首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We assessed the effects of a range of experimental restoration treatments on the diaspore bank (seed and spores) on an upland moor infested by dense Pteridium aquilinum, 9 years after implementation. Experimental treatment included both Pteridium control (cutting, spraying and combinations) and restoration treatments (grazing, seeding); both univariate and multivariate analyses of variance were used to assess significant effects. The seed bank was made up largely of Calluna vulgaris, Juncus effusus and Agrostis capillaris with the majority germinating from the litter (38 per cent) and upper soil layer (53 per cent). Soil depth influenced species composition and density, with greatest numbers near the surface, in keeping with a negative exponential response. In the lowest soil depth only ferns were abundant. A. capillaris seed density was greater in the most disturbed treatment (cut twice yearly with grazing), whereas C. vulgaris was greater in the low‐disturbance treatment (herbicide application only). The diaspore bank composition response identified that certain treatment combinations had a grass‐heath composition in the upper soil layer, which may assist future restoration. There was a significant effect of C. vulgaris seed addition detected in the Pteridium litter layer suggesting that this litter acted as a barrier to seed transfer to the soil. There was little evidence of coupling developing between the diaspore bank and vegetation. The most successful treatment combination was cutting twice per yr with low grazing plus C. vulgaris addition as brash. Where seed is added the Pteridium litter should be disturbed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
The chemical form and content of available nitrogen (N) in salt marsh substrates varies considerably. On the western coast of Ireland, habitats designated as Ombrogenic Atlantic salt marshes were formed on ombrogenic peat substrate. The peat substrate in these systems has three times more ammonium than substrate from adjacent salt marsh habitats on sand and mud substrate. This study examined the extent to which the high concentration of ammonium in peat salt marsh substrate influences the N‐ assimilating enzyme activity of halophytes and the extent to which N metabolism differs between species. Specifically, this work investigated whether plants from peat salt marshes are more likely to assimilate ammonium than plants from non‐peat substrates. Four halophyte plant species—Armeria maritima, Aster tripolium, Plantago maritime, and Triglochin maritime—were sampled from various saltmarsh habitats including three sites on peat substrate and three on non‐peat substrate, comprising sand, mud and sand/mud. The activities of N‐metabolising enzymes—glutamine synthetase (GS), glutamate synthase, glutamate dehydrogenase (GDH), and nitrate reductase (NR)—were quantified in shoot and root parts. Root GS activity in Armeria maritima and shoot GS activity in Triglochin maritima were positively correlated with increasing soil ammonium levels. Root NR activity in Aster tripolium and shoot NR activity in Plantago maritima were significantly higher in plants grown on non‐peat substrates than peat substrates. The shoot : root GS activity ratio in Triglochin maritima on peat substrate was more than double the ratio on non‐peat substrates. It is concluded that all species tested displayed differences in N‐metabolising activities depending on the chemical form and/or concentration of N in the substrate, while three out of the four species were capable of taking advantage of the high levels of ammonium in peat substrates.  相似文献   

3.
Slopes that have been disturbed through roadway, ski slope or other construction often produce more sediment than less disturbed sites. Reduction or elimination of sediment loading from such disturbed slopes to adjacent streams is critical in the Lake Tahoe basin. Here, use of a portable rainfall simulator (RS), described in the first paper of this series, is used to evaluate slope effects on erosion from bare volcanic and granitic soils (road cut and ski run sites) common in the basin in order to establish a basis upon which revegetation treatment comparisons can be made. Rainfall simulations (60 mm h−1, approximating a 100‐year, 15‐minute storm) at each site included multiple replications of bare soil plots as well as some adjacent ‘native’, or relatively undisturbed soils below trees where available. Field measurements of time to runoff, infiltration, runoff, sediment discharge rates, and average sediment concentration were obtained. Laboratory measurements of particle‐size distributions using sieve and laser counting methods indicated that the granitic soils had larger grain sizes than the volcanic soils and that road cut soils of either type also had larger grain sizes than their ski run counterparts. Particle‐size‐distribution‐based estimates of saturated hydraulic conductivity were 5–10 times greater than RS‐determined steady infiltration rates. RS‐measured infiltration rates were similar, ranging from 33–50 mm h−1 for disturbed volcanic soils and 33–60 mm h−1 for disturbed granitic soils. RS‐measured runoff rates and sediment yields from the bare soils were significantly correlated with plot slope with the exception of volcanic road cuts due to the narrow range of road cut slopes encountered. Sediment yields from bare granitic soils at slopes of 28 to 78 per cent ranged from ∼1 to 12 g m−2 mm−1, respectively, while from bare volcanic soils at slopes of 22 to 61 per cent they ranged from ∼3 to 31 g m−2 mm−1, respectively. Surface roughness did not correlate with runoff or erosion parameters, perhaps also as a result of a relatively narrow range of roughness values. The volcanic ski run soils and both types of road cut soils exhibited nearly an order of magnitude greater sediment yield than that from the corresponding native, relatively undisturbed, sites. Similarly, the granitic ski run soils produced nearly four‐times greater sediment concentration than the undisturbed areas. A possible goal of restoration/erosion control efforts could be recreation of ‘native’‐like soil conditions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
After decades of searching for a practical method to estimate the N mineralization capacity of soil, there is still no consistent methodology. Indeed it is important to have practical methods to estimate soil nitrogen release for plant uptake and that should be appropriate, less time consuming, and cost effective for farmers. We fractionated soil organic matter (SOM) to assess different fractions of SOM as predictors for net N mineralization measured from repacked (disturbed) and intact (undisturbed) soil cores in 14 weeks of laboratory incubations. A soil set consisting of surface soil from 18 cereal and root‐cropped arable fields was physically fractionated into coarse and fine free particulate OM (coarse fPOM and fine fPOM), intra‐microaggregate particulate OM (iPOM) and silt and clay sized OM. The silt and clay sized OM was further chemically fractionated by oxidation with 6% NaOCl to isolate an oxidation‐resistant OM fraction, followed by extraction of mineral bound OM with 10% HF (HF‐res OM). Stepwise multiple linear regression yielded a significant relationship between the annual N mineralization (kg N/ha) from undisturbed soil and coarse fPOM N (kg N/ha), silt and clay N (kg N/ha) and its C:N ratio (R2 = 0.80; P < 0.01). The relative annual N mineralization (% of soil N) from disturbed soils was related to coarse fPOM N, HF‐res OC (% of soil organic carbon) and its C:N ratio (R2 = 0.83; P < 0.01). Physical fractions of SOM were thus found to be the most useful predictors for estimating the annual N mineralization rate of undisturbed soils. However, the bioavailability of physical fractions was changed due to the disturbance of soil. For disturbed soils, a presumed stable chemical SOM fraction was found to be a relevant predictor indicating that this fraction still contains bio‐available N. The latter prompted a revision in our reasoning behind selective oxidation and extraction as tools for characterizing soil organic N quality with respect to N availability. Nonetheless, the present study also underscores the potential of a combined physical and chemical fractionation procedure for isolating and quantifying N fractions which preferentially contribute to bulk soil N mineralization. The N content or C:N ratio of such fractions may be used to predict N mineralization in arable soils.  相似文献   

5.
Abstract

The lime and N requirements for triticale (X Triticosecale Wittmack) have not been established because of the relatively short history of the crop. This study was designed to evaluate the effects of lime and high N rates on triticale, wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), and rye (Secale cereale L.) on Dickson silt loam (Typic Paleudult) and Decatur silty clay loam (Rhodic Paleudult) in 1974–1976. The soils had pH values of 4.9 and 5.5 with no lime and 5.4 and 5.8, respectively, when limed as recommended. The fertilizer rates were 112, 140, and 170 kg N/ha. Yields and N, P, K, Ca, Mg, Mn, Fe, Al, Zn, Cu, and B were determined in straw and grain. Liming the Dickson soil increased the straw yields of barley at 112 kg N/ha and grain yields of the cultivars generally at the 170 kg N/ha rate. Liming the Decatur soil did not have consistent effects on straw yields but increased the grain yields of the wheat and rye cultivars. Increasing N rate increased the straw yields of wheat on Dickson but decreased the grain yields of barley in the same soil with no lime. Nitrogen fertilization did not have consistent effects on the Decatur soil. The N, P, K, Ca, Mg, and Mn compositions suggested that more differences occured at the species level than at the cultivar level.  相似文献   

6.
Abstract

Plant growth is frequently limited by Fe‐related chlorosis on calcareous soils and by mineral toxicities on strongly acid soils and mine spoils. Better adapted varieties are needed for both soil situations, which are not always economically correctable. In a search for such geraplasm, 4 species (20 accessions) of Eragrostis were grown in greenhouse pots of a calcareous soil at pH 7.3. Two species were also compared on acid mine spoil at pH 3.5 and 4.7.

Species, and accessions within species, differed significantly in tolerance to the calcareous soil, as measured by susceptibility to chlorosis and yield of plant tops. The range in top yield was 11‐fold for accessions of Eragrostis capensis, 3‐fold for Eragrostis lehmanniana, and 1.7‐fold for Eragrostis superba. Eragrostis plana (P.I. 364340) was more tolerant to acid mine spoil (pH 3.5) but less tolerant to calcareous soil (pH 7.3) than Eragrostis superba (P.I. 364833).

Chlorosis and poor growth of certain accessions on calcareous soil (pH 7.3) were not explained by specific mineral deficiencies or toxicities. However, the tops of chlorosis‐susceptible accessions had lower ratios of Fe/Mn, Fe/Zn, and Fe/Cu than those of chlorosis‐resistant accessions. This imbalance is believed to interfere with Fe metabolism in plant tops.

Results suggested that superior strains of Eragrostis species can be selected for adaptation to calcareous or acid soils and that certain accessions characterized in these studies can be useful in studying the physiological mechanisms of mineral stress resistance in plants.  相似文献   

7.
The microbial community structure and function under forest in tropical peatlands are poorly understood. In this study, we investigated the microbial community structure and diversity in natural peat swamp forest soil, disturbed peat soil and mineral soil in Central Kalimantan, Indonesia, using 454 pyrosequencing. The results showed that the natural peat soil had the greatest fungal species richness (Chao1), which was significantly (< .05) larger than that in the other two soils. Community structure of both fungi and bacteria in natural peat soil differed significantly from that in the disturbed peat soil (= .039 and = .045, respectively). Ascomycota (40.5%) was the most abundant phylum across the three soils followed by Basidiomycota (18.8%), Zygomycota (<0.1%) and Glomeromycota (<0.1%). The linear discriminant analysis with effect size (LEfSe) showed that Ascomycota (< .05) and genus Gliocephalotrichum (< .05) dominated in natural peat soil. Functionally, pathotrophs were more abundant in disturbed peat soil (< .05). Proteobacteria (43.8%) were the most abundant phylum followed by Acidobacteria (32.6%), Actinobacteria (9.8%), Planctomycetes (1.7%). Methylocystis, Telmatospirillum, Syntrophobacter, Sorangium and Opitutus were the more abundant genera in disturbed peat soil, whereas Nevskia and Schlesneria were more abundant in mineral soil and natural peat soil, respectively. The natural peat forest soil supported a more diverse microbiology; however, the land use of such a soil can change its microbial community structure. The results provide evidence that the disturbance of tropical peat land could lead to the introduction and spread of a large number of fungal diseases  相似文献   

8.
The effect of red mud (10 g kg–1), a by‐product of the alumina industry, zeolite (20 g kg–1), a naturally‐occurring hydrous aluminosilicate, and lime (3 g kg–1) on metal lability in soil and uptake by fescue (Festuca rubra L.) (FEST) and amaranthus (Amaranthus hybridus L.) (AMA) was investigated in four different soils from Austria. The soil collection locations were Untertiefenbach (UNT), Weyersdorf (WEY), Reisenberg (REI), and Arnoldstein (ARN). The latter was collected in the vicinity of a former Pb‐Zn smelter and was highly polluted with Pb (12300 mg kg–1), Zn (2713 mg kg–1), and Cd (19.7 mg kg–1) by long‐term deposition. The other soils were spiked with Zn (700 mg kg–1), Cu (250 mg kg–1), Ni (100 mg kg–1), V (100 mg kg–1), and Cd (7 mg kg–1) salts in 1987. The two plant species were cultivated for 15 months. Ammonium nitrate (1 M) extraction was used in a soil : solution ratio of 1:2.5 to assess the influence of the amendments on the labile metal pools. The reduction of metal extractability due to red mud was 70 % (Cd), 89 % (Zn), and 74 % (Ni) in the sandy soil (WEY). Plant uptake in this treatment was reduced by 38 to 87 % (Cd), 50 to 81 % (Zn), and 66 to 87 % (Ni) when compared to the control. Sequential extraction revealed relative enrichments of Fe‐oxide‐associated metal fractions at the expense of exchangeable metal fractions. Red mud was the only amendment that decreased lability in soil and plant uptake of Zn, Cd, and Ni consistently. Possible drawbacks of red mud application (e.g., As and Cr concentration) remain to be evaluated.  相似文献   

9.
Weathering of soil minerals under forest seems to depend on the species present. To study the influence of tree species we placed unweathered vermiculites in the soil and assessed the impact in terms of saturation index of earth‐alkaline cations and cation exchange capacity in 64 forest stands, dominated by different species and growing side by side at 20 sites on acidic soils. The vermiculites were of two types, one with a large charge and the other with a small charge. Minerals were maintained in the soil for 1 and 3 years. The minerals placed in the topsoil and in soils with low buffering capacity were more acidified and weathered than those deeper in the soil and in less acid conditions. The vermiculites were transformed into hydroxylated interlayered vermiculites, and the formation of hydroxides in the interlayer space decreased the vermiculites' cation exchange capacities. The high‐charge vermiculite had a greater affinity for aluminium than the low‐charge variety. The effect of tree species was significant but small compared with factors such as soil type, depth and duration of incubation. Nevertheless, we can rank the acidifying and weathering caused by the trees in the following order: Picea abies, Abies alba > Pinus sylvestris, Pseudotsuga menziesii > Quercus spp., Fagus sylvatica. This in situ experimental approach enabled us to study potential trends in pedogenesis in few years.  相似文献   

10.
The influence of bedrock on aluminium toxicity and aluminium speciation in the soil solution was studied in four Pinus pinaster plots. Growth and biomass parameters in the acidic soils were also evaluated in relation to different Al toxicity indices. The plots were developed over slate, biotitic schist, mica schist and granite. Samples of rhizospheric and non‐rhizospheric soil, 1‐year‐old needles and roots were collected in each study plot. Total Al, reactive Al, acid‐soluble Al, non‐labile and labile Al and Al species (Al3+, Al‐OH, Al‐F and Al‐SO4) were determined in soil solution. Reactive Al dominated over the acid‐soluble Al, and the non‐labile Al predominated over the labile Al in all soils, but particularly over mica schist. In the biotitic schist soil, the Al forms and total Al were lower, whereas concentrations were always higher over mica schist. The Al forms considered most toxic were Al3+ and Al‐OH, and Al concentrations were highest over slate and mica schist. Al toxicity indices in soil, needle and roots showed a risk of toxicity in mica schist, slate and granite. The stand site indices over slate and mica schist were lower, consistent with the high labile Al and Al3+ + Al‐OH in soil solution. Despite the high stand site index over granite, the growth efficiency was low, in accordance with very low ratios of Ca/Al in needles or fine roots. This confirmed the adaptation of maritime pine to granitic substrates. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Large areas of the east coast and inland basins of the South Island, New Zealand, are affected by periodic drought and/or semiarid climatic conditions, particularly during cyclic El Niño climatic events. The severity of these environmental conditions places great stress on introduced and native pasture species and frequently results in poor establishment of new pastures using standard drilling techniques. The objective of this study was to determine effective, practical means of rehabilitating semiarid land (about 470 mm annual rainfall) on a site in Central Otago. A comparison of two direct drilling methods, a novel strip‐seeder drill and a standard hoe‐coulter drill, was conducted in a trial initiated during spring 1998. Five drought‐tolerant forage species were established: wheatgrass (Thinopyron intermedium), tall oat grass (Arrhenatherum elatius), birdsfoot trefoil (Lotus corniculatus), hairy dorycnium (Dorycnium hirsutum) and bluebush (Kochia prostrata). For the 2000/2001 growing season, species established with the strip‐seeder drill had an overall mean herbage biomass of 235 g m −2 , three‐times that for the hoe‐coulter drill (77 g m −2 , P < 0·001). Differences in herbage biomass between species were observed, with hairy dorycnium (mean 328 g m −2 ) producing significantly (P < 0·001) more herbage biomass than the other species. After the third spring, the percentage ground cover recorded from transects across the strip‐seeder drill plots (cf. the hoe‐coulter drill) was: wheatgrass—41 per cent (10 per cent); tall oat grass—44 per cent (25 per cent); birdsfoot trefoil—25 per cent (5 per cent); hairy dorycnium—50 per cent (19 per cent); and bluebush—4 per cent (0 per cent). The native plant content of the resident vegetation was reduced as a result of the drilling treatments and also when fertilizer was added to undistrubed pasture. The strip‐seeder drill is capable of providing superior plant growth on dryland sites even during adverse drought conditions. It produces a furrow approximately 16 cm wider than the hoe‐coulter drill, exerts a greater shattering effect on the soil structure and places fertilizer at depth. It is suggested that this assists plant establishment by providing good seedling protection from wind and sun, and subsequent plant growth by allowing easier root penetration to the subsoil where nutrients and moisture are available. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
 Five bacterial strains, one from each of the five known species of the plant growth-promoting bacteria (PGPB) Azospirillum (A. brasilense, A. lipoferum, A. amazonense, A. halopraeference, and A. irakense) were inoculated into two natural, semiarid soils (terra rosa and loessial sandy) from Israel, and two artificial soils constructed to simulate the native soils. Within 60 days, the populations of all five Azospirillum species declined significantly in a linear fashion, in both the native soils and in the homologous artificial soils. Increased levels of CaCO3, and fine and rough sand, had significant detrimental effects on the survival of the five Azospirillum species, whereas increased organic matter content improved survival. In contrast, when the bacterial strains were incubated in the rhizosphere of tomato seedlings grown in the artificial soils, manipulation of these soil variables had only a marginal effect on bacterial survival; all Azospirillum species survived well in the tomato rhizosphere under conditions that are otherwise detrimental. This study indicates that most cells of the strains of five known species of Azospirillum died out linearly over time in two semiarid soils, and that only the major soil components affected Azospirillum survival in soil. Because mortality was similar in native soils and in artificial homologous soils, artificial soils can be used to study the soil behavior of Azospirillum. Received: 9 April 1999  相似文献   

13.
A multi-strata agroforestry system is mentioned as the most promising option for the sustainable agricultural in infertile upland soils of Central Amazonia. However, studies showed that the sustainability of this land use does not exist. The aim of this work was to evaluate the soil fertility and nutritional state of native Amazon plant species cultivated in a Xanthic Ferralsol (dystrophic Yellow Latosol) in an agroforestry system. The experimental area consisted of four plots of 0.25 hectares each. Native plants of the Amazonian region were used, five of them timber species – Hevea brasiliensis (rubber), Ceiba pentandra (kapok), Jacaranda copaia (jacaranda), Buchenavia huber (cuiarana) and Trattinicka burserifolia (breu); two palm species – Bactris gasipaes (peach palm) and Euterpe oleracea (assai); and five fruit-bearing species – Rollinia mucosa (biriba), Theobroma cacao (cacao), Theobroma grandiflorum (cupuassu), Couma sorbilis (sorva) and Myrciaria dubia (camu-camu). The results showed that plants from the same ecosystem with tolerance to acid soils and poor nutrient contents differ in their nutrient uptake efficiency and nutritional requirements, indicating limits on the species combinations that can be used in agroforestry systems of an upland soil of Central Amazonian.  相似文献   

14.
Rehmannia glutinosa is an important medicinal plant, but there is a serious problem of decreasing productivity with its continuous cropping on the same land. We hypothesize some relationships between this problem and the disturbed soil ecosystem. In this work, two community‐based microbiological measurements, community‐level physiological profiling (CLPP) using Biolog sole carbon (C) source utilization tests and phospholipid ester–linked fatty acid (PLFA) profiles, were used to evaluate soil microbial community function and composition of different R. glutinosa cropping soils. Field investigation showed that the problems with continuous cropping occurred not only in 2‐year continuous fields but also in 5‐year rotation fields. Soil basal respiration and metabolic quotient were significantly greater in R. glutinosa cropping soils than in the noncropping controls. In contrast, the Shannon index from the Biolog data set was lower in R. glutinosa cropping soils. Both CLPP‐ and PLFA‐based principal component analyses (PCA) showed distinct groupings of soil microbial communities in R. glutinosa rhizosphere, and 11 PLFAs representing different microbes were identified from the principal component scores of PLFAs. Among these, an abundance of PLFA 18:2ω6,9, which is a biomarker of soil fungi, was significantly higher in R. glutinosa cropping soils than control soils. These results suggest an alteration of soil microbial community following R. glutinosa cropping, and this might be an important reason for the constraints associated with continuous cropping.  相似文献   

15.
Little information is available about the factors controlling soil C and N transformations in natural tropical forests and tree-based cropping systems. The aim of this work was to study the effects of single trees on soil microbiological activities from plantations of timber and non-timber species as well as species of primary and secondary forests in the Central Amazon. Soil samples were taken in the primary forest under Oenocarpus bacaba and Eschweilera spp., in secondary regrowth with Vismia spp., under two non-timber tree species ( Bixa orellana L. and Theobroma grandiflorum Willd.), and two species planted for wood production ( Carapa guianensis Aubl. and Ceiba pentandra). In these soils, net N mineralization, net nitrification, denitrification potential, basal and substrate-induced respiration rates were studied under standardized soil moisture and temperature conditions. Individual tree species more strongly affected N transformations, particularly net nitrification, than C respiration. Our results suggest that soil C respiration can be affected by tree species if inorganic N becomes a limiting factor. We found a strong correlation among almost all microbiological processes suggesting close inter-relationship between C and N transformations in the studied soils. Correlation analysis between soil chemical properties and microbiological activities suggest that such strong inter-relationships are likely due to competition between the denitrifying and C-mineralizing communities for NO 3 -, which might be an important N source for the microbial population in the studied soils.  相似文献   

16.
The goal of this work was to assess soil microbial respiration, determined by the assay of community-level physiological profiling in an oxygen-sensitive microplate (O2-CLPP), in response to endogenous C and several individual C substrates in the soils with different organic C contents (as a function of soil type and management practice). We also used the O2-CLPP to determine the respiratory response of these soils to endogenous C and amended C substrates with N addition. A respiratory quotient (RQ) was calculated based on the ratio of the response to endogenous soil C vs. each C-only substrate, and was related to total organic carbon (TOC). For assessing N availability for microbial activity, the effect of N supplementation on soil respiration, expressed as Nratio, was calculated based on the response of several substrates to N addition relative to the response without N. Soils clustered in 4 groups after a principal component analysis (PCA), based on TOC and their respiratory responses to substrates and endogenous C. These groups reflected differences among soils in their geographic origin, land use and C content. Calculated RQ values were significantly lower in natural forest soils than in managed soils for most C-only substrates. TOC was negatively correlated with RQ (r = - 0.65), indicating that the soils with higher organic matter content increased respiratory efficiency. The N addition in the assay in the absence of C amendment (i.e., only endogenous soil C present) had no effect on microbial respiration in any soil, indicating that these soils were not intrinsically N-limited, but substrate-dependent variation in Nratio within soil groups was observed.  相似文献   

17.
Perennial halophytes are known to be one of the most influential parameters in coastal ecosystem affecting ecosystem processes. The aim of this study was to investigate the changes in soil microbial community structure and enzyme activities in different halophyte‐covered soils (Arthrocnemum indicum , Aeluropus lagopoides , Heleochloa setulosa and Suaeda nudiflora ) with control soil (un‐vegetated) that were collected in three seasons (rainy, winter and summer) from intertidal coastal soils of Gujarat, India. Soil microbial community structure was assessed using phospholipid fatty acid (PLFA) profiling. Halophytes influenced significantly soil micro‐environment by exerting effects on the soil chemical characteristics, enzyme activities and microbial community structure. The activities of β‐glucosidase, urease and alkaline phosphatase were significantly higher in halophyte‐covered soils than in control soil. Among four halophyte‐covered soils, the highest amounts of total, bacterial, actinomycetes and fungal PLFAs were observed in Arthrocnemum soil. The concentrations of total, bacterial, actinomycetes and fungal PLFAs were also significantly higher in summer and winter seasons than in rainy season, whereas enzyme activities also vary with seasons. The non‐metric multidimensional scaling analysis PLFA profiling revealed that the structure of microbial community significantly differed in all seasons as well as between control and halophyte‐covered soils. These shifts in microbial community were due to the higher abundance of Gram‐positive, total bacterial and actinomycetes PLFAs in summer and winter seasons than in rainy season, whereas abundance of fungal biomarker was significantly higher in rainy season than in other seasons. Among halophytes, significantly higher abundance of Gram‐positive, Gram‐negative and total bacteria was observed in Arthrocnemum , Heleochloa and Suaeda whereas the lowest in control soil. Halophytes exhibited improved soil microbial activities, which is important for healthy ecosystem. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
We tested the inter‐specific variability in the ability of three dominant grasses of temperate grasslands to take up organic nitrogen (N) in the form of amino acids in soils of differing fertility. Amino acid uptake was determined by injecting dual labeled glycine‐2‐13C‐15N into the soil, and then measuring the enrichment of both 13C and 15N in plant tissue after 50 hours. We found enrichment of both 13C and 15N in root and shoot material of all species in both soils, providing first evidence for direct uptake of glycine. We show that there was considerable inter‐specific variability in amino acid uptake in the low fertility soil. Here, direct uptake of amino acid was greater in the grass Agrostis capillaris, which typically dominates low fertility grassland, than Lolium perenne, which inhabits more fertile sites. Direct uptake of amino acid for Holcus lanatus. was intermediate between the above two species. Unlike in the low fertility soil, there was no difference in uptake of either 13C or 15N by grasses in the high fertility soil, where uptake of mineral N is thought to be the major mechanism of N uptake of these grasses. Overall, our findings may contribute to our understanding of differences in competitive interactions between grasses in soils of different fertility status.  相似文献   

19.
Soil degradation limits the potential for the re‐establishment of native plants. Most land restoration practices typically concentrate on the recovery of soil physical properties and plant establishment, while neglecting the recovery of soil microbiota. Mediterranean wild leguminous shrubs are ideal candidates for use in land recovery projects, as they are drought tolerant, improve soil fertility through biological nitrogen fixation and exhibit high stem net photosynthesis that increases their carbon gain. In this study, we used the legumes Cytisus balansae, Cytisus multiflorus, Cytisus striatus and Genista florida in a long‐term trial to recover a degraded soil in southwestern Spain. The main objective of this trial was to investigate to what extent the introduction of shrubby legumes inoculated with their own rhizobial symbionts can improve the properties and associated vegetation of a degraded soil. The results showed that the inoculation of legumes with nitrogen‐fixing bacteria enhanced plant performance in all four legumes. Whereas in the absence of legumes, soil fertility and plant community did not improve significantly, amelioration was observed in plots with non‐inoculated legumes, with maximum values in terms of the number of accompanying species, soil nitrogen content and organic matter recorded in soils with inoculated legumes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Plants significantly affect rates of carbon (C) turnover in soils, both because they are sources of carbon through exudation in the rhizosphere and litter‐fall, and because rhizosphere microbes stimulated by roots also metabolize native soil carbon. Different plant species affect these components of soil carbon turnover in different ways, but the quantitative information on this is lacking for different ecosystems and soil‐plant combinations. To compare the effects of grassland and forest plant species on the components of rhizosphere respiration in different soils, we grew ryegrass (Lolium perenne) and radiata pine (Pinus radiata D. Don) in two silt loam soils in pots in a glasshouse, and in seven samplings over 45 weeks measured total (Rtotal), root (Rroot) and root‐free soil respiration (Rrfs), the latter from respiration in unplanted controls. We calculated rhizosphere respiration (Rrhizo), defined here as the net of that fuelled by native soil C and root‐derived C, from Rtotal less Rroot+Rrfs. We also measured plant growth and total, water‐soluble and microbial biomass C in the soils at each sampling. Results showed that Rrfs decreased over the experimental period in both soils. Under ryegrass, Rroot, Rrhizo and Rtotal increased up to 14 weeks after planting and then stabilized, whereas under radiata pine, they continued to increase throughout the experiment. By the end of the experiment, the Rroot, Rrhizo and Rrfs components accounted for 49–58, 31–50 and 1–11% of soil total respiration under ryegrass, respectively, and 43–66, 29–53 and 1–5% under radiata pine. The greater Rroot, Rrhizo and Rtotal values under radiata pine were related to greater root biomass and root‐derived organic C, and enhanced microbial mineralization of native soil organic C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号