首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil weed seed bank is an important factor determining above-ground floristic composition and weed density in agricultural systems. The quantitative and qualitative measures of weed seed bank can help growers to predict the extent to which they are facing weed problems. Along with tillage, crop residues can affect the fate of weeds in the upcoming crops. To investigate such effects, we compared the effects of tillage systems [conventional tillage (CT), reduced tillage (RT), and no tillage (NT)], wheat residue retention, and nitrogen (N) rates (0, 69, 138, and 207 kg N ha−1) on depth-related characteristics of the weed seed bank under a sweet corn-wheat sequence during 2014–2015 growing seasons in Shiraz, Iran. Soil bank was not affected by tillage systems but tended to be slightly higher under RT. The highest (898 seeds m−2) and lowest (322 seeds m−2) weed population at 0–10 cm depth were found when 138 kg N ha−1 in 2015 and 207 kg N ha−1 in 2014 were applied. Species richness and diversity were higher under NT and RT practices at the top layer, but CT system was more diversified at deeper depths. They were higher when crop residues were retained as well. Barnyard grass (Echinochloa crus-galli [L.] Beauv), common lambsquarter (Chenopodium album L.), common purslane (Portulaca oleracea L.), field bindweed (Convolvulus arvensis L.), flixweed (Descoreinia sofia [L.] Webb. & Berth.), henbit (Lamium amplexicaule L.), pigweeds (Amaranthus spp.), and stinking goosefoot (Chenopodium vulvaria L.) were the most common weeds found in all tillage systems and soil depths. Grasses were relatively lower than broadleaves regardless of treatments. Weed seed bank was mostly affected by weather conditions than treatments in this short-term experiment.  相似文献   

2.

Weeds are a major biotic constraint; compete with crop for the same resources and ultimately reduce productivity. This study evaluated the impact of irrigation intervals and weed management treatments on chlorophyll content and morphological growth of tomato to find an appropriate integrated weed management strategy. Two-year field experiments (2018/2019) were conducted at district Mardan (34°15′38″ N and 72°6′36″ E). Tomato F1 hybrid (Taj?3592) was transplanted during March. The experiments were laid out in a randomized complete-block design in split-plot arrangement with three replications. The main block comprised three irrigation intervals (3, 6, and 9 days) and the sub-block included weed management treatments: transparent polythene, black polythene, weeding except Orobanche, sole weeding of Orobanche, weeding of all weeds, copper oxychloride 1.5?kg a.i ha?1 (single dose), copper oxychloride 1.5?kg a.i ha?1 (split doses), copper oxychloride?+?humic acid 25?kg ha?1 (single dose), copper oxychloride?+?humic acid 25?kg ha?1 (split doses), copper sulphate 2?kg ha?1 (single dose), copper sulphate 2?kg ha?1 (split doses), ammonium sulphate 200?kg ha?1 (single dose), ammonium sulphate 200?kg ha?1 (split doses), pendimethalin 33 EC 1.44?kg a.i ha?1, glyphosate 48 SL 1.5?kg a.i ha?1, and weedy check. Lowest relative weed density (RWD) of O. cernua (2.23%) and highest RWD of O. cernua (38.01%) were recorded in the 3? and 9?day irrigation intervals, respectively. However, 3?day irrigation interval resulted in highest fresh weed biomass (5794?kg ha?1). Moreover, the 6?day irrigation interval significantly increased chlorophyll content by 11 and 5%, leaf area by 23 and 6%, and number of branches plant?1 by 30 and 22% compared to 9? and 3?day irrigation intervals, respectively. Among the weed management treatments, black polythene resulted in the highest weed control efficiency (96%), increasing chlorophyll content by 16%, leaf area by 33%, and number of branches plant?1 by 64% vs. weedy check. Consequently, 6?day irrigation intervals?×?black polythene could be the best weed management strategy, followed by transparent polythene, weeding of all weeds, pendimethalin, glyphosate, and ammonium sulphate.

  相似文献   

3.
Portulaca oleracea (common purslane) is a summer annual weed with wide geographic distribution and is problematic in many crops worldwide. Field experiments were conducted to determine the effects of different management practices on P. oleracea emergence in soyabean fields. Two tillage systems [conventional tillage (CT) and no‐till (NT)], three soyabean seeding rates (SR) (200 000, 300 000 and 400 000 seeds ha?1) and three imazethapyr doses (0, 50, and 100 g a.i. ha?1 applied pre‐emergence) were considered as experimental factors. Portulaca oleracea emergence was affected by management practices including tillage system, soyabean SR and imazethapyr dose. Conventional tillage required a thermal time (TT) of 195.95 and 221.30 d °C to reach 50% emergence in 2016 and 2017, respectively, while for NT, the respective TT requirements were 182.34 and 203.32 d °C. On increasing soyabean SR from 200 000 to 400 000 seeds ha?1, the TT requirements for 50% emergence (T50) of P. oleracea also increased. The T50 at the herbicide dose of 100 g a.i. ha?1 was 193.05 and 220.67 d °C in 2016 and 2017, respectively, while for the non‐herbicide treatment, the respective TT requirements were 165.98 and 202.94 d °C. From an integrated weed management perspective, a combination of CT with a SR of 400 000 seeds ha?1 and a 100 g a.i. ha?1 imazethapyr dose not only resulted in the lowest P. oleracea seedling density m?2 but also caused the longest delay in the time to reach the T50. Findings from our study may facilitate the development of effective P. oleracea management strategies.  相似文献   

4.

The aim of this study was to evaluate the water and nitrogen use efficiency and some quantitative and qualitative characteristics of forage beet cultivars under the influence of different irrigation methods and nitrogen levels in two cropping years, 2017–18 and 2018–19, at Agricultural Research Station in Karaj, Iran. Experimental factors included the first factor with four irrigation methods (normal leakage, alternate furrow irrigation, fixed furrow irrigation, type (drip-strip)), the second factor was the amount of nitrogen fertilizer with three levels (150, 200 and 250?kg N ha?1) and the third factor included three forage beet cultivars (Sbsi052, Jamon and Kyros). Among irrigation treatments, alternate furrow irrigation and fixed furrow irrigation had the highest sugar content with 9.28% and 9.17%, respectively. The highest yield of digestible organic matter was obtained in leakage irrigation treatment, nitrogen fertilizer of 250?kg ha?1 and in Kyros at the rate of 19.45?t ha?1. The highest yield of root digestible dry matter, potassium, sodium and free nitrogen was observed in leakage irrigation treatment and consumption of 200?kg ha?1 nitrogen was observed in foreign cultivars. The highest crude protein was observed in alternate furrow irrigation conditions with a consumption of 200?kg ha?1 nitrogen in cultivar Sbsi052 at 13.08%. Leakage irrigation and type tape had the highest consumption efficiency and efficiency of nitrogen uptake with application of 150 and 200?kg ha?1 N, and the highest water use efficiency was also observed in leakage irrigation and type tape with application of 250?kg ha?1 N in domestic and foreign cultivars. The type irrigation method showed better quantitative and qualitative yield than the furrow irrigation methods.

  相似文献   

5.
Atrazine carryover often limits growers to production of atrazine-tolerant crops the year following application, and allows the increase of triazine-tolerant weed species such as Panicum miliaceum L. (wild proso millet). Tiriazine-resistant Brassica napus L. cv. ‘Triton’ (oilseed rape) was tested to characterize the nature of interspecific interference with P. miliaceum. In a greenhouse study, atrazine at 2.2 kg ha?1 depressed oilseed rape fruit (siliqua) number and fruit dry weight, and delayed flowering, but did not significantly affect height or weight of shoots, Oilseed rape fruit weight was reduced at 200 P. miliaceum plants m?2. fruit number and shoot weight were inhibited at 400 weeds m?2. and height was reduced and flowering delayed at 600 weeds m?2. Number and weight of fruits were reduced by one-third after 8 weeks of interference as compared to oilseed rape grown with the weed for 4 weeks. Oilseed rape height was reduced by 29% and shoot weight by 55% by 600 weeds m?2 and 2–2 kg ha?1 atrazine, while fruit number and weight were reduced by 72%. Oilseed rape shoot weight was reduced by 74% by 600 weeds m?2 for 12 weeks of interference, while fruit number and weight were reduced by 85% and 82%. respectively. In a field study, fluazifop reduced early season P. miliaceum cover by 72%, but did not increase oilseed rape cover. Mid-season P. miliaceum shoot weight was decreased by 97% by fluazifop and oilseed rape shoot weight was increased by 34%. P. miliaceum control increased oilseed rape biomass by 38% at 89 days, but biomass of oilseed rape sown at 11.2 kg ha?1 with 2.2 kg atrazine ha?1 was not decreased by P. miliaceum interference at 89 days.  相似文献   

6.
Field experiments were conducted to study weed population shifts in long‐term conservation tillage systems. The objectives of this study were to determine weed community abundance, diversity and composition on conventional tillage (CT), minimum tillage (MT), no‐tillage with paraplow (ZT) and no‐tillage (NT) systems, and to identify species that are associated with specific tillage systems. The paraplow is a subsoiling technique that results in a deep loosening of the soil, in order to alleviate compaction in certain soils where NT is practiced. The results showed significant differences in both the composition and the abundance of weeds, depending on the tillage systems. Weed diversity, species richness and Shannon's diversity and evenness indices were higher under the conservation tillage systems than in the CT system. In addition, various weed species were associated with reduced tillage systems. For instance, Anthemis arvensis, Hirschfeldia incana and Lolium rigidum became more prevalent in the NT system, whereas Chenopodium album and Filago pyramidata dominated in the ZT system. Therefore, the application of a paraplow treatment changed the weed community in the NT system. Other weed species, such as Capsella bursa‐pastoris and Torilis nodosa, dominated in all three conservation tillage systems, whereas soil disturbance by mouldboard ploughing favoured species such as Polygonum aviculare and Phalaris paradoxa.  相似文献   

7.
不同耕作方式对黑土农田土壤水分及 利用效率的影响   总被引:6,自引:0,他引:6  
在土壤耕作长期定位试验的基础上,研究了免耕秸秆覆盖(NT)和少耕(RT)对东北黑土区农田土壤水分及利用效率、玉米产量及特性的影响。结果表明:在作物生长季3种耕作措施土壤剖面含水量整体上呈先降低后增加的变化趋势,各时期20~40 cm土层含水量均较低。免耕可显著提高0~90 cm土层土壤含水量,90 cm土层以下三种措施土壤含水量差异逐渐降低,到190 cm土层差异不明显。土体储水量主要受降雨及不同耕作措施的影响,在干旱的春季以及降水量较少的秋季土体储水量较低,表现为:免耕>传统>少耕,而在降水量较大时土体储水量相应增加,表现为:少耕>免耕>传统。3种耕作措施下玉米叶面积指数变化趋势一致,总体表现为:传统>少耕>免耕,其中传统和少耕最高分别比免耕高0.22和0.26。在生长季少耕蒸散量最高。传统耕作玉米籽粒产量和水分利用效率分别较免耕和少耕高30%和17%,29%和11%,籽粒产量均存在显著性差异(P<0.05),表现为:传统>少耕>免耕,所以对于玉米而言,在该区不适宜实施免耕秸秆覆盖和少耕这两种保护性耕作体系。  相似文献   

8.
Summary There is a lack of information on the combined effects of preceding crop, reduced tillage (especially no-tillage) and the time of herbicide application on the development of weed populations and the efficiency of weed control in winter wheat in humid temperate climates. An experiment was conducted with a crop rotation (winter wheat – oilseed rape – winter wheat – maize) on a sandy loam and a loamy silt soil in the Swiss midlands to investigate the impact of different preceding crops and pre- and post-emergence control of weeds in conventional tillage (CT; mouldboard plough), minimum tillage (MT; chisel plough) and no-tillage (NT; no soil disturbance systems). When winter wheat was grown after maize and winter wheat was grown after oilseed rape, the ranking order of weed density in treatments without herbicide application was NT < MT < CT and CT < MT < NT respectively. Analysis of variance and canonical discriminant analysis showed that Epilobium spp., Sonchus arvensis , Myosotis arvensis and volunteer crops were more abundant in NT than in MT and CT. The efficiency of post-emergence weed control was generally better than that of pre-emergence weed control, regardless of tillage intensity.  相似文献   

9.
The influence of no-tillage and conventional tillage on the outcome of early weed interference in maize (Zea mays L., cv. TZB), cowpea [Vigna unguiculata (L.) Walp, cv. VITA-5] and their intercrop at populations of 40000, 50 000 and 30 000 + 40 000 plants ha?1 was investigated on a loamy sand Oxic Ustropept in a subhumid tropical environment between April and July 1980. Both tillage treatments received 60 kg N, 30 kg P2O5 and 30 kg K2O ha?1. Although the weed spectrum was wider under no-tillage, weed weight was only 52% of the weight recorded under conventional tillage 6 weeks after sowing and the average food energy yield reductions caused were 28 and 65%, respectively. Cropping pattern had no effect on plot weediness. With minimum or no weed interference, maize performance was better in conventional than no-tillage but worse with prolonged weed interference. Cowpea responded more to weed interference than to tillage practice. Regardless of tillage practice and weed interference duration (up to 6 weeks) after sowing, maize monoculture produced the highest food energy yield, followed by maize/cowpea intercrop and cowpea monoculture in that order.  相似文献   

10.
Conventional tillage practices used on the Loess Plateau lead to different soil surface micro-topography which results in forming two types of soil crusts. The objective of this study was to explore the formation position, properties and erosion characteristics of structural crusts and depositional crusts under the influences of the microtopography in the rainfall experiments. Two simulated rainstorms were applied in the experiments. The first rainfall event was used for soil crust formation, then the following simulated rainfall storms at 40 mm h?1, 60 mm h?1, and 80 mm h?1 rates were applied to the soil boxes set to a 17.6% (10°) slope under three tillage types (contour tillage, artificial digging, and straight slope conditions) to investigate the resulting runoff discharge rate and sediment yield on crusted soil surface. Results show that: (1) structural crusts formed on the mounds, and depositional crusts formed in the depressions after the first rainfall events; structural crusts exhibit a lower thickness, bulk density, higher porosity and shear strength than depositional crusts; (2) structural crusts increased the runoff yield less and decreased the sediment yield more than depositional crusts; and (3) the runoff yield was significantly greater, and the sediment yield was lower on the crusted soil surface than that on the uncrusted soil surface, regardless of the effect of the tillage treatments.  相似文献   

11.
R. F. NORRIS 《Weed Research》1991,31(6):317-331
Sugarbeet and weeds were treated with phenmedipham plus desmedipham either as single applications or as split applications in which 50% of the equivalent single application rate was applied at each application. Split application did not alter the phytotoxicity to the crop when environmental conditions did not predispose the Sugarbeet to injury by the herbicide. Split applications at 1-1 or 1-4 kg ha?1 spaced from 0-5 to c. 5 days apart caused more injury to the crop than the respective single applications when environmental conditions were such that injury to the crop resulted from the single applications. Injury to Sugarbeet following application of 0-72 kg ha?1 of phenmedipham plus desmedipham was always low, regardless of the type of application. Susceptible weeds were controlled by single applications of 1 1-1 ?4 kg ha?1, but 0-72 kg ha?1 did not reliably provide adequate control. Split applications c. 3-8 days apart gave improved control. Control achieved by 0-72 kg ha?1 of the herbicide applied as split treatments equalled or exceeded that produced by single applications of 1-4 kg ha?1. Improvement in the control of tolerant weed species by split applications of phenmedipham plus desmedipham was species dependent. Use of low-rate split applications of phenmedipham plus desmedipham thus resulted in reduced injury to the Sugarbeet, and the introduction of less herbicide into the ecosystem, while maintaining or improving the control of susceptible weeds.  相似文献   

12.

Lack of control options for cool-season broadleaf weeds is a major deterrent to autumn-sown chickpea. Weed control and chickpea tolerance to PRE (pre-emergence) and POST (post-emergence) application of isoxaflutole and oxyflurofen, PRE metribuzin, POST pyridate, and flumetsulam were investigated at three locations, including Kermanshah, Kurdistan, and Hamedan provinces during 2017–2018. Untreated and weed-free checks were added for comparison. Pyridate and PRE oxyflurofen 125?g ai ha?1 caused the minor visual crop injury according to EWRS score (1–1.8), while the highest crop injury occurred with metribuzin (EWRS score 3.5–8.5) in whole locations. The most effective herbicides for weed reduction were pyridate (70–75%), PRE oxyfluorfen (69–76%), and POST oxyfluorfen (65–73%) at Kermanshah, PRE oxyfluorfen at 125 and 175?g ai ha?1 (70–78%), POST oxyfluorfen (70–76%) and pyridate (70–78%) at Kurdistan, PRE oxyfluorfen at 125 and 175?g ai ha?1 (88–96%), metribuzin (91–100%) and Pyridate (80–97%) at Hamedan. Pyridate and PRE oxyfluorfen at 125?g ai ha?1 resulted in the highest chickpea grain yield at the three locations. In general, PRE oxyfluorfen (125?g ai ha?1) was similar to pyridate in terms of efficacy in weed control and grain yield enhancement.

  相似文献   

13.
Losses of about 40% in cane yields due to natural stands of weeds were found in experiments conducted in sugarcane var. Co 527 in the year of planting at Guneid Sugarcane Research Station, Sudan. Weed competition lowered millable stalks per metre row by 32%, stalk height by 24%, stalk thickness by 15% and number of nodes per stalk by 14%. Tillering was the growth phase most affected by weed competition. Cane yields were increased as number of hand weedings increased, but four weedings were not markedly better than three. The average yield (67·04 t ha?1) obtained from four weedings was not significantly (P= 0·05) better than that of three weedings carried out at 3, 6 and 9 weeks after cane planting. Juice analysis components were also affected by weeds and a 15% reduction in sucrose recovery was recorded. Reductions in the other components were only 4–7%. Atrazine and diuron (3·3 kg ha?1), metribuzin (2·4 kg ha?1) and metribuzin (1·3 kg ha?1) in tank mixture with diuron (1·5 kg ha?1) gave excellent residual weed control of the dominant weed species, Ipomoea cordofana Choisy., Brachiaria eruciformis (Sm.) Griseb., Corchorus fascicularis Lam., Ocimum basilicum L. and Dinebra retroflexa (Vahl) Panz., for most of the first growing season. Excellent control of weeds achieved by the herbicide treatments resulted in comparable yields to frequently-weeded cane. These herbicides were not phytotoxic to sugarcane var. Co 527.  相似文献   

14.
The effects of sub‐lethal dose of herbicide and nitrogen fertilizer on crop–weed competition were investigated. Biomass increases of winter wheat and a model weed, Brassica napus, at no‐herbicide treatment with increasing nitrogen were successfully described by the inverse quadratic model and the linear model respectively. Increases in weed competitivity (β0) of the rectangular hyperbola and parameter B in the dose–response curve for weed biomass, with increasing nitrogen were also successfully described by the exponential model. New models were developed by incorporating inverse quadratic and exponential models into the combined rectangular hyperbola with the standard dose–response curve for winter wheat biomass yield and the combined standard dose—response model with the rectangular hyperbola for weed biomass, to describe the complex effects of herbicide and nitrogen on crop–weed competition. The models developed were used to predict crop yield and weed biomass and to estimate the herbicide doses required to restrict crop yield loss caused by weeds and weed biomass production to an acceptable level at a range of nitrogen levels. The model for crop yield was further modified to estimate the herbicide dose and nitrogen level to achieve a target crop biomass yield. For the target crop biomass yield of 1200 g m?2 with an infestation of 100 B. napus plants m?2, the model recommended various options for nitrogen and herbicide combinations: 140 and 2.9, 180 and 0.9 and 360 kg ha?1 and 1.7 g a.i. ha?1 of nitrogen and metsulfuron‐methyl respectively.  相似文献   

15.
The effects of different populations of volunteer winter wheal and their control with ethofumesate and TCA on growth, seed yield and yield components of S.24 perennial ryegrass were investigated in lield experiments in 1978 and 1979. Reductions in ryegrass seed yield due to the presence of wheat depended on the density of wheat and the number and dry weight of ryegrass tillers. The greatest percentage reduction in ryegrass seed yield occurred at high densities of wheat (300 plants m?2) when the number of ear-bearing tillers and 1000 seed weight of ryegrass were reduced. When Ihe density of wheat was low (80 plants m?2) a smaller reduction in ryegrass seed yield occurred and the number of live wheat plants remaining gradually decreased. Within the range of wheat densities in these experiments (0–300 plants m ?2) a 1% loss in ryegrass seed yield occurred for every 10 wheal plants m?2 present in the crop post winter. Both herbicides caused a reduction in number of ryegrass tillers during growth but, except where TCA was applied at 12 kg ha?1 in November, ryegrass seed yields were not significantly reduced (in comparison with a wheat-free control) and were always greater than those obtained in the presence of wheat where no herbicides had been applied. Levels of volunteer infestation of 300 wheat plants m?2 were controlled with minimum risk of crop damage by applications of 6 kg ha?1 TCA in either October or November, or by application of 1–9 kg ha?1 ethofumesate in November.  相似文献   

16.

Field experiments were conducted on wheat during 2017–2018 and 2018–2019 under rainfed conditions. The statistical significance between treatment means was determined at 5% significance level. Data were recorded on weed density, protein, fat and ash contents of wheat grains. Weed density in shallow tillage was highest (20.67?m?2) while it was lowest (14.23?m?2) in deep tillage. In weed control factor, weed density was highest in weedy check (33.10?m?2), followed by parthenium aqueous extract (21.50?m?2), and lowest (6.79?m?2) in plots treated with Affinity (isoproturon?+?carfentrazone). Results showed that the highest crude protein content (10.88%) was recorded in deep tillage, while lowest (10.45%) in shallow tillage, indicating that tillage depths have an impact on wheat grains protein content. For weed control factor, the crude protein content was highest (11.98%) in Affinity treated plots, followed by herbicides, Buctril super (bromoxynil?+?MCPA) (11.44%) and Puma super (fenoxaprop-p-ethyl) (11.12%). Hence, the control measures also affected crude protein content of wheat grains, which is also obvious from the weedy check where wheat grains crude protein content was lowest (9.73%). The two years combined data analysis also showed the highest crude fat content (1.75%) in deep tillage treatments followed by normal tillage (1.67%) and lowest fat content (1.53%) in shallow tillage. For ash content, the highest content (3.03%) was with Affinity herbicide treatments, followed by Buctril super (2.74%) and Puma super (2.48%) herbicides. In conclusion, both the tillage and herbicides indicated positive effects on the nutritive status of wheat grains.

  相似文献   

17.
The effects at Veronica hederifolia. densities on the yield of winter wheat (Triticum aestivum L.) were studied in field trials conducted at the same location in 1992 and 1993. In 1992, nitrogen at 60 kg ha-1 was applied at tillening followed by a further 80 kg ha-1 at the first node of stem elongation. In 1993. four regimes of nitrogen applications were compared: a total of 140 kg ha-1 supplied at three dales. 60 kg ha-1 supplied at tillering, 60 kg ha-1 Supplied al the first node of stem elongation and no nitrogen as the control. Competitive effects from V. hederifolia (ranging from 17 to 192 plants m-22), were greatest in 1993, the year with the best early growth development of this weed. In 1993, yield losses, as described with a non-linear model changed for each regime of fertilization. In both years, V. hederifolia decreased wheat ear number per unit area for each nitrogen treatment. This is explained hy an increase in tiller mortality and a nitrogen deficiency in wheat at the stem elongation and flowering stages. Nevertheless, with late application of nitrogen, individual grain weight increased and the effect of V. hederifolia on wheat yield loss was lowest. The results are discussed in relation to the effects on all yield components, and show the importance of choosing the rieht nitrogen fertilization for specific yield targets of wheat production when infested by weeds.  相似文献   

18.
A 140-day laboratory incubation, using surface soil from a long-term soybean tillage study, evaluated tillage influence on [14C]metribuzin degradation. Higher plant residue conditions in no-tillage (NT) soil inhibited metribuzin mineralization to [14C]carbon dioxide as compared to metribuzin degradation patterns observed in conventional tillage (CT) soil. At 140 days, relative abundance of extractable 14C components in NT included polar metabolites > metribuzin = deaminated metribuzin (DA) = deaminated diketometribuzin (DADK), while in CT, components included metribuzin > polar metabolites > DADK?DA. Conditions in NT apparently inhibited polar 14C degradation, and resulted in its accumulation, while in CT polar 14C degradation proceeded relatively rapidly. For both NT and CT, more 14 C was measured in an unextractable fraction than in any other fraction. A greater portion of the unextractable fraction in NT was associated with decomposed plant residue than in CT. Surface accumulation of crop residue, such as occurs under NT, provided a soil environment which altered metribuzin degradation patterns.  相似文献   

19.
Studies on competition between Ridolfia segetum Maris, and sunflower (Helianthemum annuus L.) were conducted at eight locations in southern Spain in 1990 and 1991. in order to define competition models and to estimate from these economic thresholds as affected by crop inputs and potential yields. Competition losses in sunflower crops ranged from 19% to 56% of weed–free yields. There were slightly better correlations between percentage sunflower reduction and weed density than with weed dry weight, (?0.66 and ?0.59, respectively). The weed competitive index, or sunflower crop dry weight reduction per unit dry weight of R. segetum, was 1.09. The percentage yield losses due to weed density (NPRt) were fitted to multiple linear, quadratic, exponential and hyperbolic models. The hyperbolic equation, %RSY=100 (1+1/b*NPRt)?1, where b=0.14 and is the R. segetum competitive ability index, had the lowest error sum of squares (SSE), and gave the best biological explanation for the competition response. Early emergence (before mid–March) made weeds about 1.5 times more competitive than late emergence. The economic threshold to offset the cost of a shallow post–emergence tillage, assuming 70% control efficiency, ranged from about 2.5 plants m ?2 for low–yielding crops(1200kgha?1) to less than one plant m?2 for higher–yielding crops (2800 kg ha?1).  相似文献   

20.
为探讨不同耕作措施对甘肃引黄灌区灰钙土土壤物理性状和玉米产量的影响,于2014—2017年在连续翻耕8 a的玉米田设置翻耕(CT)、旋耕(RT)、深松(ST)、免耕(NT)等4个单一耕作处理和翻耕-免耕(CT-NT)、深松-免耕(ST-NT)等2个轮耕处理。结果表明:RT处理0~10 cm和10~20 cm土层容重4个年度均是最低,与CT处理相比,第4年(2017)显著降低了8.70%和5.56%(P<0.05);ST、NT、CT-NT、ST-NT处理20~30 cm和30~40 cm土层土壤容重随年份呈降低趋势,与CT处理相比,第4年(2017)显著下降了4.38%、3.16%、9.25%、7.54%和11.11%、5.56%、6.00%、11.11%;CT和RT处理显著降低了0~20 cm土层孔隙度,与CT相比,ST、CT-NT、ST-NT处理20~30 cm和30~40 cm土层土壤孔隙度在第4年(2017)显著增加了4.42%、9.60%、7.78%和14.18%、7.51%、14.18%;不同耕作处理均可降低0~45 cm土层土壤紧实度,与试验前(2014)相比,ST和...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号