首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Field runoff plots were established in 1984 to evaluate the effects of slope length on runoff, soil erosion and crop yields on newly cleared land for four consecutive years (1984–1987) on an Alfisol at Ibadan, Nigeria. The experimental treatments involved six slope lengths (60 m to 10 m at 10-m increments) and two tillage methods (plough-based conventional tillage and a herbicide-based no-till method) of seedbed preparation. A uniform crop rotation of maize (Zea mays)/cowpeas (Vigna unguiculata) was adopted for all four years. An uncropped and ploughed plot of 25 m length was used as a control. The water runoff from the conventional tillage treatment was not significantly affected by slope length, but runoff from the no-till treatment significantly increased with a decrease in slope length. The average runoff from the no-till treatment was 1·85 per cent of rainfall for 60 m, 2·25 per cent for 40 m, 2·95 per cent for 30 m, 4·7 per cent for 20 m and 5·15 per cent for 10 m slope length. In contrast to runoff, soil erosion in the conventional tillage treatment decreased significantly with a decrease in slope length. For conventional tillage, the average soil erosion was 9·59 Mg ha−1 for 60 m, 9·88 Mg ha−1 for 50 m, 6·84 Mg ha−1 for 40 m, 5·69 Mg ha−1 for 30 m, 1·27 Mg ha−1 for 20 m and 2·19 Mg ha−1 for 10 m slope length. Because the no-till method was extremely effective in reducing soil erosion, there were no definite trends in erosion with regard to slope length. The average sediment load (erosion:runoff ratio) also decreased with a decrease in slope length from 66·3 kg ha−1 mm−1 for 60 m to 36·3 kg ha−1 mm−1 for 10 m slope length. The mean C factor (ratio of soil erosion from cropped land to uncropped control) also decreased with a decrease in slope length. Similarly, the erosion:crop yield ratio decreased with a decrease in slope length, and the relative decrease was more drastic in conventional tillage than in the no-till treatment. The slope length (L) and erosion relationship fits a polynomial function (Y=c+aL+bL2). Formulae are proposed for computing the optimum terrace spacing in relation to slope gradient and tillage method. © 1997 John Wiley & Sons, Ltd.  相似文献   

2.
为研究河西绿洲灌区保护性耕作对土壤风蚀的影响,通过春小麦田间试验,设置免耕不覆盖、免耕秸秆覆盖、立茬和残茬压倒4种保护性耕作处理,以传统耕作为对照,分析了河西绿洲灌区不同保护性耕作措施对田间输沙量、风蚀深度、风蚀物粒径组成、风速的影响。结果表明:0~30 cm高度输沙量能敏感地反映不同耕作措施之间输沙量的差异。与传统耕作相比,免耕不覆盖、免耕秸秆覆盖、立茬和残茬压倒处理0~30 cm高度输沙量分别减少17.4%~46.7%、21.7%~45.2%、24.7%~48.2%和10.7%~42.4%。风蚀深度传统耕作为1.22~1.44 mm,4种保护性耕作处理均为0 mm。与传统耕作相比,保护性耕作处理风蚀物粒径组成无显著变化,但<0.063 mm细粒占比有减小趋势。立茬处理20 cm高度风速显著降低24.1%~39.5%,其他保护性耕作措施风速降低不显著。综上所述,河西绿洲灌区不同保护性耕作措施能不同程度地抑制土壤风蚀,立茬处理是相对较优的保护性耕作措施,适宜该地区推广应用。  相似文献   

3.
[目的]揭示保护性耕作对土壤呼吸的影响,为旱区保护性农业的发展提供理论依据。[方法]采用多通道土壤碳通量系统监测传统耕作(T)、传统耕作+秸秆覆盖(TS)、免耕(NT)和免耕+秸秆覆盖(NTS)下箭筈豌豆(Vicia sativa)地的土壤呼吸速率。[结果]各措施下花期呼吸速率比收获期高10.45%~45.09%,NTS处理下土壤呼吸速率最低别比TS,NT和T处理显著减少39.17%,21.37%和30.25%(p0.01)。耕作处理(T,TS)下日均土壤呼吸速率高于免耕处理(NT,NTS)(p0.05)。晴天土壤呼吸变化呈单峰曲线,最大值出现在14:00。耕作下土壤呼吸速率与气温显著线性相关,免耕下(NT,NTS)与气温呈指数关系(p0.01)。不同耕作措施间气温敏感性Q10值大小依次为:T(1.97)NT(1.62)TS(1.58)NTS(1.52)。[结论]免耕加秸秆还田处理对减少温室气体排放有一定的贡献。  相似文献   

4.
为有效防治坡耕地水土流失,持续利用坡耕地,于2007-2010年在黄土高原西部坡耕地上研究保护性耕作对水土流失的影响,重点探讨传统耕作与免耕秸秆覆盖2种耕作措施下春小麦、鹰嘴豆、马铃薯与紫花苜蓿间作的水土流失规律。结果表明:(1)各处理8月份的径流量分别占观测时段内总径流量的46.46%~51.29%,侵蚀量分别占观测时段内总侵蚀量的40.10%~61.22%。(2)降雨量与径流量、侵蚀量间呈现多元多项式关系。(3)2007-2010年不同种植模式下径流总量和侵蚀总量的变化趋势是一致的,均表现出NTSPL相似文献   

5.
This study sought to contribute to the understanding of soil redistribution by tillage on terraces and the extent and causes of within-field variation in soil properties by examining the spatial distributions of soil redistribution rates, derived using caesium-137, and of total nitrogen and total phosphorus concentrations, within a ribbon and a shoulder terrace in a yuan area of the Loess Plateau of China. Additional water erosion rate data were obtained for nine other terraces. Water erosion rates on the ribbon terraces were low (<1 kg m−2 yr−1), unless slope tangents exceeded 0·1. However, despite the use of animal traction, high rates of tillage erosion were observed (mean 5·5 kg m−2 yr−1). Soil nitrogen concentrations were related to rates of soil redistribution by tillage on the ribbon terrace examined in detail. In general, higher rates of water erosion (0·5–2·9 kg m−2 yr−1) and lower rates of tillage erosion (mean 1·4 kg m−2 yr−1) were evident on the longer shoulder terraces. On the shoulder terrace examined in detail, soil phosphorus concentrations were related to net rates of soil redistribution. A statistically significant regression relationship between water erosion rates and the USLE length and slope factor was used in conjunction with the simulation of tillage erosion rates to evaluate a range of terrace designs. It is suggested that off-site impacts of erosion could be further reduced by ensuring that the slope tangents are kept below 0·06 and lengths below 30 m, especially on the shoulder terraces. Tillage erosion and the systematic redistribution of soil nutrients could be reduced by modification of the contour-cultivation technique to turn soil in opposing directions in alternate years. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
东北地区不同耕作方式农田土壤风蚀特征   总被引:4,自引:3,他引:4  
为探究不同耕作方式农田土壤风蚀特征,揭示风蚀对表层土壤理化性质及养分含量的影响,以东北地区典型农田土壤(黑土和风沙土)为研究对象,通过野外集沙仪定点监测与室内理化分析等方法,对不同耕作方式(垄作、免耕)和不同地表覆盖措施(无覆盖、留茬、覆盖)下的土壤风蚀特征展开研究。结果表明:(1)风沙土的输沙量显著高于黑土,在0—100cm高度范围内风沙土的输沙量平均为黑土的168倍。随高度的上升输沙量急剧减少,其中0—10cm输沙量最大,占总输沙量的50%以上,40cm以上则无明显风蚀物;(2)不同耕作方式下,免耕农田土壤风蚀输沙量较垄作样地减少了66.0%~94.1%;而相同耕作措施下,不同地表覆盖的输沙量表现为无覆盖>留茬>覆盖,与无覆盖相比,留茬及秸秆覆盖下的输沙量可以减少90.3%~99.4%;(3)受风蚀影响,表层土壤颗粒、有机质及养分流失严重,其中风蚀物的砂粒含量是表层土壤的1.06~1.42倍,且10—20cm风蚀物中有机质、全氮和全磷含量均比表层土壤高;(4)通过修正风蚀方程(RWEQ)估算得出,垄作无覆盖(RTNF)风蚀模数高达181.7~86582.9t/(km^2·a),风蚀剧烈,而免耕覆盖(NTF)的风蚀模数仅为9.89t/(km^2·a),为微度风蚀。研究显示垄作及无覆盖方式下农田土壤风蚀程度剧烈,加剧了表层土壤颗粒和养分流失的风险,而免耕和地表覆盖能有效缓解风蚀危害。  相似文献   

7.
Aggregation often provides physical protection and stabilisation of soil organic carbon (C). No tillage (NT) coupled with stubble retention (SR) and nitrogen (N) fertiliser application (90 N, 90 kg N ha−1 application) can help improve soil aggregation. However, information is lacking on the effect of long‐term NT, SR and N fertiliser (NT, SR + N) application on soil aggregation and C distribution in different aggregates in vertisols. We analysed the soil samples collected from 0‐ to 30‐cm depth from a long‐term (47 years) experiment for soil aggregation and aggregate‐associated C and N. This long‐term field experiment originally consisted of 12 treatments, having plot size of 61·9 × 6·4 m, and these plots were arranged in a randomised block design with four replications, covering an area of 1·9 ha. Soil organic C concentrations as well as stocks were significantly higher under the treatment of NT, SR + N only in 0–10 cm compared with other treatments such as conventional tillage, stubble burning + 0 N (no N application) and conventional tillage, SR + 0 N. Mineral‐associated organic C (MOC) of <0·053 mm was 5–12 times higher (r  = 0·68, p  < 0·05, n  = 32) compared with particulate organic C (POC) (>0·053 mm) in the 0‐ to 30‐cm layer. We found that NT, SR + N treatment had a positive impact on soil aggregation, as measured by the mean weight diameter (MWD) through wet sieving procedure, but only in the top 0‐ to 10‐cm depth. MWD had significant positive correlation with water stable aggregates (r  = 0·67, p  < 0·05). Unlike MWD, water stable aggregates were not affected by tillage and stubble management. Large macroaggregates (>2 mm) had significantly higher organic C and N concentrations than small macroaggregates (0·25–2 mm) or microaggregates (0·053–0·25 mm). We also found that N application had a significant effect on MWD and soil organic C in vertisols. It is evident that better soil aggregation was recorded under NTSR90N could have a positive influence on soil C sequestration. Our results further highlight the importance of soil aggregation and aggregate‐associated C in relation to C sequestration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
About 80% of Ethiopia's population is involved in rain‐fed agriculture. Moisture stress coupled with traditional tillage with breaking ard plough, locally known as ‘Maresha ’ are the major limiting factors for agricultural production. Soil erosion, low infiltration and decline agricultural productivity because of conventional tillage implement have been frequently reported. In order to curve this situation and meet the huge food demand of the growing population, different conservation tillage systems have been implemented. However, there is limited information about the impacts of the practices. This review paper therefore aimed at providing adequate information concerning the impacts of the practices on water balance and crop yield. Systematic, best evidence and narrative review techniques were used. Results revealed that the application of conservation tillage had brought significant improvement on water balance and agricultural production. Researchers found over 50% decreased in surface runoff, 9 to 40% improvement in water productivity and good crop transpiration (T = 53 mm season−1), compared to conventional tillage T = 49 mm‐season−1 because of conservation tillage implement. Moreover, doubled grain yield was obtained from ridging, subsoiling and wing plough (1076, 1044 and 1040 kg ha−1, respectively) compared to traditional tillage which resulted in 540 kg ha−1. Improving water balance and agricultural production in rain‐fed agriculture need to reduce evaporation and surface runoff through improving moisture retention and transpiration. This could be achieved by the adoption of conservation tillage which can improve on‐farm water balance, yields and water productivity among smallholder farmers in Ethiopia. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
保护性耕作对土壤风蚀的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
保护性耕作能够有效减少农田土壤风蚀.通过室内风洞模拟试验,研究秸秆覆盖、留茬和垄作3种保护性耕作措施对黄土高原北部农田土壤风蚀的影响.结果表明:1)秸秆覆盖和留茬能有效降低土壤风蚀速率,秸秆覆盖量为4 210 kg/hm2时土壤风蚀速率最小,与对照相比减少62.8%;垄作在低风速下能够降低土壤风蚀率,垄向与风向垂直时降...  相似文献   

10.
Conservation agriculture practices have been proposed as a set of techniques for improving soil structure properties and related ecosystem services. This study compared conservation agriculture (CA) practices (no‐tillage, cover crop and residue retention) and conventional intensive tillage system in order to evaluate their effects on total porosity, pore size distribution, pore architecture and morphology. The experiment was set up in 2010 on four farms of the low‐lying Veneto Region plain characterized by silty soils. Almost hundred soil samples were collected in 2015 at four depths down to 50‐cm layer and investigated for porosity from micrometre (0·0074 μm) to macrometre (2·5 mm) by coupling mercury intrusion porosimetry and X‐ray computed microtomography (μCT). Indices of soil morphology and architecture were derived by analysing 3D images and mercury intrusion porosimetry pore size curves. Results suggested that silty soils of Veneto plain are microstructured because much (82%) of the porosity ranged between 0·0074 and 30 μm. CA practices positively influenced the ultramicroporosity class (0·1–5 μm) (1·86E‐01 vs 1·67E‐01 μm3 μm−3) that is strictly linked to soil organic carbon stabilization while no effects were observed in X‐ray μCT porosity domain (> 26 μm). Silty soils of Veneto plain showed a slow reaction to CA because of the poor aggregate stability and low soil organic carbon. However, the positive response of the ultramicropore fraction indicates that a virtuous cycle was initiated between soil organic carbon and porosity, hopefully leading to well‐developed macropore systems and, in turn, enhanced soil functions and ecosystem services. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
保护性耕作农田抗风蚀效应多因素回归分析   总被引:7,自引:4,他引:3  
为定量评价风洞中心风速、留茬高度、植被盖度及交互作用对保护性耕作农田风蚀的影响,按均匀试验设计方案,采用野外风洞原位测试方法,完成了保护性耕作农田抗风蚀效应多因素试验。用偏最小二乘回归(PLSR)理论,建立了保护性耕作农田土壤风蚀模型。分析表明:各因素对输沙率作用的主次顺序依次为:中心风速、植被盖度、留茬高度;对截留率作用的主次顺序依次为:留茬高度、植被盖度、中心风速;各因素对输沙率、截留率交互作用规律相同,由主到次为:留茬高度×植被盖度、中心风速×植被盖度、中心风速×留茬高度。结果证明,保护性耕作农田的抗风蚀机理,不仅受单因素的影响,还与中心风速、留茬高度、植被盖度间的交互作用关系密切。  相似文献   

12.
保护性耕作对旱作农田耕层土壤肥力及酶活性的影响   总被引:18,自引:3,他引:18  
通过田间定位试验,研究了不同耕作方式对黄土高原西部旱农区耕层土壤肥力和酶活性的影响。结果表明,秸秆还田可以显著提高 0—5和5—10 cm土层有机质、全氮、全磷、全钾、铵态氮、速效磷、速效钾和3种水解酶活性; 10—30 cm 土层仅提高了有机质、全钾和速效钾含量,对其余各养分含量和水解酶活性并无明显影响。免耕降低了0—5、5—10和10—30 cm土层硝态氮含量,但对过氧化氢酶活性有明显促进作用。相关分析表明,土壤有机质、养分和碱性磷酸酶、蔗糖酶活性之间呈极显著相关关系。进一步应用主成分分析表明,土壤有机质、养分和水解酶活性共同反映着黄土高原雨养农区土壤肥力水平的高低。  相似文献   

13.
土壤风蚀是指松散的土壤物质被风吹起、搬运和堆积的过程以及地表物质受到风吹起的颗粒的磨蚀过程,其实质是在风力的作用下,表层土壤中的细颗粒和营养物质的吹蚀、搬运与沉积的过程。我国受土壤风蚀及土地沙漠化影响的面积占国土总面积的1/2以上,主要分布于北方干旱、半干旱地区。甘肃河西走廊是我国荒漠化最严重的地带之一,该地区春小麦种植长期采用铧式犁翻耕是导致该地区农田土壤风蚀的主要原因。通过室内风洞试验揭示了冬小麦保护性耕作措施条件下风蚀量、起动风速、风速廓线、地表粗糙度的差异及相关关系。结果表明,各个处理风蚀量、起动风速均高于对照处理,风蚀量与风速存在幂函数关系,16 m s-1风速是土壤风蚀程度由轻变重的一个转折点;在距土样表面5~50 mm范围内,随着高度的递增免耕秸秆覆盖(NTS)、免耕不覆盖(NT)处理较秸秆翻压(TIS)、传统耕作(T)处理风速增加缓慢,每个处理高度(H)与风速(V)遵循指数函数。NT、NTS处理与对照(SWT)的粗糙度K的差异在0.01水平上达到了极显著,TIS处理与对照(SWT)在0.05水平上差异显著,而T处理与对照(SWT)差异不显著。风蚀率(Q)与地表粗糙度(K)之间存在显著负相关关系。起动风速与地表粗糙度存在显著负相关关系。  相似文献   

14.
Soil erosion from cropland is a primary cause of soil degradation in the hilly red soil region of China. Soil characteristics and the resistance of soil to erosion agents can be improved with appropriate management practices. In this study, hydraulic flume experiments were conducted to investigate the effects of five management practices [manure fertilizer (PM), straw mulch cover (PC), peanut–orange intercropping (PO), peanut–radish rotation (PR) and traditional farrow peanut (PF)] on soil detachment. Based on the results, three conservation management practices (PC, PM and PO) increased the resistance of soil to concentrated flow erosion. The rill erodibility of different treatments was ranked as follows: PC (0·001 s m−1) < PM (0·004 s m−1) < PO (0·007 s m−1) < PF (0·01 s m−1) < PR (0·027 s m−1). The rill erodibility was affected by soil organic content, aggregate stability and bulk density. The soil detachment rate was closely correlated with the flow discharge and slope gradient, and power functions for these two factors were developed to evaluate soil detachment rates. Additionally, the shear stress, stream power and unit stream power were compared when estimating the soil detachment rate. The power functions of stream power and shear stress were equivalent, and both are recommended to predict detachment rates. Local soil conservation can benefit from the results of this study with improved predictions of erosion on croplands in the red soil region of China. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
通过设置在甘肃省定西市李家堡镇的保护性耕作措施长期定位试验,共设4个处理(T:传统耕作;NT:免耕无覆盖;TS:传统耕作+秸秆还田;NTS:免耕+秸秆覆盖),采用春小麦豌豆双序列轮作(即小麦→豌豆→小麦和豌豆→小麦→豌豆,本文中所指春小麦地、豌豆地分别指2008年种植春小麦、豌豆的轮作次序),于2008年3月中旬对春小麦、豌豆双序列轮作下的土壤有机碳、全氮、土壤微生物量碳及土壤微生物量氮含量进行了采样测定。结果表明,经过7a的轮作后,两种轮作次序下,0-30cm土层中土壤有机碳、全氮、土壤微生物量碳、土壤微生物量氮含量均有在免耕+秸秆覆盖、传统耕作+秸秆还田处理较免耕不覆盖、传统耕作处理高的趋势,且其含量均随着土壤深度的增加而降低。其中,土壤微生物量碳含量在两种轮作次序下的排序均为:免耕+秸秆覆盖(NTS)〉传统耕作+秸秆还田(TS)〉免耕不覆盖(NT)〉传统耕作(T);而土壤微生物量氮含量在春小麦地和豌豆地的排序则分别表现为:免耕+秸秆覆盖(NTS)〉传统耕作+秸秆还田(TS)〉传统耕作(T)〉免耕不覆盖(NT)和免耕+秸秆覆盖(NTS)〉传统耕作+秸秆还田(TS)〉免耕不覆盖(NT)〉传统耕作(T)。同时,微生物量碳、微生物量氮与有机碳和全氮均呈显著正相关,说明提高土壤有机质、全氮含量的保护性耕作模式有利于土壤微生物量碳与氮的积累。  相似文献   

16.
Conservation tillage practices are intended to minimize soil erosion. Yet little is known concerning changes in physical properties of subarctic soils subject to tillage practices. This study ascertained whether physical properties of a newly cleared subarctic soil are altered after 7 years of continuous barley (Hordeum vulgare L.) using different tillage and straw management strategies. Tillage and straw treatments were established in 1983 near Delta Junction, Alaska, and consisted of conventional fall and spring disk, fall chisel plow, spring disk, and no-tillage. Tillage plots were split by straw management practices, which included straw and stubble, stubble only, and no straw or stubble. Soil samples were collected from the upper 0.15 m of the profile in the spring of 1990 to assess water content, bulk density, saturated hydraulic conductivity, dry aggregate and mechanical stability, penetration resistance, water retention, and particle size distribution. Percent non-erodible aggregates, mechanical stability, and penetration resistance were greater for no-tillage compared to conventional tillage, chisel plow, and spring disk. No-tillage soils were also typically wetter, denser, and had a greater hydraulic conductivity. The spring disk treatment was least susceptible to erosion and also conserved soil water compared with chisel plow. Straw maintained on the surface conserved water and promoted soil stability.  相似文献   

17.
通过春小麦田间试验,以传统耕作为对照,设置免耕不覆盖、免耕秸秆覆盖、立茬和残茬压倒4种保护性耕作处理,研究河西绿洲灌区保护性耕作下土壤风蚀与土壤结构的关系,分析了田间输沙量与土壤团聚体、<0.01mm物理性粘粒、<0.01mm分散性粘粒、分散系数随年限增加的变化及其相关关系。结果表明:与传统耕作相比,保护性耕作能显著减少输沙量;>0.05mm各级团聚体随年限的增加基本无显著变化,但保护性耕作大团聚体(>0.25mm)有增大趋势,微团聚体(0.25-0.05mm)有减少趋势;保护性耕作实施2年后,<0.05mm土粒占比除立茬处理减少不显著外,其他保护性耕作处理均显著减少;试验第3年,传统耕作<0.01mm物理性粘粒较保护性耕作有减少趋势;免耕不覆盖、立茬和残茬茬倒处理<0.01mm分散性粘粒含量随年限的增加显著下降,免耕秸秆覆盖处理变化不显著;免耕不覆盖和残茬压倒处理土壤分散系数随年限的增加显著下降,免耕秸秆覆盖和立茬下降不显著;保护性耕作实施的第3年,各保护性耕作处理分散系数出现减小的趋势。输沙量与>1mm团聚体、<0.05mm土粒和<0.01mm分散性粘粒含量都有极显著的负相关关系,与0.25-0.05mm团聚体呈极显著正相关关系。综上所述,保护性耕作能促进土壤微结构的改善,土壤微结构的改善有利于土壤大团聚体的形成。  相似文献   

18.
Assessments of the effects of deforestation, post-clearance tillage methods and farming systems treatments on soil properties were made from 1978 through 1987 on agricultural watersheds near Ibadan, southwestern Nigeria. These experiments were conducted in two phases: Phase I from 1978 through 1981 and Phase II from 1983 to 1987, with 1 year (1982) as a transition phase when all plots were sown with mucuna (Mucuna utilis). There were six treatments in Phase I involving combinations of land clearing and tillage methods: (1) manual clearing with no-till (MC-NT); (2) manual clearing with plough-till (MC-PT); (3) shear-blade clearing with no-till (SB-NT); (4) tree-pusher/root rake clearing with no-till (TP-NT); (5) tree-pusher/root-rake clearing with plough-till (TP-PT); (6) traditional farming (TF). The six treatments were replicated twice in a completely randomized design. The traditional treatment of Phase I was discontinued during Phase II. The five farming systems studied during Phase II with a no-till system in all treatments were: (1) alley cropping with Leucaena leucocephala established on the contour at 4-m intervals; (2) and (3) fallowing with Mucuna utilis on severely degraded and moderately degraded watersheds, respectively, for 1 year followed by maize-cowpea rotation for another; (4) and (5) ley farming involving establishment of pasture in the first year on severely and moderately degraded plots, respectively, controlled grazing in the second year, and growing maize (Zea mays)-cowpea (Vigna unguiculata) in the third year. All treatments, imposed on watersheds of 2–4 ha each, were replicated twice. The soil properties analyzed were particle size distribution, total aggregation and mean weight diameter of aggregates, soil bulk density, penetrometer resistance, water retention characteristics, infiltration capacity and saturated hydraulic conductivity. These properties were measured under the forest cover in 1978, and once every year during the dry season thereafter during Phases I and II. Prior to deforestation, mean soil bulk density was 0·72 Mg m−3 and 1·30 Mg m−3, soil penetration resistance was 32·4 KPa and 90·7 KPa, and mean weight diameter of aggregates was 3·7 mm and 3·2 mm for 0–5 cm and 5–10 cm depths, respectively. The infiltration rate was excessive (54–334 cm hr−1) and saturated hydraulic conductivity was rapid (166–499 cm hr−1) under the forest cover. Furthermore, water transmission properties varied significantly even over short distances of about 1 m. Deforestation and cultivation increased soil bulk density and penetration resistance but decreased mean weight diameter of aggregates. One year after deforestation in 1980, mean soil bulk density was 1·41 Mg m−3 for 0–5 cm depth and 1·58 Mg m−3 for 5–10 cm depth. Soil bulk density and penetration resistance were generally higher for NT than for PT methods, and the penetration resistance was extremely high in all treatments by 1985. During Phase II, soil bulk density was high during the grazing cycle of the ley farming treatment. Sand content at 0–5 cm depth increased and clay content decreased with cultivation duration. Soon after deforestation, saturated hydraulic conductivity and equilibrium infiltration rate in cleared and cultivated land declined to only 20–30 per cent of that under forest. Mean saturated hydraulic conductivity following deforestation was 46·0 cm hr−1 for 0–5 cm depth and 53·7 cm hr−1 for 5–10 cm depth. Further, infiltration rate declined with deforestation and cultivation duration in all cropping systems treatments. During Phase I, mean infiltration rate was 115·8 cm hr−1 under forest cover in 1978, 20·9 cm hr−1 in 1979, 17·4 cm hr−1 in 1980 and 20·9 cm hr−1 in 1981. During Phase II, mean infiltration rate was 8·5 cm hr−1 in 1982, 11·9 cm hr−1 in 1983, 11·0 cm hr−1 in 1984, 11·3 cm hr−1 in 1985 and 5·3 cm hr−1 in 1986. Infiltration rate was generally high in ley farming and mucuna fallowing treatments. Natural fallowing drastically improved the infiltration rate from 19·2 cm hr−1 in 1982 to 193·2 cm hr−1 in 1986, a ten-fold increase within 5 years of fallowing. High-energy soil water retention characteristics in Phase I were affected by those treatments that caused soil compaction by mechanized clearing and no-till systems. Soil water retention at 0·01 MPa potential in 1979 was 19·2 per cent (gravimetrics) for SB, 17·9 per cent for TP, 15·9 per cent for MC and 17·8 per cent for TF methods. With regards to tillage, soil water retention was 17·8 per cent for NT compared with 16·8 per cent for PT. During Phase II, water retention characteristics were not affected by the farming system treatments. Mean soil water retention (average of 4 years' data from 1982 to 1986) at 0·01 MPa for 0–5 cm depth was 16·6 per cent for alley cropping, 16·7 per cent for mucuna fallowing and 16·8 per cent for ley farming. Mean soil water retention for 1·5 MPa suction was 9·3 per cent for alley cropping, 8·7 per cent for mucuna fallowing, and 9·3 per cent for ley farming. Water retention at 1·5 MPa suction correlated with the clay and soil organic carbon content.  相似文献   

19.
在陇东黄土高原定位研究了玉米-冬小麦-大豆轮作系统中4种耕作处理:传统耕作(T1)、耕作覆草(T2)、免耕(T3)和免耕覆草(T4)对作物产量和表层土壤有机碳的影响。结果表明,2001年至2004年,经过2个轮作周期后,4个处理下作物产量无显著差异;免耕+秸秆还田下土壤易氧化有机碳比传统耕作处理下显著增加2.44g/kg,易氧化有机碳与土壤全氮和水稳性团粒结构有显著的正相关关系,说职水土保持耕作对改善土壤理化性质有积极促进作用。易氧化有机碳组分可指示轻壤质地土壤对耕作措施的响应,水土保持耕作对产量增加的效应滞后于其对土壤理化性质产生的良好效应。  相似文献   

20.
Soil degradation is the single most important threat to global food production and security. Wind and water erosion are the main forms of this degradation, and conservation tillage represents an effective method for controlling this problem. The objective of this study was to quantify the effects of three tillage methods [zero (ZT), minimum (MT) and conventional (CT)] and three four-year crop sequences [spring wheat (Triticum aestivum L.)–spring wheat–winter wheat–fallow; spring wheat–spring wheat–flax (Linum usitatissimum L.)–winter wheat; spring wheat–flax–winter wheat–field pea (Pisum sativum L.] on crop establishment, plant height, seed weight, soil water storage, crop water use, crop water use efficiency and grain yield over a 12-year period under Canadian growing conditions. Plant establishment was not adversely affected by tillage systems or crop sequences except for flax, where a small reduction was observed with ZT and MT. Conservation tillage showed a yield benefit over CT of 7%, 12.5% and 7.4% for field pea, flax and spring wheat grown on cereal stubble, respectively over the 12 years of the study. Much of the yield increase was due to an increase in soil water in the 0–30 cm soil layer with ZT and MT. However, tillage systems had no effect on grain yield for spring wheat grown on fallow and field pea stubble due to a lack of differences in spring soil water content. Flax grown in sequence with cereals only yielded higher than when it was grown in the sequence which included field pea, even though flax was seeded on spring wheat stubble in both cases. Winter wheat yielded higher when grown on flax stubble than on spring wheat stubble. The results indicate that a one-year non-cereal break crop was enough to alleviate the negative effects of consecutive cereal crops on winter wheat. Spring wheat grown on field pea stubble always yielded more than when grown on cereal stubble. A 10% increase in water use efficiency was observed with flax grown with ZT and MT management. Crop sequence improved water use efficiency in flax and spring wheat. Growing spring wheat on field pea stubble as opposed to growing it on cereal stubble resulted in a 10% increase in water use efficiency. Overall, rainfall accounted for 73%, 72%, 67% and 65% of total water used by field pea, flax, winter wheat and spring wheat, respectively. This explains the large year effect as a result of variation in growing (May–August) season precipitation. The non-significant tillage system by year interaction implies that the positive benefits of ZT and MT occur over a wide range of growing conditions, while the absence of a tillage system by crop sequence interaction suggests that knowledge developed under CT management also applies to ZT and MT. The results of this study support the large shifts towards in conservation tillage being observed in the Canadian prairies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号