首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Saline–sodic and sodic soils are characterized by the occurrence of sodium (Na+) to levels that can adversely affect several soil properties and growth of most crops. As a potential substitute of cost‐intensive chemical amelioration, phytoremediation of such soils has emerged as an efficient and low‐cost strategy. This plant‐assisted amelioration involves cultivation of certain plant species that can withstand ambient soil salinity and sodicity levels. It relies on enhanced dissolution of native calcite within the root zone to provide adequate Ca2+ for the Na+ Ca2+ exchange at the cation exchange sites. There is a lack of information for the Na+ balance in terms of removal from saline–sodic soils through plant uptake and leaching during the phytoremediation process. We carried out a lysimeter experiment on a calcareous saline–sodic soil [pH of saturated soil paste (pHs) = 7.2, electrical conductivity of the saturated paste extract (ECe) = 4.9 dS m−1, sodium adsorption ratio (SAR) = 15.9, CaCO3 = 50 g kg−1]. There were three treatments: (1) control (without application of a chemical amendment or crop cultivation), (2) soil application of gypsum according to the gypsum requirement of the soil and (3) planting of alfalfa (Medicago sativa L.) as a phytoremediation crop. The efficiency of treatments for soluble salt and Na+ removal from the soil was in the order: gypsum ≈ alfalfa > control. In the phytoremediation treatment, the amount of Na+ removed from the soil through leaching was found to be the principal cause of reduction in salinity and sodicity. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
Due to increased population and urbanization, freshwater demand for domestic purposes has increased resulting in a smaller proportion for irrigation of crops. We carried out a 3‐year field experiment in the Indus Plains of Pakistan on salt‐affected soil (ECe 15·67–23·96 dS m−1, pHs 8·35–8·93, SAR 70–120, infiltration rate 0·72–0·78 cm h−1, ρ b 1·70–1·80 Mg m−3) having tile drainage in place. The 3‐year cropping sequence consisted of rice (Oryza sativa L.) and wheat (Triticum aestivum L.) crops in rotation. These crops were irrigated with groundwater having electrical conductivity (EC) 2·7 dS m−1, sodium adsorption ratio (SAR) 8·0 (mmol L−1)1/2 and residual sodium carbonate (RSC) 1·3 mmolc L−1. Treatments were: (1) irrigation with brackish water without amendment (control); (2) Sesbania (Sesbania aculeata) green manure each year before rice (SM); (3) applied gypsum at 100 per cent soil gypsum requirement (SGR) and (4) applied gypsum as in treatment 3 plus sesbania green manure each year (GSM). A decrease in soil salinity and sodicity and favourable infiltration rate and bulk density over pre‐experiment levels are recorded. GSM resulted in the largest decrease in soil salinity and sodicity. There was a positive relationship between crop yield and economic benefits and improvement in soil physical and chemical properties. On the basis of six crops, the greatest net benefit was obtained from GSM. Based on this long‐term study, combined use of gypsum at 100 per cent soil gypsum requirement along with sesbania each year is recommended for soil amelioration and crop production. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Chemical reclamation of sodic and saline-sodic soils has become cost-intensive. Cultivation of plants tolerant of salinity and sodicity may mobilize the CaCO3 present in saline-sodic soils instead of using a chemical approach. Four forage plant species, sesbania (Sesbania aculeata), kallar grass (Leptochloa fusca), millet rice (Echinochloa colona) and finger millet (Eleusine coracana), were planted in a calcareous saline-sodic field (ECe = 9·6–11·0 dS m−1, SAR = 59·4–72·4). Other treatments included gypsum (equivalent to 100 per cent of the gypsum requirement of the 15 cm soil layer) and a control (no gypsum or crop). The crops were grown for 5 months. The performance of the treatments in terms of soil amelioration was in the order: Sesbania aculeata ≅ gypsum > Leptochloa fusca > Echinochloa colona > Elusine coracana > control. Biomass production by the plant species was found to be directly proportional to their reclamation efficiency. Sesbania aculeata produced 32·3 Mg forage ha−1, followed by Leptochloa fusca (24·6 Mg ha−1), Echinochloa colona (22·6 Mg ha−1) and Eleusine coracana (5·4 Mg ha−1). Sesbania aculeata emerged as the most suitable biotic material for cultivation on salt-affected soils to produce good-quality forage, and to reduce soil salination and sodication processes.  相似文献   

4.
Biological, chemical and bio‐chemical strategies have been tested in the past for reclamation of saline‐sodic and sodic soils. The efficiency of two crop rotations (rice‐wheat and Sesbania‐wheat) alone or in combination with either gypsum (CaSO4.2H2O) or sulfuric acid (H2SO4) was tested for ionic displacement from four saline‐sodic soils. Pure gypsum was applied at 50 per cent of soil gypsum requirement at the time of planting rice and Sesbania, whereas 95 per cent pure sulfuric acid was added at 50 per cent soil gypsum requirement as one‐third applications by mixing with the first three irrigations. The rice crop biomass decreased at a soil saturation extract electrical conductivity (ECe) of 8 dS m−1, whereas wheat and Sesbania were influenced at a sodium adsorption ratio (SAR) of ≥40. Gypsum treatment helped the crops flourish well at these ECe and SAR levels. The infiltrated volume of water dropped with decrease in ECe : SAR ratio of soils and increase in crop biomass production. Crops rotation treatments alone helped leach sodium (Na+) and other ions successfully at SAR ≤ 21 but were less effective at SAR ≥ 40 at which point plants growth was also curtailed. Gypsum and H2SO4 treatments significantly aided leaching of Na+ and other ions with water at SAR ≥ 40 under both the crop rotations. Hence, crops effectively reclaimed soil at low sodicity level, whereas at high SAR, chemical amendments are obligatory in order to reclaim soils. This study also suggests that the required dose of H2SO4 should be applied with pre‐planting irrigation for better yield of the first crop. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Saline‐sodic water is a by‐product of coalbed natural gas (CBNG) production in the Powder River Basin of Wyoming, USA and is being beneficially used in places as irrigation water. This study evaluated effects of 2 years of natural precipitation on soil properties of a hay field after the cessation of managed irrigation with CBNG water. The hay field had been irrigated with only CBNG water [CBNG(NT)], CBNG water amended with gypsum [CBNG(G)] or gypsum plus sulfur via a sulfur burner [CBNG(GSB)] in combination with soil amendments—gypsum ( +G ), elemental sulfur ( +S ), and both ( +GS ). Results indicated that infiltration rates were the lowest on fields irrigated with CBNG(NT), followed by CBNG(G) and CBNG(NT) +G treatments (12·2, 13·2, and 13·5 cm h−1, respectively). The CBNG(GSB) +GS treatment had the highest infiltration rates (33·5 cm h−1). By the second year, salinity and sodicity of treated soils had decreased in the A‐horizon of most CBNG‐water irrigated plots, whereas in Bt1‐ and Bt2‐horizons salinity generally decreased but sodicity increased; S and GS soil amended plots had higher profile salinities compared with NT and G soil treatments. Although Na+ leaching was observed in all fields that received soil and/or water amendments, CBNG(GSB) +GS plots had the lowest sodicity in the A‐ and Bt1‐horizons. Effective managed irrigation requires knowledge of site‐specific soil properties, plant suitability, water chemistry, and amendments that would be needed to treat the CBNG waters and soils. This study indicates the greatest success was realized when using both soil and water amendments. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
ABSTRACT

Salt-affected soils expand around the world and become a critical handicap for high crop yield. Saline-sodic soil contributed a major portion in salt-affected soils. Such types of soils have a sizable amount of Na+ in nutrient medium and that reduce the K+ uptake in plants. A hydroponic experiment was performed to investigate the ameliorative effect of different doses of potassium fertilizer (K1 = 0.3, K2 = 0.6 and K3 = 1.2 mM L?1) on rice (Oryza sativa L.) under different ECw (6 dS m?1) and SARw [12 and 24 (mmol L?1)1/2] levels. Application of K+ at elevated levels under saline-sodic conditions improved the concentration of anti-oxidant enzymes, plant physiological, and biochemical attributes by improving the K+: Na+ ratio in plant tissues. Total phenolic content, total soluble protein, and soluble sugar content of rice plant were increased with an increase in potassium dose and saline-sodicity. Maximum K+: Na+ ratios, 4.13 and 2.0 were observed in shoot and root, respectively upon application of K+ at 1.2 mM L?1 in a solution having ECw: SARw level of 6: 12. This study suggested that application of potassium at elevated levels (1.2 mM L?1) has enhanced the rice growth by reducing the harmful effect of Na+ salts on plant physiology, biochemical attributes, and anti-oxidant enzymes under specific saline-sodic conditions.  相似文献   

7.
With a world‐wide occurrence on about 560 million hectares, sodic soils are characterized by the occurrence of excess sodium (Na+) to levels that can adversely affect crop growth and yield. Amelioration of such soils needs a source of calcium (Ca2+) to replace excess Na+ from the cation exchange sites. In addition, adequate levels of Ca2+ in ameliorated soils play a vital role in improving the structural and functional integrity of plant cell walls and membranes. As a low‐cost and environmentally feasible strategy, phytoremediation of sodic soils — a plant‐based amelioration — has gained increasing interest among scientists and farmers in recent years. Enhanced CO2 partial pressure (PCO2) in the root zone is considered as the principal mechanism contributing to phytoremediation of sodic soils. Aqueous CO2 produces protons (H+) and bicarbonate (HCO3). In a subsequent reaction, H+ reacts with native soil calcite (CaCO3) to provide Ca2+ for Na+ Ca2+ exchange at the cation exchange sites. Another source of H+ may occur in such soils if cropped with N2‐fixing plant species because plants capable of fixing N2 release H+ in the root zone. In a lysimeter experiment on a calcareous sodic soil (pHs = 7.4, electrical conductivity of soil saturated paste extract (ECe) = 3.1 dS m‐1, sodium adsorption ratio (SAR) = 28.4, exchangeable sodium percentage (ESP) = 27.6, CaCO3 = 50 g kg‐1), we investigated the phytoremediation ability of alfalfa (Medicago sativa L.). There were two cropped treatments: Alfalfa relying on N2 fixation and alfalfa receiving NH4NO3 as mineral N source, respectively. Other treatments were non‐cropped, including a control (without an amendment or crop), and soil application of gypsum or sulfuric acid. After two months of cropping, all lysimeters were leached by maintaining a water content at 130% waterholding capacity of the soil after every 24±1 h. The treatment efficiency for Na+ removal in drainage water was in the order: sulfuric acid > gypsum = N2‐fixing alfalfa > NH4NO3‐fed alfalfa > control. Both the alfalfa treatments produced statistically similar root and shoot biomass. We attribute better Na+ removal by the N2‐fixing alfalfa treatment to an additional source of H+ in the rhizosphere, which helped to dissolve additional CaCO3 and soil sodicity amelioration.  相似文献   

8.
Increasing levels of CO2 and H+ proton in the rhizosphere from some legumes may play an important role in calcite dissolution of calcareous salt affected soils. Soils planted with white and brown varieties of cowpea (Vigna unguiculata L.) and hyacinth bean (Dolichos lablab L.) relying on either fertilizer N (KNO3) or N‐fixation were compared against soils to which gypsum was applied and a control without plants and gypsum application to study the possibility of Ca2+ release from calcite and Na+ leaching. As compared to plants relying on inorganic N, leachates from all pore volumes (0·5, 1·0, 1·5, 2·0 pore volume) in lysimeters planted with N‐fixing hyacinth bean contained significantly higher concentrations of HCO with lower concentrations from lysimeters planted with white cowpea relying on N‐fixation. However, the lowest concentrations of HCO were recorded in the gypsum and control treatments. In initial leaching, lysimeters planted with N‐fixing plants maintained similar leachate Ca2+ and Na+ concentrations compared to gypsum amended soils. However, gypsum amended soils were found to have a prolonged positive effect on Na+ removal. It might be concluded that some legumes that are known to fix N in calcareous salt affected soils may be an alternative ameliorant to the extremely expensive gypsum through calcite solubilization and a consequent release of Ca2+. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
局部根系盐胁迫对冬小麦生长和光合特征的影响   总被引:3,自引:1,他引:2  
通过分根装置设置无盐胁迫(0|0)、局部根系150 mmol-L-1NaCl胁迫(0|150)、全部根系75 mmol-L-1NaCl胁迫(75|75)、全部根系150 mmol-L-1NaCl胁迫(150|150)4种处理,研究根系局部盐胁迫对冬小麦生长及光合特征的影响。结果表明:盐胁迫显著抑制了小麦幼苗的生长,并且随着盐胁迫浓度的增加,小麦受抑制程度加重;根系盐胁迫方式对小麦幼苗生长影响显著,局部根系胁迫处理(0|150)小麦幼苗地上部干重比等浓度150 mmol-L-1NaCl全部盐胁迫处理(150|150)增加23.5%,比等浓度75 mmol-L-1NaCl全部盐胁迫处理(75|75)增加17.2%。在局部根系盐胁迫下,非盐胁迫一侧根系(0|150-0)补偿生长,其根长、侧根数、侧根长比盐胁迫一侧根系(0|150-150)分别增加195.2%、206.2%和237.8%,盐胁迫一侧根系吸收的Na+部分向非盐胁迫一侧根系运输,盐胁迫一侧根系(0|150-150)的Na+含量比全部胁迫处理(150|150)减少12.1%。与全部根系盐胁迫相比,局部根系盐胁迫减少了Na+在叶片中的积累,降低了钠/钾值。局部根系盐胁迫叶片净光合速率、气孔导度、胞间CO2浓度和叶绿素荧光参数(Fv/Fm)均高于同浓度完全盐胁迫处理的小麦幼苗,进而增加地上部和根系的生物量。因此,局部根系胁迫显著缓解了全部盐胁迫对小麦地上部和根系生长的抑制作用。  相似文献   

10.
Reforestation of saline sodic soil is increasingly undertaken as a means of reclaiming otherwise unproductive agricultural land. Currently, restoration of degraded land is limited to species with high tolerances of salinity. Biochar application has the potential to improve physical, biological and chemical properties of these soils to allow establishment of a wider range of plants. In a glasshouse trial, we applied biochar made from Acacia pycnantha (5 Mg ha−1) or no biochar to either a low (ECe 4·75 dS m−1, ESP 6·9), a moderate (ECe 27·6 dS m−1, ESP 29·3) or a high (ECe 49·4 dS m−1, ESP 45·1) saline sodic soil. The regional common reforestation species Eucalyptus viminalis and Acacia mearnsii were planted as tubestock in to the soils. Early establishment indicators, including growth, plant condition and nutrition, were assessed at the end of a simulated growing season, 108 days after biochar application. Application of biochar increased height, and decreased root : shoot and the concentration of Mn, N and S in plants of E. viminalis when grown in the highly saline sodic soil. Biochar application increased the concentration of B in leaves of E. viminalis and increased the concentration of P, K and S in leaves of A. mearnsii when grown in the low saline sodic soil. The results confirm that there is potential for biochar to assist in reforestation of saline sodic soils. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Abstract. The worldwide occurrence of saline sodic and sodic soils on more than half a billion hectares warrants attention for their efficient, inexpensive and environmentally acceptable management. These soils can be ameliorated by providing a source of calcium (Ca2+) to replace excess sodium (Na+) from the cation exchange sites. Although chemical amendments have long been used to ameliorate such soils, the chemical process has become costly during the last two decades in several developing countries. As a low‐cost and environmentally acceptable strategy, the cultivation of certain salt tolerant forage species on calcareous sodic and saline sodic soils, i.e. phytoremediation, has gained interest among scientists and farmers in recent years. In a field study conducted at three calcareous saline sodic sites (pHs=8.1–8.8, ECe=7.8–12.5 dS m–1, SAR=30.6–76.1) in the Indus Plains of Pakistan, we compared chemical and phytoremediation methods. There were four treatments; two involved plants: Kallar grass (Leptochloa fusca (L.) Kunth), and sesbania (Sesbania bispinosa (Jacq.) W. Wight). The other two treatments were uncropped: soil application of gypsum and an untreated control. All treatments were irrigated with canal water (EC=0.22–0.28 dS m–1). The plant species were grown for one season (5–6 months). Sesbania produced more forage yield (34 t ha–1) than Kallar grass (23 t ha–1). Phytoremediation and chemical treatments resulted in similar decreases in soil salinity and sodicity, indicating that phytoremediation may replace or supplement the more costly chemical approach. The soil amelioration potential of sesbania was similar to that of the Kallar grass, which suggests that moderately saline sodic calcareous soils can be improved by growing a forage legume with market value.  相似文献   

12.
Wind erosion starts when the threshold wind velocity (µt) is exceeded. We evaluated the sensitivity of µt to determine the wind erosion susceptibility of soils under variable climatic conditions. Three years field data were used to calculate µt by means of the equation µt = ūσ Φ−1 (γ), where ū is the mean wind speed (m s−1), σ the ū standard deviation (m s−1), γ the saltation activity and Φ the standard normal distribution function of γ. Saltation activity was measured with a piezoelectric sensor (Sensit). Results showed that ū of the whole studied period (3·41 m s−1) was lower than µt (7·53 m s−1), therefore, wind erosion was produced mainly by wind gusts. The µt values ordered in the sequence: Winter (6·10 m s−1) < Spring (8·22 m s−1) = Summer (8·28 m s−1) < Autumn (26·48 m s−1). Higher µt values were related to higher air humidity and lower wind speeds and temperatures. The µt values did not agree with the erosion amounts of each season, which ordered as follows: Summer (12·88 t ha−1) > Spring (3·11 t ha−1) = Winter (0·17 t ha−1) = Autumn (no erosion). Low µt and erosion amounts of Winter were produced by a scarce number of gusts during eroding storms. We concluded that µt is useful as an index of soil susceptibility to wind erosion of different climatic periods. The use of a unique µt value in wind erosion prediction models can lead to erroneous wind erosion calculations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
《Journal of plant nutrition》2013,36(12):2689-2704
ABSTRACT

Salinity is among the most widespread and prevalent problems in irrigated agriculture. Many members of the family Chenopodiaceae are classified as salt tolerant. One member of this family, which is of increasing interest, is quinoa (Chenopodium quinoa Willd.) which is able to grow on poorer soils. Salinity sensitivity studies of quinoa were conducted in the greenhouse on the cultivar, “Andean Hybrid” to determine if quinoa had useful mechanisms for salt tolerant studies. For salt treatment we used a salinity composition that would occur in a typical soil in the San Joaquin Valley of California using drainage waters for irrigation. Salinity treatments (ECi ) ranging from 3, 7, 11, to 19?dS?m?1 were achieved by adding MgSO4, Na2SO4, NaCl, and CaCl2 to the base nutrient solution. These salts were added incrementally over a four-day period to avoid osmotic shock to the seedlings. The base nutrient solution without added salt served as the non-saline control solution (3?dS?m?1). Solution pH was uncontrolled and ranged from 7.7 to 8.0. For comparative purposes, we also examined Yecora Rojo, a semi-dwarf wheat, Triticum aestivum L. With respect to salinity effects on growth in quinoa, we found no significant reduction in plant height or fresh weight until the electrical conductivity exceeded 11?dS?m?1. The growth was characteristic of a halophyte with a significant increase in leaf area at 11?dS?m?1 as compared with 3?dS?m?1 controls. As to wheat, plant fresh and dry weight, canopy height, and leaf area did not differ between controls (3?dS?m?1) and plants grown at 7?dS?m?1. Beyond this threshold, however, plant growth declined. While both quinoa and wheat exhibited increasing Na+ accumulation with increasing salinity levels, the percentage increase was greater in wheat. Examination of ion ratios indicated that K+:Na+ ratio decreased with increasing salinity in both species. The decrease was more dramatic in wheat. A similar observation was also made with respect to the Ca2+:Na+ ratios. However, a difference between the two species was found with respect to changes in the level of K+ in the plant. In quinoa, leaf K+ levels measured at 19?dS?m?1 had decreased by only 7% compared with controls. Stem K+ levels were not significantly affected. In wheat, shoot K+ levels had decreased by almost 40% at 19?dS?m?1. Correlated with these findings, we measured no change in the K+:Na+ selectivity with increasing salinity in quinoa leaves and only a small increase in stems. In wheat however, K+:Na+ selectivity at 3?dS?m?1 was much higher than in quinoa and decreased significantly across the four salinity levels tested. A similar situation was also noted with Ca2+:Na+ selectivity. We concluded that the greater salt tolerance found in quinoa relative to wheat may be due to a variety of mechanisms.  相似文献   

14.
Growing salt‐tolerant under‐explored crops utilizing saline ground water can provide for an economic use of abandoned semiarid lands. Field trials were conducted between 1999 and 2003 on a calcareous soil in a semiarid region of northwest India. Woody perennials were planted at the sill of furrows and irrigated with water of high salinity (EC 10–28 dS m−1), low salinity (EC 5–9 dS m−1) and alternately with these two waters. Woody species included Azadirachta indica, Cordia rothii, Salvadora persica, Jatropha curcas, J. gossipifolia, Ricinus communis, Catharanthus roseus, Adhatoda vasica and Aloe barbadensis. Most of these could be grown successfully but S. persica—a highly salt‐tolerant halophyte—though it produced huge biomass, could not yield mature fruit due to frost injury. The salinity build up in the soil was greater during low‐rainfall years, but a good rainfall year, e.g. 714 mm in 2001, helped to leach out the accumulated salts. The uptake of Na+ in plants was greater when irrigated with water of high salinity, while K+ accumulation was greater with water of low salinity. Na+ accumulation was higher in roots as compared to other parts except in Jatropha and Salvadora, while K+ accumulation was greater in leaves. There was a negative correlation between Na+ and K+ accumulation and a positive correlation between Ca2+ and Mg2+. Thus, saline water (ECiw 12 dS m−1) can successfully be used for growing several under‐explored crops of high economic value. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
The effects of NaCl salt (EC = 16 dS m−1) on water potential, and accumulation of proline, Na+ and K+ in leaves on the main stem of 30 wheat cultivars (Triticum aestivum L.) at awn appearance and 20 days after anthesis (20 DAA) were evaluated in a greenhouse experiment. Plants were arranged in a according to a randomized complete block design with factorial treatments in three replications. Proline accumulation at 20 DAA increased with increasing salt stress. This increase was 27.4-fold with the salt-sensitive cultivar “Ghods,” while the mean was 5.2-fold for 19 salt-resistant cultivars. Positive correlations between proline, and K+ + Na+ concentrations associated with higher sensitivity to salt stress indicated that proline may not have a protecting role against salt stress. No correlation was observed between leaf proline and water potential. Almost no contribution to the osmotic adjustment seems to be made by proline. The contribution made by proline to the osmotic adjustment of plants at 20 DAA was 0.69 bar, whereas that made by K+ and Na+ was 2.11 and 4.48 bar, respectively. The 30 wheat CVs used in this experiment showed different performances regarding the traits observed. Eleven of them showing the higher stress sensitivity indices had the highest level of proline and Na+ concentrations. They were considered to be salt-sensitive cultivars. Among the others, nine cultivars showed salt tolerance with almost the same Na+ and proline concentrations, but a higher K+/Na+ selectivity of ions from leaf to grains. In 10 of the cultivars, Na+ and proline concentrations were low, indicating the presence of a salt avoiding mechanism.  相似文献   

16.
The aim of this trial was to study the nutritional behavior generated by modifications in the salt concentration in the nutrient solution used for the fertigation of Cordyline fruticosa var. Red Edge plants. Four treatments were tested: T1 [control, 1.5 dS m?1, 14.3 mmol L?1 sodium chloride (NaCl)]; T2 (2.5 dS m?1, 22.2 mmol L?1 NaCl); T3 (3.5 dS m?1, 32.7 mmol L?1 NaCl); and T4 (4.5 dS m?1, 38.2 mmol L?1 NaCl). There is an accumulation of sodium (Na+) in roots, stem, and petiole when salinity increases, which avoid leaf damages. Potassium (K) concentration increases with the intermediate saline treatments in stems and leaves but decreases when plants are fertigated with T4. Calcium (Ca) accumulates in roots with T3 and T4, in stems with T4, and in petioles and leaves with T3. Magnesium (Mg) concentration is greater in stems, petioles, and leaves of T4, but is greater in roots of T3. Plants fertigated with the three saline treatments extract 1.4 times more Na+ than T1 plants. The greatest K+ extraction is observed in T2, followed by T3, and T4. T2, T3, and T4 plants extracted more Ca2+ than T1 plants. Finally, Mg2+ extractions in T3 are twice as much as they are in T1, while in T4 and T2 are much greater.  相似文献   

17.
The antioxidative protection system as adaptation strategy to high soil salinity in the leaves of two tomato (Lycopersicon esculentum Mill.) hybrids (Buran F1 and Berberana F1) was investigated. Changes in the activity of superoxide‐dismutase (SOD, EC 1.15.1.1), peroxidase (POD, EC 1.11.1.7), ascorbate peroxidase (APX, EC 1.11.1.11), as well as total and oxidized ascorbate concentrations (AA and DHA) in the plant leaves subjected to three salinity levels (EC 3.80 dS m−1, 6.95 dS m−1, and 9.12 dS m−1) relative to non‐saline control were analyzed during the fruiting phase. The obtained results clearly indicate a relation between SOD activity and AA concentration in the antioxidative protection without any peroxidase‐related H2O2 detoxification. Increased SOD activity accompanied by high AA concentration was noticed at all salinity levels, but the response of hybrids was specific for the particular salt concentration. The first salinity level (EC 3.80 dS m−1) induced the highest level of AA in the Buran F1 (70%), while in Berberana F1 hybrid leaves the highest AA concentration (64%) was noticed at the third salinity level (9.12 dS m−1). All salinity levels caused a decline in POD and APX activities in both hybrids. The possibility of a predominant role of ascorbate and SOD in the antioxidative protection of mature tomato leaves under long‐term salt stress is discussed.  相似文献   

18.
Enhanced carbon fixation in soil crusts may facilitate the restoration of damaged ecosystems, but this requires greater knowledge of carbon fixation patterns and mechanisms. We measured the net photosynthetic rate (Pn) and estimated annual carbon fixation (ACF) in cyanobacterial–algal crusts after desert fixation in the Tengger Desert, northwestern China. The accumulated carbon fixation since the establishment of a restoration site was also calculated. In addition, stepwise regression analysis was used to study the relation between Pn and ACF and the physicochemical properties of crusts. Results showed that Pn was significantly higher at a more established 51‐year‐old restoration site (1·57 µmol m−2 s−1) than at a younger 15‐year‐old site (0·92 µmol m−2 s−1). The ACF also increased significantly with restoration time, but in two temporal phases, a slower ACF phase between 15 and 26 years of restoration (0·28–0·7 gC m−2 y−1) and a high ACF phase after 43–51 years of restoration (3·3 gC m−2 y−1). Stepwise regression analysis revealed that Pn was significantly correlated with chlorophyll a and crust cover, whereas ACF was only correlated with crust cover. Accumulated carbon fixation increased from 2·9 gC m−2 after 15 years to 35·4 gC m−2 at 51 years following establishment of the restoration site. The accumulated carbon fixation was positively correlated with soil organic carbon content. This study demonstrated that carbon fixation by cyanobacterial–algal crusts increased progressively after desert fixation. Artificial measures, like the establishment of these restoration zones, can facilitate the colonization and development of biological soil crusts and are an effective biological tool for desert soil restoration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Abstract

The concentrations of K+, Na+, and proline and the ratio of K+ to Na+ (K+ / Na+) were analyzed in NaCl-unadapted and NaCl-adapted tobacco (Nicotiana tabacum) cells in suspension culture. At 3 to 5 d after inoculation, the NaCl-unadapted cells cultured in 100 mmol L?1 NaCl saline culture medium (Na100 medium) accumulated 28.7 mmol L?1 proline with a low ratio of K+ to Na+ (= 2.8) and the NaCl-adapted cells cultured in the Na100 medium contained 6.28 mmol L?1 proline with a high K+ / Na+ ratio (≧ 7.5). The contents of amino acids for the NaCl-adapted cells in the Na100 medium were similar to those for the NaCl-unadapted cells in a modified LS medium (standard medium). At 14 d after inoculation, the NaCl-unadapted cells in the Na100 medium contained 4.77 mmol L?1 proline and restored the K+ / Na+ ratio from 2.8 to 6.2. These results indicate the presence of a negative correlation between the K+ / Na+ ratio and proline accumulation and suggest that a balance between the K+ / Na+ ratio and proline accumulation may be the factor involved in determining the salt tolerance of plant cells.  相似文献   

20.
盐渍化土壤水分有效性是制约土地生产能力的关键因素之一。研究不同盐分类型及矿化度的盐溶液对土壤水分有效性的影响, 可为微咸水合理灌溉以及促进土壤生产潜力的发挥提供科学依据。本研究采用离心法在室内研究了脱水过程中灌溉水的溶质类型(NaCl和Na2SO4)与矿化度(0、1 g·L-1、3 g·L-1、5 g·L-1、10 g·L-1)对半干旱盐渍化地区果园土壤水分有效性的影响。结果表明: 不同矿化度的NaCl和Na2SO4处理均可使田间持水量、暂时萎蔫系数、永久萎蔫系数、迟效水和无效水较对照有所降低。不同矿化度的NaCl处理以及1 g·L-1的Na2SO4处理土壤全有效水和速效水都较对照增加, 3 g·L-1、5 g·L-1和10 g·L-1的Na2SO4处理土壤全有效水和速效水都较对照减小。不同矿化度的NaCl和Na2SO4处理均可使土壤通气孔隙和毛管孔隙相对减少, 非活性孔隙增大, 其中矿化度为5 g·L-1的NaCl和Na2SO4处理对其影响最为明显, 通气孔隙分别较对照减小16.8%和14.8%, 毛管孔隙分别较对照减小5.2%和6.5%, 非活性孔隙分别较对照增加15.7%和14.4%。NaCl对于土壤比水容量和毛管断裂的延迟效果比NaSO4明显。且土壤溶液盐分含量增加, 土壤持水能力下降、供水性能增加而土壤抗旱性降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号