首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Land‐use patterns affect the quantity and quality of soil nutrients as well as microbial biomass and respiration in soil. However, few studies have been done to assess the influence of land‐use on soil and microbial characteristics of the alpine region on the northeastern Tibetan plateau. In order to understand the effect of land‐use management, we examined the chemical properties and microbial biomass of soils under three land‐use types including natural grassland, crop‐field (50 + y of biennial cropping and fallow) and abandoned old‐field (10 y) in the area. The results showed that the losses of soil organic carbon (SOC) and total nitrogen (TN) were about 45 and 43 per cent, respectively, due to cultivation for more than 50 y comparing with natural grassland. Because of the abandonment of cultivation for about a decade, SOC and TN were increased by 27 and 23 per cent, respectively, in comparison with the crop field. Microbial carbon (ranging from 357·5 to 761·6 mg kg−1 soil) in the old‐field was intermediate between the crop field and grassland. Microbial nitrogen (ranging from 29·9 to 106·7 mg kg−1 soil) and respiration (ranging from 60·4 to 96·4 mg CO2‐C g−1 Cmic d−1) were not significantly lower in the old‐field than those in the grassland. Thus it could be concluded that cultivation decreased the organic matter and microbial biomass in soils, while the adoption of abandonment has achieved some targets of grassland restoration in the alpine region of Gansu Province on the northeastern Tibetan plateau. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Soils are an effective sink for carbon storage and immobilization through biomass productivity and enhancement of soil organic carbon (SOC) pool. The SOC sink capacity depends on land use and management. Degraded lands lose large amounts of C through SOC decomposition, erosion, and leaching. Thus, restoration of disturbed and degraded mine lands can lead to increase in biomass productivity, improved soil quality and SOC enhancement and sequestration. Reclamation of mined lands is an aggrading process and offers significant potential to sequester C. A chronosequence study consisting of 0‐, 5‐, 10‐, 15‐, 20‐ and 25‐year‐old reclaimed mine soils in Ohio was initiated to assess the rate of C sequestration by pasture and forest establishment. Undisturbed pasture and forest were used as controls. The SOC pool of reclaimed pasture sites increased from 15·3 Mg ha−1 to 44·4 Mg ha−1 for 0–15 cm depth and from 10·8 Mg ha−1 to 18·3 Mg ha−1 for 15–30 cm depth over the period of 25 years. The SOC pool of reclaimed forest sites increased from 12·7 Mg ha−1 to 45·3 Mg ha−1 for 0–15 cm depth and from 9·1 Mg ha−1 to 13·6 Mg ha−1 for 15–30 cm depth over the same time period. The SOC pool of the pasture site stabilized earlier than that of the forest site which had not yet attained equilibrium. The SOC sequestered in 0–30 cm depth over 25 years was 36·7 Mg ha−1 for pasture and 37·1 Mg ha−1 for forest. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
The conversion from forest to grassland is drastically changing soil characteristics in Amazon, leading to land degradation when it is poorly managed. Chemical and physical changes of a Typic Hapludox were evaluated as a function of the conversion (by means of fire) from forest to Brachiaria brizantha cultivation. Samples from the remaining forest were also sampled. Treatments were made to pastures eight (P8), thirteen (P13) and fifteen (P15) years after conversion, and to land under continuous grazing, and to a remaining forest area (control). The forest soil was more acidic than the pasture soils. Soil density and Ca+2 increased after the conversion, regardless of the period of grazing. Carbon stocks varied from 31·2 t ha−1 in the forest soil to 37·4 (P8), 33·5 (P13) and 30·7 t ha−1 (P15). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
《Geoderma》2006,130(1-2):176-189
The distribution and form of P in soil is central to the sustainability of agricultural practice. This study used sequential fractionation and 31P nuclear magnetic resonance spectroscopy (31P NMR) of NaOH–EDTA extracts to examine the influence of pastoral, native (undisturbed) and forest land use on soil P forms in 5 contrasting soils ranging from a Regosol to a Rendzina in Otago, New Zealand. Climatic factors likely to influence soil P distribution were negated by careful site selection. Together with a decrease in soil organic C (31%), total P decreased in forested soils (mean=674 mg kg−1) compared to native soils (mean=784 mg kg−1). In contrast, the ratio of inorganic to organic P increased (10%) probably due to mineralization of organic P in forest soils, while for pasture soils, accumulation of P in inorganic forms due to P inputs via fertilisers and animal dung was to blame. Investigation of the organic P forms in NaOH–EDTA extracts of each land use by 31P NMR indicated that diesters were greatest in the native soil (4–12% of total P in spectra), and declined as a proportion of total P in pasture soils and more so in forest soils. This was reflected in a decline of the diester to monoester ratio. However, the ratio was generally greater in forest than pasture soils and attributed to the labile nature of diesters, mineralization of monoesters in forest soils, and an increase in monoesters in pasture soils from inositol phosphates in plant debris. This effect was pronounced in the Regosol due to sandy texture and the preferential accumulation of plant debris in coarse particle size fractions. Due to the depletion of soil P reserves, forest soils in the area should be followed by pasture and well managed fertiliser additions before replanting.  相似文献   

5.
In the high Andes of Ecuador scarcity of farmland has led to accelerated deforestation, in particular over the last 40 years. Soil mis‐management has caused the rapid decline of soil fertility and most farmland has been irreversibly transformed into grassland or tree plantations. The present study assessed whether pastures and particularly pine plantations were associated with less soil nutrients. The soils from six sites each of native forests and Pinus patula plantations, and their adjacent pastures were sampled in a geographically large area in the Paute watershed, south Ecuador. Soil analyses showed statistically significant differences for soil cations and effective cation exchange capacity (ECEC) only. ECEC was highest in soils from native forests and their adjacent pastures (6.4 cmol/kg) compared to pine plantations and their pastures (4.2 cmol/kg). Mean soil organic matter and pH were similar in native forests/pastures (39% SOM; pH 5.4) and in plantations/pastures (40% SOM; pH 5). As pasture soils had ECEC concentrations statistically similar to those of their adjacent forest or plantation, they do not form a single homogeneous land use type based on soil nutrients. Therefore, this study cannot conclude that the presence of pines alone has caused soil degradation, but instead that the soil at the site was already degraded before pines were planted. This study proposes the scenario that pine plantations are established in pastures as a last resort, when the soils are already strongly degraded, and more profitable land uses are not available. Farmers are reluctant to use fertile land for tree plantations, and only the planting of well‐known species, such as pines, is officially encouraged.  相似文献   

6.
Managing soil carbon requires accurate estimates of soil organic carbon (SOC) stocks and its dynamics, at scales able to capture the influence of local factors on the carbon pool. This paper develops a spatially explicit methodology to quantify SOC stocks in two contrasting regions of Southern Spain: Sierra Norte de Sevilla (SN) and Cabo de Gata (CG). Also, it examines the relationship between SOC stocks and local environmental factors. Results showed that mean SOC stocks were 4·3 kg m−2 in SN and 3·0 kg m−2 in CG. Differences in SOC in both sites were not significant, suggesting that factors other than climate have a greater influence on SOC stocks. A correlation matrix revealed that SOC has the highest positive correlation with clay content and soil depth. Based on the land use, the largest SOC stocks were found in grassland soils (4·4 kg m−2 in CG and 5·0 kg m−2 in SN) and extensive crops (3·0 kg m−2 in CG and 5·0 kg m−2 in SN), and the smallest under shrubs (2·8 kg m−2 in CG and 3·2 kg m−2 in SN) and forests soils (4·2 kg m−2 in SN). This SOC distribution is explained by the greatest soil depth under agricultural land uses, a common situation across the Mediterranean, where the deepest soils have been cultivated and natural vegetation mostly remains along the marginal sites. Accordingly, strategies to manage SOC stocks in southern Spain will have to acknowledge its high pedodiversity and long history of land use, refusing the adoption of standard global strategies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
In order to determine the effect of land use on forest floor and soil, two adjacent sites with different land use were investigated in Gallura (northern Sardinia, Italy). One site is a Quercus suber L. forest mainly used for cork production and the other is an open Quercus suber L. forest where livestock is put out to graze. In each site one soil profile was studied to characterize the mineral soil, and five humus profiles were opened along a vegetation transect, were studied to characterize the forest floor. Samples of L, F and H horizons of the forest floor and of the A mineral horizons were collected and analysed for each profile. In the site mainly used for cork production well‐developed ectorganic (L, F and H) horizons are always present, with a total thickness ranging from 5·2 to 9·5 cm. Humus profile is of the Moder type, while mineral soils have an A–C profile, generally 50 cm deep. Organic matter content in the forest floor ranges from 1·76–3·72 kg m−2 and nutrients content in the mineral soil is high. In the site used chiefly for grazing the ectorganic horizons are very poorly developed, with a total thickness ranging from 1–3 cm, except for some islands under the Quercus suber L. canopy where the total thickness may reach 5·3 cm. Humus profile is of the Mull type, but the used classification system seems not appropriate when the tree density is below a critical limit. Mineral soils have an A–C profile 20–25 cm deep. The organic matter content in the forest floor ranges from 0·45 to 1·84 kg m−2, while nutrient content in the mineral soil maintains at high level, even higher than in the former case for C, N and Ca, probably in relation with higher supply of cattle excreta. Sheet erosion is evident in the site. It is concluded that cork production will maintain a sustainable forest floor development in cork–oak forest ecosystem, whereas cattle grazing, fires and ploughing in cork–oak forests may be considered to trigger off severe soil degradation processes. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
Water dispersible clay (WDC) can influence soil erosion by water. Therefore, in highly erodible soils such as the ones in eastern Nigeria, there is a need to monitor the clay dispersion characteristics to direct and modify soil conservation strategies. Twenty‐five soil samples (0–20 cm in depth) varying in texture, chemical properties and mineralogy were collected from various locations in central eastern Nigeria. The objective was to determine the WDC of the soils and relate this to selected soil physical and chemical attributes. The soils were analysed for their total clay (TC), water‐dispersible clay (WDC), clay dispersion ratio (CDR), dispersion ratio (DR), dithionite extractable iron (Fed), soil organic matter (SOM), exchangeable cations, exhangeable sodium percentage (ESP) and sodium adsorption ratio (SAR). Total clay contents of the soil varied from 80–560 g kg−1. The USLE erodibility K ranges from 0·02 to 0·1 Mg h MJ−1 mm and WEPP K fall between 1·2 × 10−6–1·7 × 10−6 kg s m−4. The RUSLE erodibility K correlated significantly with CDR and DR (r = 0·44; 0·39). Also, a positive significant correlation (r = 0·71) existed between WEPP K and RUSLE K. Soils with high clay dispersion ratio (CDR) are highly erodibile and positively correlates (p < 0·51) with Fed, CEC and SOM. Also, DR positively correlates with Mg2+ and SOM and negatively correlate with ESP and SAR. Principal component analysis showed that SAR, Na+ and percent base saturation play significant role in the clay dispersion of these soils. The implication of this result is that these elements may pose potential problem to these soils if not properly managed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
Application of organic waste on agricultural land as a soil conditioner and fertilizing material has lately gained much attention. This study was conducted to determine the effects of vermicompost applications (0·5%, 1%, 2% and 4% w/w) on physical characteristics of soils with different textures (sandy loam, loam and clay), under laboratory conditions. The results indicated that in the higher soil aggregate fraction (>12·7 mm) aggregate fraction was limited at the three soils. Vermicompost applications in all three soils significantly increased organic matter content. When compared with control, the increasing rates in organic matter content were 14·0%, 23·8%, 42·0% and 90·2% for 0·5%, 1%, 2% and 4% vermicompost application doses, respectively. Vermicompost applications increased the wet aggregate stability and decreased the dispersion ratio of all the experimental soils in all aggregate size fractions. Overall, wet aggregate stability increased from 26·9% to 52·2% with the application rate of 4%. Correlation coefficient between organic matter content and wet aggregate stability was found as 0·918**. The lowest mean bulk density and the highest mean total porosity occurred when the most vermicompost was added. In all the soils studied, the highest permeability coefficients were gained with the application dose of 2%. As a result of increase in wet aggregate stability and decrease in bulk density, air permeability increased, and penetration resistance decreased significantly. The results obtained in this study have clearly indicated that the vermicompost application is an effective way to improve soil physical characteristics. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Minesoils are characterized by low soil organic matter and poor soil physicochemical environment. Mine soil reclamation process has potential to restore soil fertility and sequester carbon (C) over time. Soil organic C (SOC) pool and associated soil properties were determined for reclaimed minesoils under grass and forest landuses of varied establishment year. Three grassland sites of 30, 9, and 1 years after reclamation (G30, G9, and G1) and two forest sites, 11 years after reclamation (RF) and undisturbed stand of 40 years (UF), were selected within four counties (Morgan, Muskingum, Noble, and Coshocton) of southeastern Ohio. Soil bulk density (BD) of reclaimed forest (RF) soil was significantly higher than undisturbed forest (UF) soils within 10–40 cm soil depth profile. Reclamation process increased soil pH from slightly acidic to alkaline and decreased the soil EC in both landuses. Among grassland soils, significant changes in SOC and total soil N contents were observed within 0–10 cm soil depth. SOC contents of G30 (29.7 Mg ha−1) and G9 (29.5 Mg ha−1) were significantly higher than G1 soils (9.11 Mg ha−1). Soil N content was increased from G1 (0.95 Mg ha−1) to G9 (2.00 Mg ha−1) site and then the highest value was found under G30 (3.25 Mg ha−1) site within 0–10 cm soil depth. UF soils had significantly higher SOC and total N content than RF soils at 0–10 and 10–20 cm soil depths. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Human‐caused trampling that results from excessive recreational use has caused damage to soil and vegetation in forest ecosystems in the Belgrad Forest of Istanbul. The objectives of this study were to examine effects of exclosure on selected soil properties and to determine the recovery time required for soil characteristics in a broadleaf forest recreation site. Litter biomass and topsoil (0–15 cm) were sampled in the forest, exclosure and recreational sites, and soil samples were analysed for saturation capacity, permeability, bulk density, total porosity, organic matter, root biomass, electrical conductivity and soil pH. Results showed that saturation capacity, permeability, total porosity and organic matter increased whereas bulk density decreased significantly in the topsoil under the exclosure, and all these soil properties in the topsoil of the exclosure were greater than those of recreational site. When effects of main factors were compared, averaging over sampling year and soil sampling depth, soils from the exclosure had significantly greater saturation capacity, permeability, total porosity, organic matter and litter biomass and lower bulk density values than the soils from recreational site. Six years of exclosure was effective in improving most of the soil properties in the topsoil. When topsoil and subsoil are considered together, it is obvious that a longer time period is needed for soil recovery in the forest recreational sites. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
A study was conducted into the alleviation of the infertility of an acid sulphate by using ground basalt with or without ground magnesium limestone (GML) and organic fertilizer. Fresh soils were treated with the amendments and subjected to two cycles of submergence and drying. The soil was dominated by kaolinite, mica and smectite. The untreated soil pH was <3·5 and solution Al was high. GML application at 4 t ha−1 was able to increase pH and subsequently reduced Al toxicity sufficiently to allow for rice growth. After 4 months of submergence, the pH of the sample treated with 4 t ground basalt ha−1 had increased from 3·61 to 3·94, with concomitant decrease of Al. In the same cycle, the soil pH increase was much higher (reaching 5·22). Ground basalt is thus comparable with GML as an acid soil ameliorant. Within the experimental period, the ground basalt had mostly disintegrated and dissolved. The solution pH had further increased (to 5·94) in the second cycle because of dissolution of more ground basalt. This means that it takes time for ground basalt to completely dissolve and consequently supply Ca, Mg, K and P to the growing crop in the field. Applying 0·25 t organic fertilizer ha−1 into the soil had no significant effect on either pH or Al. This form of organic matter (compost) contains essential nutrients. It is recommended that 4 t ground basalt should be applied in combination with 0·25 t organic fertilizer ha−1 a few months ahead of the growing season for maximal benefit. This study showed that ground basalt can be effectively used to ameliorate highly acidic soils. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
The lower Himalayan regions of north‐west India experienced a severe land‐use change in the recent past. A study was thus conducted to assess the effect of grassland, forest, agricultural and eroded land uses on soil aggregation, bulk density, pore size distribution and water retention and transmission characteristics. The soil samples were analysed for aggregate stability by shaking under water and water drop stability by using single simulated raindrop technique. The water‐stable aggregates (WSA) >2 mm were highest (17·3 per cent) in the surface layers of grassland, whereas the micro‐aggregates (WSA < 0·25 mm) were highest in eroded soils. The water drop stability followed the similar trend. It decreased with the increase in aggregate size. Being lowest in eroded soils, the soil organic carbon also showed an adverse effect of past land‐use change. The bulk density was highest in eroded lands, being significantly higher for the individual aggregates than that of the bulk soils. The macroporosity (>150 µm) of eroded soils was significantly (p < 0·05) lower than that of grassland and forest soils. The grassland soils retained the highest amount of water. Significant (p < 0·05) effects of land use, soil depth and their interaction were observed in water retention at different soil water suctions. Eroded soils had significantly (p < 0·05) lower water retention than grassland and forest soils. The saturated hydraulic conductivity and maximum water‐holding capacity of eroded soils were sufficiently lower than those of forest and grassland soils. These indicated a degradation of soil physical attributes due to the conversion of natural ecosystems to farming system and increased erosion hazards in the lower Himalayan region of north‐west India. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
The proportional differences in soil organic carbon (SOC) and its fractions under different land uses are of significance for understanding the process of aggregation and soil carbon sequestration mechanisms. A study was conducted in a mixed vegetation cover watershed with forest, grass, cultivated and eroded lands in the degraded Shiwaliks of the lower Himalayas to assess land‐use effects on profile SOC distribution and storage and to quantify the SOC fractions in water‐stable aggregates (WSA) and bulk soils. The soil samples were collected from eroded, cultivated, forest and grassland soils for the analysis of SOC fractions and aggregate stability. The SOC in eroded surface soils was lower than in less disturbed grassland, cultivated and forest soils. The surface and subsurface soils of grassland and forest lands differentially contributed to the total profile carbon stock. The SOC stock in the 1.05‐m soil profile was highest (83.5 Mg ha−1) under forest and lowest (55.6 Mg ha−1) in eroded lands. The SOC stock in the surface (0–15 cm) soil constituted 6.95, 27.6, 27 and 42.4 per cent of the total stock in the 1.05‐m profile of eroded, cultivated, forest and grassland soils, respectively. The forest soils were found to sequester 22.4 Mg ha−1 more SOC than the cultivated soils as measured in the 1.05‐m soil profiles. The differences in aggregate SOC content among the land uses were more conspicuous in bigger water‐stable macro‐aggregates (WSA > 2 mm) than in water‐stable micro‐aggregates (WSA < 0.25 mm). The SOC in micro‐aggregates (WSA < 0.25 mm) was found to be less vulnerable to changes in land use. The hot water soluble and labile carbon fractions were higher in the bulk soils of grasslands than in the individual aggregates, whereas particulate organic carbon was higher in the aggregates than in bulk soils. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Nitrous oxide is produced in soils by biological denitrification and nitrification. To improve the fundamental understanding of the processes leading to N2O fluxes from soils, the production of N2O from denitrification and nitrification in spruce forest, beech forest, riparian grassland, coastal grassland and an agricultural field were studied. Samples were taken at a high and a low position along a topographic gradient in each site in the spring and autumn when the largest N2O fluxes were expected. They were incubated after being amended with N, and C2H2 was used as biological inhibitor to distinguish nitrification and denitrification. The N2O production in the low landscape position varied between 32 and 121 ng N cm?3 h?1 in the riparian grassland. 9 and 26 ng N cm?3 h?1 in the coastal grassland, and 135 and 195 ng N cm?3 h?1 in the agricultural field which was 10–100 times more than in the high positions where rates ranged between 3 and 5 ng N cm?3 h?1, 0.3 and 0.4 ng N cm?3 h?1, and 7 and 10 ng N cm?3 h?1, respectively. These differences almost certainly arose because the soil in the low positions was wetter and contained more organic matter. In the two forests N2O production was less than 1 ng N cm?3 h?1, strongly inhibited by O2, and not influenced by landscape position. Nitrification contributed to more than 60% of total N2O production in the riparian grassland. In the agricultural field nitrification produced 13–74% of the total N2O in the low position, and 10–88% in the high position. Denitrification was the dominant source of N2O in the coastal grassland except at the low position in the autumn where nitrification produced 60% of the total N2O. In the two forests where the soil had small nitrification potentials denitrification was the only source of N2O. In the other sites nitrification and denitrification potentials were large and of identical magnitude. The results emphasize the need to separate nitrification and denitrification at the process level and to recognize topography at the field scale when modelling N2O effluxes from soil.  相似文献   

16.
The susceptibility of some soils in the high rainfall zone of Nigeria to soil erosion must be measured regularly for better soil management. A number of techniques have been adopted for the determination of this soil loss parameter. The aim of this study is to determine the soil characteristics that relate significantly to erodibility. Soil samples collected from 0–20 cm depth from 10 different locations in the upper rainforest area were analysed for particle size distribution, water‐stable aggregates, exchangeable cations, organic carbon, soil dispersion and aggregating indices. The soils are mainly Acrisols, Nitosols, Gleysols and Ferralsol in the FAO classification while their textures are sands to sandy‐clay‐loam. They are very unstable in water as reflected in the higher values of WSA >0·50 mm and the mean‐weight diameter that ranged from 0·50 to 2·03 mm. The dispersion ratio for the soils are between 0·26 and 0·69 while clay dispersion ratio also ranged from 0·24 to 0·80. Revised universal soil loss equation (RUSLE) erodibility model values (K) were from 0·03 to 0·06 Mg h MJ−1 mm−1. These parameters can be effectively used in predicting soil erodibility, though their predictability varied in ranking of soil erodibility. In spite of this variability these indices can be used for potential erosion hazard determination by agricultural extension staff to avoid crop failures and other negative influence of soil erosion. The soil parameters are easy to determine and will be a valuable instrument when faster approaches to erosion control measures are required. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
Abandonment of degraded and marginal agricultural land is a widespread phenomenon in Spain and other Mediterranean countries. To study soil development and site dynamics, a comparative investigation of field groups representing different ages of abandonment was realized in the Meastrazgo region of the Mediterranean province of Castellón. Analysis of soil samples for organic carbon and total nitrogen content and pH showed that a sufficient regeneration of organic matter is accomplished after 20 years of fallow. Contrary to this there is no build-up of ‘available’ phosphorus after abandonment. A fixation of phosphorus in unavailable forms in the first fallow years seems evident, and there is no re-enrichment through solution or mineralization of organically bound P thereafter. The vegetation of the fallow fields develops after passing through a low-cover therophyte stage within 10–20 years to nanophanerophyte-dominated \underline matorral (shrubs), in the best case within 40–50 years to a stone oak juniper association. Under intensive cattle grazing, grasslands rich in hemicryptophytes evolved. Rates of soil erosion estimated through application of the Universal Soil Loss Equation are of medium to low intensity and range between 2·2 t ha−1 year−1 in the first fallow years and 0·6 t ha−1 year−1 after establishment of vegetation cover. Under grassland erosion is negligible unless vegetative cover is destroyed through treading. © 1998 John Wiley & Sons, Ltd.  相似文献   

18.
Agricultural soil CO2 emissions and their controlling factors have recently received increased attention because of the high potential of carbon sequestration and their importance in soil fertility. Several parameters of soil structure, chemistry, and microbiology were monitored along with soil CO2 emissions in research conducted in soils derived from a glacial till. The investigation was carried out during the 2012 growing season in Northern Germany. Higher potentials of soil CO2 emissions were found in grassland (20.40 µg g?1 dry weight h?1) compared to arable land (5.59 µg g?1 dry weight h?1) within the incubating temperature from 5°C to 40°C and incubating moisture from 30% to 70% water holding capacity (WHC) of soils taken during the growing season. For agricultural soils regardless of pasture and arable management, we suggested nine key factors that influence changes in soil CO2 emissions including soil temperature, metabolic quotient, bulk density, WHC, percentage of silt, bacterial biomass, pH, soil organic carbon, and hot water soluble carbon (glucose equivalent) based on principal component analysis and hierarchical cluster analysis. Slightly different key factors were proposed concerning individual land use types, however, the most important factors for soil CO2 emissions of agricultural soils in Northern Germany were proved to be metabolic quotient and soil temperature. Our results are valuable in providing key influencing factors for soil CO2 emission changes in grassland and arable land with respect to soil respiration, physical status, nutrition supply, and microbe-related parameters.  相似文献   

19.
Soil management systems can have great effect on soil chemical, physical and biological properties. Conversion of forest to grassland and cropland can alter C and N dynamics. The objective of this study was to evaluate the changes in aggregate‐associated and labile soil organic C and N fractions after conversion of a natural forest to grassland and cropland in northern Turkey. This experiment was conducted on plots subject to three different adjacent land uses (forest, grassland and cropland). Soil samples were taken from 0–5, 5–15 and 15–30 cm depths from each land use. Some soil physical (soil texture, bulk density), chemical (soil pH, soil organic matter, lime content, total organic C and N, inorganic N, free and protected organic C) and biological (microbial biomass C and N, mineralizable C and N) properties were measured. The highest and lowest bulk densities were observed in grassland (1.41 g cm−3) and cropland (1.14 g cm−3), respectively. Microbial biomass C and total organic C in forest were almost twice greater than grassland and four‐times greater than cropland. Cultivation of forest reduced total organic N, mineralizable N and microbial biomass N by half. The great portion of organic C was stored in macroaggregates (>250 µm) in all the three land uses. Free organic C comprised smaller portion of soil organic C in all the three land uses. Thus, this study indicated that long‐term conversion of forest to grassland and cropland significantly decreased microbial biomass C, mineralizable C and physically protected organic C and the decreases were the greatest in cropland. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
ABSTRACT

Land use may modify certain soil properties while soil physicochemical characteristics can influence metal partitioning in soils. Therefore, the total content and various forms of aluminum (Al) in solid phase of schist-developed topsoils (0–20 cm) in NW Spain under different land uses (i.e., forest, pasture, and cultivation) were evaluated to identify the Al-bearing phases. Aluminum fractionation was performed, using a six-step sequential extraction procedure with ammonium acetate, hydroxylamine hydrochloride, ammonium oxalate in darkness, hydrogen peroxide, ammonium oxalate under ultraviolet radiation, and acid digestion. Mean concentrations of total Al were similar in the soils under three land uses. Mean percentage of the various Al forms in all soils were in the following order: residual fraction > amorphous compounds > crystalline compounds > water-soluble/exchangeable/specifically adsorbed > bound to oxidizable organic matter > manganese oxides. The forest soils contained considerably higher contribution of amorphous compounds (16.3%) to total Al concentration compared with the soils under other two uses (mean about 9%). Maximum mean concentration of exchangeable Al was also observed in forest soils (mean 8.8% of total Al vs. about 4% in pasture soils and cultivated soils); this is attributed to lower pH and higher organic matter content of the forest soils. Thus, this study revealed the impact of land use on the Al-bearing phases and, hence, in its bioavailability to plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号