首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

This study used pedigree information and data collected from 1979 to 2012 at the Raeini Cashmere goat breeding station, located in Baft City in Kerman Province in southeastern Iran. Genetic and phenotypic parameters for early reproductive traits of breeding does, including total numbers of kids born at first kidding (LSB1), total numbers of kids weaned at first kidding (LSW1), total birth weight of all kids born at first kidding (LWB1), total weaning weight of all kids weaned at first kidding (LWW1), and age at first kidding (AFK), were estimated using a Bayesian approach via Gibbs sampling. Posterior means for heritability estimates of LSB1, LSW1, LWB1, LWW1, and AFK were statistically significant, with values of 0.12, 0.23, 0.17, 0.15, and 0.46, respectively. Low-to-moderate additive genetic variation was present for the studied reproductive traits. Estimated genetic correlations among LSB1, LSW1, LWB1, and LWW1 were statistically significant and ranged from 0.12 between LWB1 and LWW1 to 0.72 between LSB1 and LSW1. Corresponding phenotypic correlation estimates were also statistically significant and ranged from 0.04 between LWB1 and LWW1 to 0.55 between LSB1 and LSW1. Posterior means of genetic and phenotypic correlations between AFK and other studied traits were statistically significant only for LSB1 and LWB1. For LSB1, LSW1, LWB1, and LWW1, we conclude that genetic and phenotypic improvement in any of these traits in Raeini Cashmere does would favorably influence all of the other traits. However, does that first kidded at younger ages have smaller litters at birth and lower litter birth weights at their first parity.

  相似文献   

2.
The main objectives of this study were to estimate genetic and phenotypic parameters for growth traits and prolificacy in the Raeini Cashmere goat. Traits included, birth weight (BWT), weaning weight (WWT), 6-month weight (6WT), 9-month weight (9WT), 12-month weight (12WT), average daily gain from birth to weaning (ADG1), average daily gain from weaning to 6WT (ADG2), average daily gain from 6WT to 12WT (ADG3), survival rate (SR), litter size at birth (LSB) and litter size at weaning (LSW) and total litter weight at birth (LWB). Data were collected over a period of 28 years (1982-2009) at the experimental breeding station of Raeini goat, southeast of Iran. Genetic parameters were estimated with univariate models using restricted maximum likelihood (REML) procedures. In addition to an animal model, sire and threshold models, using a logit link function, were used for analyses of SR. Age of dam, birth of type, sex and of kidding had significant influence (p < 0.05 or 0.01) all the traits. Direct heritability estimates were low for prolificacy traits (0.04 ± 0.01 for LSB, 0.09 ± 0.02 for LSW, 0.16 ± 0.02 for LWB and 0.05 ± 0.02 for SR) and average daily gain (0.12 ± 0.03 for ADG1, 0.08 ± 0.02 for ADG2, and 0.07 ± 0.03 for ADG3) to moderate for production traits (0.22 ± 0.02 for BWT, 0.25 ± 0.02 for WWT, 0.29 ± 0.04 for 6WT, 0.30 ± 0.02 for 9WT, 0.32 ± 0.05 for 12WT). The estimates for the maternal additive genetic variance ratios were lower than direct heritability for BWT (0.17 ± 0.03) and WWT (0.07 ± 0.02).  相似文献   

3.
A total of 11,815 weight records from 23,94 Japanese Black calves was used to estimate direct, maternal, direct permanent environmental, and maternal permanent environmental effects on growth from birth to 356 d of age. The data were collected from a herd of Japanese Black cattle in Shiroshi city, Miyagi prefecture, Japan. A random regression model, including parity of dam and year-season of calving-sex of calf as fixed effects and animal, dam, animal permanent environmental, and maternal permanent environmental as random effects, was fitted to the data using Legendre polynomials for age of calf. Direct heritability estimates increased from 0.38 at birth to 0.65 at 120 d of age, decreased to 0.38 at 300 d, and then increased again up to 0.47 at 356 d. The ratio of animal permanent environmental variance to phenotypic variance decreased from 0.41 at birth to 0.12 at 90 d, and then increased gradually up to 0.40 at 270 d and oscillated around this value up to the end of the test period. Maternal genetic heritabilities increased from 0.04 at birth to 0.09 at 120 d and then decreased to 0.06 thereafter, whereas the variance ratios due to maternal permanent environment were fairly constant across the age trajectory, fluctuating around the value of 0.03. Direct genetic, phenotypic, maternal genetic, animal permanent environmental, and maternal permanent environmental correlations between different ages were all positive, and they generally decreased as the interval between ages increased. These correlations were lower between weights from nonadjacent ages than those between weights from adjacent ages. Results suggest that selection on preweaning weights would have a positive effect on weights at later ages.  相似文献   

4.
The first three lactation curves of the Japanese Holstein cows were analyzed using a random regression (RR) test-day model with a cubic Legendre polynomial fitted to each of the three parities. The first three eigenvectors of the additive genetic RR covariance matrix explained 77.8, 10.9, and 4.2% of the total variance of the three parities and are associated mainly with the level of milk yield, the linear increase, and the concave curve, respectively. On a lactational basis, as the parity increases, the contribution of the first eigenvector to a lactational variation decreases whereas the contribution of the second eigenvector increases sharply. This means that the impact of the first eigenvector on the level of milk production decreases across parity whereas the effect of the second eigenvector on the shape of the lactation curve increases across parity. The first lactation curve was the most persistent, followed by the second and the third lactation. Persistency and days to reach peak yield decrease as the parity increases (45, 40, and 36 days for the first three parities). Daily heritabilities within lactation were lower for the first parity than for the second or the third parity. The first three lactation curves possess distinctive genetic characteristics that merit consideration when combining the proofs of the first three lactations to select for lifetime production. Within- and between-parity genetic correlations between the constant and the linear RR coefficients were all positive, suggesting that raising the level of milk production in one parity would increase the linear slope in all parities, thus improving persistency. Within- and between-parity genetic correlations between the constant and the quadratic RR coefficients were all negative, implying that increasing the level of production in one parity would deepen and/or widen the concave curve in all parities, thus decreasing persistency. The linear and quadratic RR coefficients were negatively correlated within or between parities and thus have antagonistic effects on persistency.  相似文献   

5.
高晔  韦璇  屈雷 《家畜生态》2013,(11):6-9
硫是绒山羊机体必需的元素,对绒山羊的生产有着极为重要的意义。论文对绒山羊硫需要量及其营养作用进行了简要介绍,着重叙述硫在绒山羊体内的分布、硫在绒山羊营养中的重要作用、以及绒山羊生产中硫的需要量,为硫的合理应用奠定基础。  相似文献   

6.
The objective of this work was to evaluate the Nelore beef cattle, growth curve parameters using the Von Bertalanffy function in a nested Bayesian procedure that allowed estimation of the joint posterior distribution of growth curve parameters, their (co)variance components, and the environmental and additive genetic components affecting them. A hierarchical model was applied; each individual had a growth trajectory described by the nonlinear function, and each parameter of this function was considered to be affected by genetic and environmental effects that were described by an animal model. Random samples of the posterior distributions were drawn using Gibbs sampling and Metropolis-Hastings algorithms. The data set consisted of a total of 145,961 BW recorded from 15,386 animals. Even though the curve parameters were estimated for animals with few records, given that the information from related animals and the structure of systematic effects were considered in the curve fitting, all mature BW predicted were suitable. A large additive genetic variance for mature BW was observed. The parameter a of growth curves, which represents asymptotic adult BW, could be used as a selection criterion to control increases in adult BW when selecting for growth rate. The effect of maternal environment on growth was carried through to maturity and should be considered when evaluating adult BW. Other growth curve parameters showed small additive genetic and maternal effects. Mature BW and parameter k, related to the slope of the curve, presented a large, positive genetic correlation. The results indicated that selection for growth rate would increase adult BW without substantially changing the shape of the growth curve. Selection to change the slope of the growth curve without modifying adult BW would be inefficient because their genetic correlation is large. However, adult BW could be considered in a selection index with its corresponding economic weight to improve the overall efficiency of beef cattle production.  相似文献   

7.
The accuracy of ultrasound measurements to assess goat carcass composition and the partition of body fat depots was evaluated. An ultrasound machine with a 5-MHz probe and image analysis was used to assess in vivo fat thickness and muscle depth in 56 Spanish Celtiberica adult goats, in lumbar and breast body regions. The goats were slaughtered and the weight of body fat depots recorded. Measurements corresponding to the in vivo ultrasound fat thickness and muscle depth were taken on carcasses. The left sides of carcasses were completely dissected into their components. The best relationships (r = 0.94, P < 0.01) between in vivo and carcass measurements of fat thickness were obtained when measurements were taken at the sternum, and the best anatomical point was located between the third and fourth sternebrae. The best correlation coefficients (r = 0.84) for muscle depth were found for measurements taken between the third and the fourth lumbar vertebrae at 2 cm from the middle of the vertebral column. Body weight and ultrasound measurements were used to fit the best multiple regression equations to predict carcass composition and the partition of body fat depots. All equations, with the exception of those for muscle quantity, omental, and total body fat depot amounts, were computed after performing a logarithmic transformation. Body weight in association with the ultrasound measurement taken at largest LM muscle depth, between the first and second lumbar vertebrae accounted for 90% of the muscle weight. Body weight was the first variable admitted into the prediction models of muscle, mesenteric fat, and total body fat and accounted for 82, 67, and 79% of the variation in tissue weights, respectively. The ultrasound measurement of fat thickness taken at the third sternebra was the first variable admitted into the prediction models for intermuscular fat, kidney and pelvic fat, and total carcass fat and accounted for by 73, 75, 71, and 79% of the variation in the weight of these fat depots, respectively. The ultrasound measurements taken in the breast region, particularly at the third and fourth sternebrae, were the most suitable for assessing fat thickness. The results of this experiment suggest that BW associated with some in vivo ultrasonic fat measurements allow the accurate prediction of goat carcass composition and body fat depots.  相似文献   

8.
The objective of this study was to estimate variance and covariance components, in Iranian Cashmere goats, for birth weight (BWT) and weaning weight (WWT) performances of kids and total weight of kids weaned (TWW) per doe joined at first (TWW1), second (TWW2) and third (TWW3) parities by REML procedures using univariate and multivariate animal models. The analysis was based on 2313 records of kids and 940 records of does. Through ignoring or including maternal additive genetic or maternal permanent environmental effects, four different models were fitted for BWT and WWT performances. For TWW performances only two models (without or with service sire effect) were used. Models were compared using likelihood ratio test. Direct additive genetic and maternal permanent environmental effects had significant influence on BWT and WWT performances. These effects accounted for 9.4% and 15.6%, and 13.9% and 6.7% of phenotypic variation, respectively. No significant effect of service sire was observed on TWW. The estimates of heritabilities were 0.072, 0.109 and 0.082 for TWW1, TWW2 and TWW3, respectively. Direct genetic correlations among all performances were positive and low (for BWT with TWW) to high (for BWT with WWT and WWT with TWW). The corresponding estimates for phenotypic and residual correlations were moderate and lower than genetic correlations. The high genetic correlation among WWT and TWW suggests that direct selection on TWW1 or indirect selection on WWT would increase total weight of kids weaned per doe joined.  相似文献   

9.
The (co)variance components of BW at weaning (WW) were estimated for a Colombian multibreed beef cattle population. A single-trait animal model was used. The model included the fixed effect of contemporary group (sex, season, and year), and covariates including age of calf at weaning, age of cow, individual and maternal heterozygosity proportions, and breed percentage. Direct genetic, maternal genetic, permanent environmental, and residual effects were included as random effects. Direct, maternal, and total heritabilities were 0.23 +/- 0.047, 0.15 +/- 0.041, and 0.19, respectively. The genetic correlation between direct and maternal effects was -0.42 +/- 0.131, indicating that there may be antagonism among genes for growth and genes for maternal ability, which in turn suggests that improving WW by direct and maternal EPD may be difficult. A greater value for the direct heterosis effect compared with the maternal heterosis effect was found. Furthermore, the greater the proportion of Angus, Romosinuano, and Blanco Orejinegro breeds, the less the WW.  相似文献   

10.
Data from 2,089 laboratory rats utilized in selection experiments were used to estimate maternal influence on growth from weaning (21 d) to 16 wk of age. Adjustment factors were calculated for the effects of sex, generation, litter size, inbreeding of the dam and inbreeding of the offspring on the body weights. The effect of line of sire was included in the analysis of variance models. Covariances among paternal half-sibs, full-sibs, offspring-dam, and individuals with the same maternal grandsire were equated to theoretical causal components of variance in a series of simultaneous equations. From these, estimates of heritability, maternal influence and other environmental influences on the weights of the animals were calculated. Estimates of additive genetic effects were negative at weaning and increased to positive intermediate values during postweaning growth. Maternal influence due to additive genetic effects was of primary importance at weaning and tended to diminish at later stages of growth. An antagonism was indicated between maternal environment and genes affecting the offspring's growth. Maternal influence is an important factor at weaning and during the postweaning growth of a litter-bearing species such as the laboratory rat.  相似文献   

11.
Direct and maternal (co)variance components and genetic parameters were estimated for growth and reproductive traits in the Kenya Boran cattle fitting univariate animal models. Data consisted of records on 4502 animals from 81 sires and 1010 dams collected between 1989 and 2004. The average number of progeny per sire was 56. Direct heritability estimates for growth traits were 0.34, 0.12, 0.19, 0.08 and 0.14 for birth weight (BW), weaning weight (WW), 12-month weight (12W), 18-month weight (18W) and 24-month weight (24W), respectively. Maternal heritability increased from 0.14 at weaning to 0.34 at 12 months of age but reduced to 0.11 at 24 months of age. The maternal permanent environmental effect contributed 16%, 4% and 10% of the total phenotypic variance for WW, 12W and 18W, respectively. Direct-maternal genetic correlations were negative ranging from −0.14 to −0.58. The heritability estimates for reproductive traits were 0.04, 0.00, 0.15, 0.00 and 0.00 for age at first calving (AFC), calving interval in the first, second, and third parity, and pooled calving interval. Selection for growth traits should be practiced with caution since this may lead to a reduction in reproduction efficiency, and direct selection for reproductive traits may be hampered by their low heritability.  相似文献   

12.
A total of 88,727 individual BW records of Spanish Merino lambs, obtained from 30,214 animals between 2 and 92 d of age, were analyzed using a random regression model (RRM). These animals were progeny of 546 rams and 15,586 ewes raised in 30 flocks, between 1992 and 2002, with a total of 45,941 animals in the pedigree. The contemporary groups (animals of the same flock, year, and season, with 452 levels), the lambing number (11 levels), the combination sex of lambs with type of litter (4 levels), and a fixed regression coefficient of age on BW were included as fixed effects. A total of 7 RRM were compared, and the best fit was obtained for a model of order 3 for the direct and maternal genetic effects and for the individual permanent environmental effect. For the maternal permanent environmental effect the best model had an order 2. The residual variance was assumed to be heterogeneous with 10 age classes; the covariance between both genetic effects was included. According to the results of the selected RRM, the heritability for both genetic effects (h(a)2 and h(m)2) increased with age, with estimates of 0.123 to 0.186 for h(a)2 and of 0.059 to 0.108 for h(m)2. The correlations between direct and genetic maternal effects were -0.619 to -0.387 during the first 45 d of age and decreased as age increased, until reaching values from -0.366 to -0.275 between 45 to 75 d of age. Important changes in ranking of the animals were found based on the breeding value estimation with the current method and with the random regression procedure. The use of RRM to analyze the genetic trajectory of growth in this population of Merino sheep is highly recommended.  相似文献   

13.
试验选择陕北白绒山羊繁育中心羊场的成年健康母羊(怀孕前期)16只,育成母羊13只,育成公羊13只,空腹称重。测定每只羊1d的采食量,计算其摄入的营养成分含量,并与原苏联绒用山羊饲养标准比较,进行饲养水平评价。结果显示,与饲养标准比较,陕北白绒山羊繁育中心羊场的育成母羊代谢能高2.68MJ,粗蛋白低59.29g,钙低3.00g,磷低1.52g;育成公羊代谢能高3.47MJ,粗蛋白低81.92g,钙低4.42g,磷低2.62g;成年母羊代谢能高2.51MJ,粗蛋白低91.33g,钙低3.09g,磷低1.93g。结合羊的体况综合评价饲养水平基本合理,但尚需要按饲养标准增加粗蛋白、钙、磷等营养物质的供给量。  相似文献   

14.
The estimation of (co)variance components for multiple traits with maternal genetic effects was found to be influenced by population structure. Two traits in a closed breeding herd with random mating were simulated over nine generations. Population structures were simulated on the basis of different proportions of dams not having performance records (0, 0.1, 0.5, 0.8 and 0.9): three genetic correlations (-0.5, 0.0 and +0.5) between direct and maternal effects and three genetic correlations (0, 0.3 and 0.8) between two traits. Three ratios of direct to maternal genetic variances, (1:3, 1:1, 3:1), were also considered. Variance components were estimated by restricted maximum likelihood. The proportion of dams without records had an effect on the SE of direct-maternal covariance estimates when the proportion was 0.8 or 0.9 and the true correlation between direct and maternal effects was negative. The ratio of direct to maternal genetic variances influenced the SE of the (co)variance estimates more than the proportion of dams with missing records. The correlation between two traits did not have an effect on the SE of the estimates. The proportion of dams without records and the correlation between direct and maternal effects had the strongest effects on bias of estimates. The largest biases were obtained when the proportion of dams without records was high, the correlation between direct and maternal effects was positive, and the direct variance was greater than the maternal variance, as would be the situation for most growth traits in livestock. Total bias in all parameter estimates for two traits was large in the same situations. Poor population structure can affect both bias and SE of estimates of the direct-maternal genetic correlation, and can explain some of the large negative estimates often obtained.  相似文献   

15.
试验测定周岁陇东绒山羊的主要经济性状,采用父系半同胞相关法估测了遗传力.结果表明,陇东绒山羊周岁母羊产绒量、体重、体高、体长、胸围、管围、羊绒直径、绒层高度、羊绒伸直长度的遗传力分别为0.4129、0.3871、0.3732、0.3128、0.3468、0.2873、0.4013、0.3916、0.3908,为陇东绒山羊的科研育种提供了一定的科学依据.  相似文献   

16.
Variance components for production traits were estimated using different models to evaluate maternal effects. Data analysed were records from the South African pig performance testing scheme on 22 224 pigs from 18 herds, tested between 1990 and 2008. The traits analysed were backfat thickness (BFAT), test period weight gain (TPG), lifetime weight gain (LTG), test period feed conversion ratio (FCR) and age at slaughter (AGES). Data analyses were performed by REML procedures in ASREML, where random effects were successively fitted into animal and sire models to produce different models. The first animal model had one random effect, the direct genetic effects, while the additional random effects were maternal genetic and maternal permanent environmental effects. In the sire model, the random effects fitted were sire and maternal grand sire effects. The best model considered the covariance between direct and maternal genetic effects or between sire and maternal grand sire effects. Fitting maternal genetic effects into the animal model reduced total additive variance, while the total additive variance increased when maternal grand sire effects were fitted into the sire model. The correlations between direct and maternal genetic effects were all negative, indicating antagonism between these effects, hence the need to consider both effects in selection programmes. Direct genetic correlations were higher than other correlations, except for maternal genetic correlations of FCR with TPG, LTG and AGES. There has been direct genetic improvement and almost constant maternal ability in production traits as shown by trends for estimated (EBVs) and maternal breeding values (MBVs), while phenotypic trends were similar to those for EBVs. These results suggest that maternal genetic effects should be included in selection programmes for these production traits. Therefore, the animal–maternal model may be the most appropriate model to use when estimating genetic parameters for production traits in this population.  相似文献   

17.
Estimates of (co)variance components were obtained for weights at birth, weaning and 6, 9 and 12 months of age in Chokla sheep maintained at the Central Sheep and Wool Research Institute, Avikanagar, Rajasthan, India, over a period of 21 years (1980–2000). Records of 2030 lambs descended from 150 rams and 616 ewes were used in the study. Analyses were carried out by restricted maximum likelihood (REML) fitting an animal model and ignoring or including maternal genetic or permanent environmental effects. Six different animal models were fitted for all traits. The best model was chosen after testing the improvement of the log-likelihood values. Direct heritability estimates were inflated substantially for all traits when maternal effects were ignored. Heritability estimates for weight at birth, weaning and 6, 9 and 12 months of age were 0.20, 0.18, 0.16, 0.22 and 0.23, respectively in the best models. Additive maternal and maternal permanent environmental effects were both significant at birth, accounting for 9% and 12% of phenotypic variance, respectively, but the source of maternal effects (additive versus permanent environmental) at later ages could not be clearly identified. The estimated repeatabilities across years of ewe effects on lamb body weights were 0.26, 0.14, 0.12, 0.13, and 0.15 at birth, weaning, 6, 9 and 12 months of age, respectively. These results indicate that modest rates of genetic progress are possible for all weights.  相似文献   

18.
  • 1.?A study was conducted to study direct dominance genetic and maternal effects on genetic evaluation of production traits in dual-purpose chickens. The data set consisted of records of body weight and egg production of 49 749 Mazandaran fowls from 19 consecutive generations. Based on combinations of different random effects, including direct additive and dominance genetic and maternal additive genetic and environmental effects, 8 different models were compared.

  • 2.?Inclusion of a maternal genetic effect in the models noticeably improved goodness of fit for all traits. Direct dominance genetic effect did not have noticeable effects on goodness of fit but simultaneous inclusion of both direct dominance and maternal additive genetic effects improved fitting criteria and accuracies of genetic parameter estimates for hatching body weight and egg production traits.

  • 3.?Estimates of heritability (h2) for body weights at hatch, 8 weeks and 12 weeks of age (BW0, BW8 and BW12, respectively), age at sexual maturity (ASM), average egg weights at 28–32 weeks of laying period (AEW), egg number (EN) and egg production intensity (EI) were 0.08, 0.21, 0.22, 0.22, 0.21, 0.09 and 0.10, respectively. For BW0, BW8, BW12, ASM, AEW, EN and EI, proportion of dominance genetic to total phenotypic variance (d2) were 0.06, 0.08, 0.01, 0.06, 0.06, 0.08 and 0.07 and maternal heritability estimates (m2) were 0.05, 0.04, 0.03, 0.13, 0.21, 0.07 and 0.03, respectively. Negligible coefficients of maternal environmental effect (c2) from 0.01 to 0.08 were estimated for all traits, other than BW0, which had an estimate of 0.30.

  • 4.?Breeding values (BVs) estimated for body weights at early ages (BW0 and BW8) were considerably affected by components of the models, but almost similar BVs were estimated by different models for higher age body weight (BW12) and egg production traits (ASM, AEW, EN and EI). Generally, it could be concluded that inclusion of maternal effects (both genetic and environmental) and, to a lesser extent, direct dominance genetic effect would improve the accuracy of genetic evaluation for early age body weights in dual-purpose chickens.

  相似文献   

19.
Weaning weights from nine parental breeds and three composites were analyzed to estimate variance due to grandmaternal genetic effects and to compare estimates for variance due to maternal genetic effects from two different models. Number of observations ranged from 794 to 3,465 per population. Number of animals in the pedigree file ranged from 1,244 to 4,326 per population. Two single-trait animal models were used to obtain estimates of covariance components by REML using an average information method. Model 1 included random direct and maternal genetic, permanent maternal environmental, and residual environmental effects as well as fixed sex x year and age of dam effects. Model 2 in addition included random grandmaternal genetic and permanent grandmaternal environmental effects to account for maternal effects of a cow on her daughter's maternal ability. Non-zero estimates of proportion of variance due to grandmaternal effects were obtained for 7 of the 12 populations and ranged from .03 to .06. Direct heritability estimates in these populations were similar with both models. Existence of variance due to grandmaternal effects did not affect the estimates of maternal heritability (m2) or the correlation between direct and maternal genetic effects (r(am)) for Angus and Gelbvieh. For the other five populations, magnitude of estimates increased for both m2 and r(am) when estimates of variance due to grandmaternal effects were not zero. Estimates of the correlation between maternal and grandmaternal genetic effects were large and negative. These results suggest that grand-maternal effects exist in some populations, that when such effects are ignored in analyses maternal heritability may be underestimated, and that the correlation between direct and maternal genetic effects may be biased downward if grandmaternal effects are not included in the model for weaning weight of beef cattle.  相似文献   

20.
Direct and maternal genetic and environmental variances and covariances were estimated for weaning weight and growth and maturing traits derived from the Brody growth curve. Data consisted of field records of weight measurements of 3,044 Angus cows and 29,943 weaning weight records of both sexes. Growth traits included weights and growth rates at 365 and 550 d, respectively. Maturing traits included the age of animals when they reached 65% of mature weight, relative growth rates, and degrees of maturity at 365 and 550 d. Variance and covariance components were estimated by REML from a set of two-trait animal models including weaning weight paired with a growth or maturing trait. Weaning and cow contemporary groups were defined as fixed effects. Random effects for weaning weight included direct genetic, maternal genetic, and permanent environmental effects. For growth and maturing traits, a random direct genetic effect was included in the model. Direct heritability estimates for growth traits ranged from .46 to .52 and for maturing traits from .31 to .34. Direct genetic correlations between weaning weight and weights and growth rates at 365 and 550 d ranged from .56 to .70. Correlations of maternal weaning genetic effects with direct genetic effects on weights at 365 and 550 d were positive, but those with growth rates were negative. Between weaning weight and degrees of maturity at both 365 and 550 d, direct genetic correlation estimates were .55 and maternal genetic correlations estimates were -.05, respectively. Direct genetic correlations of weaning weight with relative growth rates and age at 65% of mature weight ranged from .04 to .06, and maternal-direct genetic correlation estimates ranged from -.50 to -.56, respectively. These estimates indicate that higher genetic capacity for milk production was related to higher body mass and degrees of maturity between 365 and 550 d of age but was negatively related to absolute and relative growth rates in that life stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号