mechanisms behind positive seedball effects. Chemical effects in the rhizosphere and early root development of seedball‐derived pearl millet seedlings were monitored using micro‐suction‐cups to extract soil solutions and X‐ray tomography to visualize early root growth. Pearl millet (single seedling) was grown in soil columns in a sandy soil substrate. Root and shoot biomass were sampled. X‐ray tomography imaging revealed intense development of fine roots within the nutrient‐amended seedball. Seedball and seedball+NPK treatments, respectively, were 65% and 165% higher in shoot fresh weight, and 108% and 227% higher in shoot dry matter than the control treatment. Seedball+NPK seedlings showed promoted root growth in the upper compartment and 105% and 30% increments in root fresh and dry weights. Soil solution concentrations indicate that fine root growth ass stimulated by release of nutrients from the seedballs to their direct proximity. Under real field conditions, the higher root length density and finer roots could improve seedlings survival under early drought conditions due to better ability to extract water and nutrients from a greater soil volume.  相似文献   

14.
Plants grown in salt‐affected soils may suffer from limited available water, ion toxicity, and essential plant nutrient deficiency, leading to reduced growth. The present experiment was initiated to evaluate how salinity and soil zinc (Zn) fertilization would affects growth and chemical and biochemical composition of broad bean grown in a calcareous soil low in available Zn. The broad bean was subjected to five sodium chloride (NaCl) levels (0, 10, 20, 30, and 40 m mol kg?1 soil) and three Zn rates [0, 5, and 10 mg kg?1 as Zn sulfate (ZnSO4) or Zn ethylenediaminetetraaceticacid (EDTA)] under greenhouse conditions. The experiment was arranged in a factorial manner in a completely randomized design with three replications. Sodium chloride significantly decreased shoot dry weight, leaf area, and chlorophyll concentration, whereas Zn treatment strongly increased these plant growth parameters. The suppressing effect of soil salinity on the shoot dry weight and leaf area were alleviated by soil Zn fertilization, but the stimulating effect became less pronounced at higher NaCl levels. Moreover, rice seedlings treated with ZnSO4 produced more shoot dry weight and had greater leaf area and chlorophyll concentration than those treated with Zn EDTA. In the present study, plant chloride and sodium accumulations were significantly increased and those of potassium (K), calcium (Ca), and magnesium (Mg) strongly decreased as NaCl concentrations in the soil were increased. Moreover, changes in rice shoot Cl?, Na+, and K+ concentrations were primarily affected by the changes in NaCl rate and to a lesser degree were related to Zn levels. The concentrations of Cl? and Na+ associated with 50% shoot growth suppression were greater with Zn‐treated plants than untreated ones, suggesting that Zn fertilization might increase the plant tolerance to high Cl? and Na+ accumulations in rice shoot. Zinc application markedly increased Zn concentration of broad bean shoots, whereas plants grown on NaCl‐treated soil contained significantly less Zn than those grown on NaCl‐untreated soil. Our study showed a consistent increase in praline content and a significant decrease in reducing sugar concentration with increasing salinity and Zn rates. However, Zn‐treated broad bean contained less proline and reducing sugars than Zn‐untreated plants, and the depressing impact of applied Zn as Zn EDTA on reducing sugar concentration was greater than that of ZnSO4. In conclusion, it appears that when broad bean is to be grown in salt‐affected soils, it is highly advisable to supply plants with adequate available Zn.  相似文献   

15.
不同覆盖方式对新复垦区土壤水热及春玉米产量的影响   总被引:2,自引:0,他引:2  
随着城市化进程的加速发展,我国净耕地面积持续减少,合理开发利用潜在土地资源,对于保障我国粮食安全具有重要意义。为了探讨不同覆盖耕作方式对新复垦区土壤水热及作物生长的影响,通过2018年和2019年连续两年田间试验,研究了传统耕作(CK)、地膜覆盖(FM)、秸秆深埋(BS)和秸秆深埋+地膜覆盖(F+S) 4种处理对土壤水分、温度和春玉米生长及产量的影响。结果表明:2018年,F+S、BS、FM处理玉米生育期内0~20cm及20~40 cm土层平均土壤含水率分别较CK增加24.4%、16.5%、12.6%及9.1%、3.2%、3.7%。2018年玉米苗期, 0~100 cm土壤蓄水量表现为FMF+SCKBS,明显表现为有覆膜处理(F+S和FM)的土壤蓄水量高于不覆膜处理(BS和CK)。2019年玉米苗期,土壤蓄水量则表现为F+SBSFMCK。与CK相比,春玉米全生育期不同覆盖耕作处理条件下各土层(5~25 cm)土壤温度均有所提高,具体表现为F+SFMBSCK,各处理土壤温度随土层深度表现为降低趋势。以表层5 cm土壤温度增幅最大,覆盖耕作处理的增温效应在全生育期表现为前期明显而后期弱化。各处理株高变化趋势一致,在播种后70d左右达到峰值,随后出现小幅度下降并最终保持稳定。试验期,株高和叶面积均表现为地表有覆膜的处理高于未覆膜处理(P0.05)。2018年, F+S、BS和FM处理玉米产量均显著高于CK(P0.05),2018年和2019年,各处理产量分别较CK增加17.0%、13.5%、6.6%和30.5%、23.9%、3.8%。产量构成逐步回归分析结果表明,穗长对产量的影响最大,产量与穗行数和百粒重呈正相关关系。秸秆深埋+地膜覆盖处理(F+S)可以综合发挥二者优势,有效调节土壤水热状况,改善土壤环境,促进作物生长发育,从而获得较高的产量,可作为新复垦区春玉米适宜的种植管理方式。  相似文献   

16.
Abstract

The form of nutrient solution nitrogen (either NH4‐N or NO3‐N or mixtures of the two) provided to plants influences the severity of many crop diseases. This greenhouse study was conducted to determine how growth, grain yield, and yield components of oat (Avena sativa L.) and wheat (Triticum aestivum L.) plants given nutrient solutions containing different ratios of NO3‐N to NH4‐N would react to barley yellow dwarf virus (BYDV) infection. Fifteen‐day‐old seedlings (2nd leaf stage) were either infected with BYDV (PAV strain) or left uninfected. Nutrient solution treatments (started 19 d after germination) provided three ratios of NO3‐N to NH4‐N (100% NO3, 50:50 NH4:NO3, or 100% NH4) for a 30‐d period, after which plant height and tillers plant?1 were measured. Oat and wheat plants given NH4 had fewer tillers than plants given the other nutrient solution treatments. BYDV‐infected oat and wheat plants were shorter than uninfected plants. All pots then received NO3 nutrient solution until plant maturity, after which days to anthesis, primary tiller height, grain yield and yield components were measured. In the NH4 nutrient solution treatments, BYDV infection significantly reduced individual kernel weight in oat and primary tiller height in wheat. These same measures were not significantly affected by BYDV infection in the NO3 or NH4NO3 nutrient solution treatments. There were no other significant nutrient solution by BYDV infection interactions for any other dependent variable measured. Nutrient solution treatments had no significant effect on grain yield, but BYDV infection reduced grain yield by 45% in oat and 46% in wheat. In conclusion, nutrient solution N form interacted with BYDV infection to alter disease tolerance in oat (kernel weight) and wheat (primary tiller height), but these alterations had no effect in ameliorating grain yield loss caused by BYDV disease.  相似文献   

17.
In the natural forest communities of Central Europe, beech (Fagus sylvatica L.) predominates in the tree layer over a wide range of soil conditions. An exception with respect to the dominance of beech are skeleton‐rich soils such as screes where up to 10 broad‐leaved trees co‐exist. In such a Tilia‐Fagus‐Fraxinus‐Acer‐Ulmus forest and an adjacent mono‐specific beech forest we compared (1) soil nutrient pools and net nitrogen mineralization rates, (2) leaf nutrient levels, and (3) leaf litter production and stem increment rates in order to evaluate the relationship between soil conditions and tree species composition. In the mixed forest only a small quantity of fine earth was present (35 g l—1) which was distributed in patches between basalt stones; whereas a significantly higher (P < 0.05) soil quantity (182 g l—1) was found in the beech forest. In the soil patches of the mixed forest C and N concentrations and also concentrations of exchangeable nutrients (K, Ca, Mg) were significantly higher than in the beech forest. Net N mineralization rates on soil dry weight basis in the mixed forest exceeded those in the beech forest by a factor of 2.6. Due to differences in fine earth and stone contents, the volume related soil K pool and the N mineralization rate were lower in the mixed forest (52 kg N ha—1 yr—1, 0—10 cm depth) than in the beech forest (105 kg N ha—1 yr—1). The leaf N and K concentrations of the beech trees did not differ significantly between the stands, which suggests that plant nutrition was not impaired. In the mixed forest leaf litter fall (11 %) and the increment rate of stem basal area (52 %) were lower than in the beech forest. Thus, compared with the adjacent beech forest, the mixed forest stand was characterized by a low volume of patchy distributed nutrient‐rich soil, a lower volume related K pool and N mineralization rate, and low rates of stem increment. Together with other factors such as water availability these patterns may contribute to an explanation of the diverse tree species composition on Central European screes.  相似文献   

18.
A field experiment was carried out to compare the effectiveness of inoculation with three arbuscular mycorrhizal (AM) fungi, namely Glomus intraradices Schenck & Smith, Glomus deserticola (Trappe, Bloss. & Menge) and Glomus mosseae (Nicol & Gerd.) Gerd. & Trappe, and the addition of Aspergillus niger‐treated dry olive cake (DOC) in the presence of rock phosphate, in increasing root nitrate reductase (NR) and acid phosphatase activities, mycorrhizal colonization, plant growth and nutrient uptake in Dorycnium pentaphyllum L. seedlings afforested in a semiarid degraded soil. Three months after planting, both the addition of fermented DOC and the mycorrhizal inoculation treatments had increased root NR activity significantly, particularly the inoculation with G. deserticola (by 75 per cent with respect to non‐inoculated plants), but they had no effect on root acid phosphatase. Mycorrhizal inoculation treatments with G. deserticola or G. mosseae on their own were even more effective than the addition of fermented DOC alone in improving the growth and (NPK) foliar nutrients of D. pentaphyllum plants. The combined treatment involving the application of microbially‐treated agrowastes and mycorrhizal inoculation with AM fungi, particularly with G. mosseae, can be proposed as a successful revegetation strategy for D. pentaphyllum in P‐deficient soils under semiarid Mediterranean conditions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
Greenhouse grown ‘Golden Delicious’ apple seedlings were treated with soil drenches of paclobutrazol (PP333) at rates equivalent to 0.1, 0.2, 0.4, 0.8, and 1.6 kg of active ingredient (a.i.) ha.‐1 Eleven weeks after treatment initiation, seedlings were harvested, divided into leaves, stems, and roots, weighed and analyzed for the content of macro‐and microelements. Shoot growth rate, leaf area, and total dry weight showed a decreasing trend with increasing rates of PP333. In contrast, specific leaf weight increased in response to growth regulator treatments. The total amount of N, Zn, and Cu absorbed by seedlings was not affected and that of K, Ca, Mg, and Mn was decreased by PP333 treatments. Concentration of Ca and Mn in leaves, N in roots, and N, Ca, Mg, Mn, Zn, and Cu in stems increased in response to PP333 treatments. The magnitude of these increases were dependent on the rate of growth regulator applied. Potassium was the only element which declined in concentration in leaves and stems; this was true, however, only at the two highest rates of PP333 (0.8 and 1.6 kg ha‐1) Root K concentration was not affected by PP333 treatments.  相似文献   

20.
Abstract

A field study was conducted to study effects of four nitrogen (N) supplemental levels on biomass, protein‐N, non‐protein‐N, and starch of an upper and a lower leaf in rice (Oryza sativa L.). The ranges of leaf protein‐N, non‐protein‐N, total N, and starch concentrations were from 1.18% to 3.66%, from 0.13% to 0.67%, from 1.32% to 4.14%, and from 38.4 mg g?1 to 108.6 mg g?1, respectively. The upper leaf appeared to be more sensitive than the lower leaf in response to N levels on biomass, but larger differences of protein‐N, total N, and starch contents were observed among nitrogen level treatments in the lower leaf than in the upper leaf. Protein‐N may be the best indicative of N status in rice. The lower leaf had a considerably higher ratio of protein‐N to non‐protein‐N at panicle formation and heading growth stage. The lower leaf had higher starch contents, which decreased with increasing N level. The response differences between the upper leaf and the lower leaf with relation to light conditions, developmental extent and leaf function were discussed. The results suggested that the lower leaf could be more suitable as a test sample for N status diagnosis by leaf chemical analysis, especially during the reproductive growth stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号