首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
In 2012, a greenhouse experiment was conducted to investigate the effects of field soil (C0), residual composted municipal waste (CMW), and residual composted sheep manure (SM) on the growth of triticale in pots previously growing oilseed rape in 2011. To each soil group, one of three levels of urea nitrogen (N) fertilizer was added. Results demonstrated that triticale grown in pots previously containing oilseed rape plants containing SM or CMW with 150 kg urea N ha?1 had the highest N content. Plants grown in SM with 150 kg N ha?1 had the greatest seed yield, but yield was not significantly different from plants grown in CMW receiving 150 kg N ha?1. Triticale plants enriched by either SM or CMW had a higher amount of N, copper, zinc, and manganese compared to the field soil control.  相似文献   

2.
A field experiment was carried out in northern Vietnam to investigate the effects of adding different additives [rice (Oriza sativa L.) straw only, or rice straw with added lime, superphosphate (SSP), urea or a mixture of selected microorganism species] on nitrogen (N) losses and nutrient concentrations in manure composts. The composts and fresh manure were applied to a three-crop per year sequence (maize–rice–rice) on a degraded soil (Plinthic Acrisol/Plinthaquult) to investigate the effects of manure type on crop yield, N uptake and fertilizer value. Total N losses during composting with SSP were 20% of initial total N, while with other additives they were 30–35%. With SSP as a compost additive, 65–85% of the initial ammonium-N (NH4-N) in the manure remained in the compost compared with 25% for microorganisms and 30% for lime. Nitrogen uptake efficiency (NUE) of fresh manure was lower than that of composted manure when applied to maize (Zea mays L.), but higher when applied to rice (Oriza sativa L.). The NUE of compost with SSP was generally higher than that of compost with straw only and lime. The mineral fertilizer equivalent (MFE) of manure types for maize decreased in the order: manure composted with SSP?>?manure composted with straw only and fresh manure?>?manure composted with lime. For rice, the corresponding order was: fresh manure?>?manure composted with SSP/microorganisms/urea?>?manure composted with lime/with straw alone. The MFE was higher when 5 tons manure ha?1 were applied than when 10 tons manure ha?1 were applied throughout the crop sequence. The residual effect of composted manures (determined in a fourth crop, with no manure applied) was generally 50% higher than that of fresh manure after one year of manure and compost application. Thus, addition of SSP during composting improved the field fertilizer value of composted pig manure the most.  相似文献   

3.
A 2-year field experiment was conducted to evaluate the single- and combined-application effects of cattle manure and urea on corn (Zea mays L.) production. A randomized complete block design was conducted with five nitrogen (N) rates (36, 72, 108, 144, and 180 kg N ha?1) as urea, cattle manure, or both. The stover yield and aboveground biomass increased with urea application up to 144 kg N ha?1 but remained unchanged at greater N rates. At all N rates, combined application of manure and urea resulted in greater grain yields than single applications. Crop response to applied N was greater in the combined N application system than in the single-application treatments. The greatest grain yield was found in plots that had received a combination of 18 ton manure ha?1 plus 160 kg urea ha?1. Manure application along with urea enhanced crop yield response to urea and reduced its application rate.  相似文献   

4.
Field experiments (established in autumn 1979, with monoculture barley from 1980 to 1990 and barley/wheat–canola–triticale–pea rotation from 1991 to 2008) were conducted on two contrasting soil types (Gray Luvisol [Typic Haplocryalf] loam soil at Breton; Black Chernozem [Albic Agricryoll] silty clay loam soil at Ellerslie) in north-central Alberta, Canada, to determine the influence of tillage (zero tillage and conventional tillage), straw management (straw removed [SRem] and straw retained [SRet]), and N fertilizer rate (0, 50 and 100 kg N ha?1in SRet, and only 0 kg N ha?1in SRem plots) on seed yield, straw yield, total N uptake in seed + straw (1991–2008), and N balance sheet (1980–2008). The N fertilizer urea was midrow-banded under both tillage systems in the 1991 to 2008 period. There was a considerable increase in seed yield, straw yield, and total N uptake in seed + straw with increasing N rate up to 100 kg N ha?1 under both tillage systems. On the average, conventional tillage produced greater seed yield (by 279 kg ha?1), straw yield (by 252 kg ha?1), and total N uptake in seed + straw (by 6.0 kg N ha?1) than zero tillage, but the differences were greater at Breton than Ellerslie. Compared to straw removal treatment, seed yield, straw yield, and total N uptake in seed + straw tended to be greater with straw retained at the zero-N rate used in the study. The amounts of applied N unaccounted for over the 1980 to 2008 period ranged from 1114 to 1846 kg N ha?1 at Breton and 845 to 1665 kg N ha?1 at Ellerslie, suggesting a great potential for N loss from the soil-plant system through denitrification, and N immobilization from the soil mineral N pool. In conclusion, crop yield and N uptake were lower under zero tillage than conventional, and long-term retention of straw suggests some gradual improvement in soil productivity.  相似文献   

5.
Abstract

During the last century, concerns about nitrate presence in the groundwater have tremendously increased worldwide, mainly because of its detrimental consequences on environment and human health. There are different factors contributing their past in nitrate pollution, farm manure is given due consideration. Knowing above facts, a field study was performed to check the effect of different farm yard manure (FYM) levels with urea on nitrate distribution in the soil profile and yield of wheat crop. The experiment was set out in a randomized complete block design, consisted of application of nitrogen at 125?kg ha?1 from urea, 80?kg ha?1 of N from urea +10 tons FYM ha?1 and 20 tons FYM ha?1 with three replications. Wheat (cultivar S7ehar-2006) was sown as test crop. Soil samples were examined to measure the nitrate concentration from four different depths (0–25, 25–50, 50–75, and 75–100?cm) after harvesting. Results showed that the straw yield, total biomass, spike length, and number of grains per spike and 1000-grain weight were significantly influenced by fertilizer strategies. All manure treatments significantly affected the infiltration rate and concentration of nitrate at different depths of the soil profile. Farm yard manure showed greater nitrate concentration up to 50?cm depth as compared to alone urea and combined application, while at the depth of 100?cm, combined application of urea and FYM showed a minimum concentration of nitrates than alone application of either urea or FYM.  相似文献   

6.
To efficiently use nitrogen (N) while protecting water quality, one must know how a second-year crop, without further N fertilization, responds in years following a manure application. In an Idaho field study of winter wheat (Triticum aestivum L.) following organically fertilized sugarbeet (Beta vulgaris L.), we determined the residual (second-year) effects of fall-applied solid dairy manure, either stockpiled or composted, on wheat yield, biomass N, protein, and grain N removal. Along with a no-N control and urea (202 kg N ha?1), first-year treatments included compost (218 and 435 kg estimated available N ha?1) and manure (140 and 280 kg available N ha?1). All materials were incorporated into a Greenleaf silt loam (Xeric Calciargid) at Parma in fall 2002 and 2003 prior to planting first-year sugarbeet. Second-year wheat grain yield was similar among urea and organic N sources that applied optimal amounts of plant-available N to the preceding year’s sugarbeet, thus revealing no measurable second-year advantage for organic over conventional N sources. Both organic amendments applied at high rates to the preceding year’s sugarbeet produced greater wheat yields (compost in 2004 and manure in 2005) than urea applied at optimal N rates. On average, second-year wheat biomass took up 49% of the inorganic N remaining in organically fertilized soil after sugarbeet harvest. Applying compost or manure at greater than optimum rates for sugarbeet may increase second-year wheat yield but increase N losses as well.

Abbreviations CNS, carbon–nitrogen–sulfur  相似文献   

7.
Abstract. Knowledge of changes in soil organic matter (SOM) fractions resulting from agricultural practice is important for decision‐making at farm level because of the contrasting effects of different SOM fractions on soils. A long‐term trial sited under Sudano‐Sahelian conditions was used to assess the effect of organic and inorganic fertilization on SOM fractions and sorghum performance. Sorghum straw and kraal manure were applied annually at 10 t ha?1, with and without urea at 60 kg N ha?1. The other treatments included fallowing, a control (no fertilization), and inorganic fertilization only (urea, 60 kg N ha?1). Fallowing gave significantly larger soil organic carbon and nitrogen (N) levels than any other treatment. Total soil SOM and N concentrations increased in the following order: urea only < straw < control < straw+urea < manure with or without urea < fallow. Farming had an adverse effect on SOM and N status; however, this mostly affected the fraction of SOM >0.053 mm (particulate organic matter, POM). The POM concentrations in the control, straw and urea‐only treatments were about one‐half of the POM concentrations in the fallow treatment. POM concentrations increased in the following order: urea only < control < straw with or without urea < manure with or without urea < fallow. The fraction of SOM <0.053 mm (fine organic matter, FOM) was greater than POM in all plots except in fallow and manure+urea plots. Total N concentration followed the same trend as SOM, but cultivation led to a decline in both POM‐N and FOM‐N. Crop yield was greatest in the manure plots and lowest in the straw, control and urea‐only plots. Results indicate that under Sudano‐Sahelian conditions, SOM, POM and FOM fractions and crop performance were better maintained using organic materials with a low C/N ratio (manure) than with organic material with a high C/N ratio (straw). Urea improved the effect of straw on crop yield and SOM concentration.  相似文献   

8.
Based on experiments conducted during 1988–2009 on rainfed pearl millet/sorghum with 9 treatments in Vertisols, an efficient treatment for sustainable productivity is identified. Twenty kg of nitrogen (N) from farmyard manure (FYM) + 20 kg N (urea) + 10 kg phosphorus (P) ha?1 in pearl millet and 40 kg N (urea) + 20 kg P + 25 kg zinc sulfate (ZnSO4) ha?1 in sorghum gave maximum yield and rainwater-use efficiency, whereas 20 kg N (FYM) + 20 kg (urea) + 10 kg P ha?1 in pearl millet and 40 kg (urea) + 20 kg P ha?1 in sorghum and gave maximum soil N, P, and potassium (K) over years. The regression model of 20 kg N (crop residue) + 20 kg N (urea) + 10 kg P ha?1 gave maximum R2 for predicting sorghum equivalent yield separately through precipitation and soil variables, whereas 20 kg N (FYM) + 20 kg N (urea) + 10 kg P ha?1 gave maximum R2 under combined model of both variables. Treatment of 20 kg N (FYM) + 20 kg N (urea) + 10 kg P ha?1 was superior for attaining maximum sorghum equivalent yield of 1062 kg ha?1, net returns of Rs. 4805 ha?1, benefit/cost (BC) ratio of 1.50, and 127 kg ha?1 of soil N, 10.3 kg ha?1 of soil P, and 386 kg ha?1 of soil K over years.  相似文献   

9.
A field experiment was conducted during the kharif season of the crop year 2001 at the Indian Agricultural Research Institute, New Delhi, to study the comparative effects of organic and conventional farming on scented rice. Grain yield of rice increased significantly with increasing rate of fertilizer application only up to 60?kg N?+?13?kg P?+?17?kg K ha???1. The effect of 10 t ha???1 farmyard manure (FYM) was found to be similar to 60?kg N?+?13?kg P?+?17?kg K ha???1, whereas the effect of Sesbania green manuring (SGM) was similar to 120?kg N?+?26?kg P?+?34?kg K ha???1. Inoculation of BGA (Blue green algae) with FYM or SGM had no additional advantage over FYM or SGM alone. The highest yield (5.2 t/ha) of rice was obtained when FYM?+?SGM?+?BGA?+?PSB (Pseudomonas striata) were applied together. The yield obtained with this combination was significantly more than that obtained with 180?kg N?+?39?kg P?+?51?kg K ha???1. A similar trend was observed in N, P, and K uptake of rice. Inorganic nutrients had no significant effect on grain quality parameters like head rice recovery (HRR), kernel length (KL), kernel breadth (KB) and KL?:?KB ratio, whereas organic manures and biofertilizers resulted in an increase in HRR, KL and KL?:?KB ratio. A combination of FYM?+?SGM?+?BGA?+?PSB also resulted in highest organic C and available N content in soil and thus holds a promise for sustainable production.  相似文献   

10.
A long-term field experiment was conducted in Vertisols of Solapur (Maharashtra, India) to assess the effect of the integrated use of nutrients on yield, soil properties, and nutrient balance in post-monsoon sorghum. The highest crop yield (1.19 Mg ha?1) and available nutrients (308, 14.9, and 814 kg ha?1 nitrogen (N), phosphorus (P), and potassium (K), respectively) were recorded in the treatment of 25 kg N sorghum crop residue (CR) + 25 kg N Leucaena clippings (LCs), 25 kg N (CR) + 25 kg N (urea), 25 kg N farmyard manure + 25 kg N (urea), and 25 kg N (CR) + 25 kg N (LC), respectively. Most of the nutrients were depleted except K and Ca. The response ratio for N (16 kg kg?1) and partial factor productivity (33 kg kg?1) were considerably higher in the 25 kg N (CR) + 25 kg N (LC) treatment. Conjunctive use of organic ?and chemical fertilizers helped in reducing the nutrient losses and improved their use efficiency and yield sustainability.  相似文献   

11.
The effects of carbonized chicken manure (CCM) on the growth, nodulation, yield, nitrogen (N) and phosphorus (P) contents of four grain legumes (soybean, cowpea, common bean and adzuki bean) were evaluated in a greenhouse experiment. Carbonized chicken manure produced from chicken manure dried in a furnace at 450°C was used in this experiment. The manure was incorporated into the sandy loam soil of each grain legume at two rates (0 kg N ha?1 and 100 kg N ha?1) three weeks before sowing. Growth, nodulation and total biomass N and P were evaluated at peak flowering stage of growth. The CCM showed positive effects on nodule number and weight of soybean and cowpea while it depressed nodule number in adzuki bean. Biomass total N content of soybean and cowpea increased with CCM supply while it decreased in adzuki bean. Biomass and seed total P content of soybean, cowpea and adzuki bean all increased in response to CCM application. Soybean and cowpea seed yields increased by 27% and 43% respectively in response to CCM supply. There was a strong positive correlation between seed P content and seed yield of soybean which indicates the importance of elemental P to soybean seed yield. No such phenomenon was observed in adzuki bean. A strong positive correlation was also observed between seed total N content and seed yield of the grain legumes. The results indicate that although common bean had the highest biomass total P content at peak flowering stage both vegetative and reproductive growth were poor due to the unsuitably high day/night temperatures in the greenhouse. Application of CCM slightly depressed yield of adzuki bean due to the reduction in the number of pods per pot and the 100 seed weight. This study shows that CCM is a good source of N and P for the growth, nodulation and yield of some grain legumes particularly soybean and cowpea.  相似文献   

12.
Grains of triticale are one of the feedstocks suitable for bioethanol production because they are characterised by high starch and low protein contents. In the present study, spring and winter triticale were comparatively studied to evaluate the influence of N fertilisation intensity on the productivity and bioethanol yield, as well as to assess the relationship between the meteorological factors and ethanol yield. Six treatments of N – 0, 60, 90, 120, 150, and 180?kg?ha?1 were compared in spring triticale and in winter triticale crops. The analysis of variance showed that nitrogen level (factor A), year (factor B) and their interaction (A × B) significantly (P?≤?.01) influenced grain yield, starch yield and bioethanol yield of both spring and winter triticale. Fertilisation was the main factor explaining 47.6% and 41.0% of the total variability of bioethanol yield of spring and winter triticale, respectively. Nitrogen fertiliser rates 120–180?kg?ha?1 resulted in maximum bioethanol yield of spring triticale (2417–2480?l?ha?1) and winter triticale (4311–4420?l?ha?1). Bioethanol conversion efficiency of nitrogen-fertilised spring and winter triticale was similar 492?l?t?1 and 508?l??1, respectively. Meteorological factors had a greater impact on grain productivity and bioethanol yield for winter triticale than for spring triticale. Both seasonal types of triticale could be good feedstocks for bioethanol production in the areas with congenial weather conditions for their cultivation.  相似文献   

13.
Abstract

Blending polymer-sulfur coated urea (PSCU) and conventional urea (U) for maize (Zea mays L.) fertilization can supply nitrogen (N) during the crop cycle with a single application. Proper placement of PSCU?+?U (0.15?m below and 0.1?m to the side of seed row) in band application at sowing is necessary to reduce salt stress that can decrease dry weight (DU) and N uptake (NU) of maize plant compromising maize yield. It is not clear the proper N rate in the proper placement for band application of PSCU?+?U at maize sowing to avoid salt stress. In the current literature, reduction of N rates are being recommended using PSCU?+?U without consider the probably salt stress provided by high rates of PSCU?+?U. DW and NU in maize plant as well as soil pH and electrical conductivity (EC) were evaluated in a greenhouse pot trial. N treatments were equivalent to 0, 90, 180, 360 and 540?kg N ha?1 applied incorporated in band in two contrasting soils (Rhodic Eutrustox and Typic Haplustox) using 70%PSCU + 30%U. At V10 (vegetative leaf stage 10), DW and NU of maize aerial part had quadratic behavior in response to increase N rates in the Typic Haplustox soil. In the Rhodic Eutrustox was not observed known behavior for DW and NU in response to increase N rates. Soil pH and EC was higher in the fertilizer row than sowing row. A N rate above of 180?kg N ha?1 using 70%PSCU + 30%U incorporated in bands can reduce DW and NU in early maize plant growth associated with salt concentration of N fertilizer in a Typic Haplustox soil, which could compromise maize yield.  相似文献   

14.
Field experiments were conducted over 2 years with the hypothesis that farmyard manure (FYM), soybean residue (SR) as sole and/or in combination with urea under different tillage practices has similar effects on crop nitrogen (N) status and accumulation of dry matter (DM). Conventional ploughed plots had higher DM than other. Post anthesis accumulation of DM for minimum tillage (MT) was 4% higher than DT. Incorporation of 20 tons FYM ha?1 combined with 30 or 60 kg ha?1 had higher DM and N partitioned to leaves, stem, and spike than control. Leaves accumulated more DM at anthesis stage than other, whereas stem and spike at maturity than earlier stages. Fertilized plots had higher DM and N redistribution efficiency than control. However, N remobilization increased linearly with increasing DM accumulation (r2 = 22%). It was concluded that FYM coupled with N under MT showed marked variations for DM partition and N status in wheat than other treatments.  相似文献   

15.
ABSTRACT

Due to elevating costs of N fertilizer and growing apprehensions about nitrate, experiments evaluating nitrogen agronomic efficiency (NAE) is becoming increasingly important in crop production. NAE and seed yield potentiality of three cultivars of sesame (Shandwel–1, Giza–32 and Sohag–1) were evaluated under four N applications (0, 72, 108, and 144 kg N ha?1) in a field experiment. Results showed that Sohag–1 recorded the highest values of yield and yields traits surpassing the other two cultivars. Sesame plants received 144 or 108 kg N ha?1 produced the highest seed yield. In plots fertilized by 108 or 144 kg N ha?1, Sohag–1 was the potent cultivar for recording higher seed yield. N addition more or less than 108 kg N ha?1 caused suppression in NAE. Sohag–1 was the most effective and responsive cultivar in N use being exceeded the averages of each seed yield at zero N rate and seed yield response index (SYRI).  相似文献   

16.
ABSTRACT

Uncertainties exist about the importance of rhizobia inoculant and starter nitrogen (N) application in dry pea (Pisum sativum L.) production. Three field experiments were conducted to evaluate how rhizobia inoculant and starter N fertilizer affect pea seed yield and protein concentration in a semi-arid environment in central Montana. Commercial rhizobia inoculant was mixed with seed prior to planting at the manufacturer’s recommended rate. Starter N fertilizers were applied into the same furrow as seed at 0, 22, 44 and 88 kg ha?1 as urea, slow-release polymer-coated N fertilizer (ESN), and a combination of both. The application of rhizobia inoculant had no or a very small beneficial effect on pea yield in lands with a previous history of peas. In a land without pea history, application of rhizobia increased pea seed yield by 16%. The positive effect of starter N was only pronounced when initial soil N was low (≤ 10 kg ha?1 nitrate-nitrogen), which increased net return by up to US$ 42 ha?1. In this condition, application of slow-release N outperformed urea. However, application of starter N (especially with urea) had a negative effect on pea establishment, vigor and seed yield when soil initial N was high (≥ 44 kg ha?1 NO3-N). The results indicate that the rate, placement and form of the starter N must be optimized to benefit pea yield and protein without detrimental effects on germination and nodulation. Moreover, application of starter N must be guided by the soil nitrate content.  相似文献   

17.
Long-term effects of the different combinations of nutrient-management treatments were studied on crop yields of sorghum + cowpea in rotation with cotton + black gram. The effects of rainfall, soil temperature, and evaporation on the status of soil fertility and productivity of crops were also modeled and evaluated using a multivariate regression technique. The study was conducted on a permanent experimental site of rain-fed semi-arid Vertisol at the All-India Coordinated Research Project on Dryland Agriculture, Kovilpatti Centre, India, during 1995 to 2007 using 13 combinations of nutrient-management treatments. Application of 20 kg nitrogen (N) (urea) + 20 kg N [farmyard manure (FYM)] + 20 kg phosphorus (P) ha?1 gave the greatest mean grain yield (2146 kg ha?1) of sorghum and the fourth greatest mean yield (76 kg ha?1) of cowpea under sorghum + cowpea system. The same treatment maintained the greatest mean yield of cotton (546 kg ha?1) and black gram (236 kg ha?1) under a cotton + cowpea system. When soil fertility was monitored, this treatment maintained the greatest mean soil organic carbon (4.4 g kg?1), available soil P (10.9 kg ha?1), and available soil potassium (K) (411 kg ha?1), and the second greatest level of mean available soil N (135 kg ha?1) after the 13-year study. The treatments differed significantly from each other in influencing soil organic carbon (C); available soil N, P, and K; and yield of crops attained under sorghum + cowpea and cotton + black gram rotations. Soil temperature at different soil depths at 07:20 h and rainfall had a significant influence on the status of soil organic C. Based on the prediction models developed between long-term yield and soil fertility variables, 20 kg N (urea) + 20 kg N (FYM) + 20 kg P ha?1 could be prescribed for sorghum + cowpea, and 20 kg N (urea) + 20 kg N (FYM) could be prescribed for cotton + black gram. These combinations of treatments would provide a sustainable yield in the range of 1681 to 2146 kg ha?1 of sorghum, 74 to 76 kg ha?1 of cowpea, 486 to 546 kg ha?1 of cotton, and 180 to 236 kg ha?1 of black gram over the years. Beside assuring greater yields, these soil and nutrient management options would also help in maintaining maximum soil organic C of 3.8 to 4.4 g kg?1 soil, available N of 126 to 135 kg ha?1, available soil P of 8.9 to 10.9 kg ha?1, and available soil K of 392 to 411 kg ha?1 over the years. These prediction models for crop yields and fertility status can help us to understand the quantitative relationships between crop yields and nutrients status in soil. Because black gram is unsustainable, as an alternative, sorghum + cowpea could be rotated with cotton for attaining maximum productivity, assuring sustainability, and maintaining soil fertility on rain-fed semi-arid Vertisol soils.  相似文献   

18.
The objective of this study was to evaluate the effects of organic and inorganic fertilizers on the yield and quality of sugar beet genotypes (Beta vulgaris L.). Therefore, a field trial was carried out in Peshawar, Pakistan, during the winters in 2012–2013. The field experiment was conducted in a randomized complete block design with split plots, having three replications. Fertilizer treatments (control, composted manure Higo Organic Plus at 5 t ha?1, Maxicrop Sea Gold seaweed extract at 5 L ha?1, farm yard manure at 10 t ha?1, inorganic nitrogen–phosphorus (NP) at 90:60 kg ha?1, NP at 120:90 kg ha?1 and NP at 150:120 kg ha?1) were allotted to main plots, while genotypes (Sandrina, Serenada and Kawe Terma) were allotted to the sub-plots. Plots treated with the application of NP at 120:90 kg ha?1 produced the highest beet yield (76.4 t ha?1) and sugar yield (11.1 t ha?1), and had the second highest polarizable sugar content (14.52%) and more economic return (Rs. 553,000 per hectare) as compared to control plots. Sugar beet genotype Serenada had significantly higher beet yield (55.5 t ha?1) and sugar yield (7.9 t ha?1) and a higher economic return (Rs. 380,000 per hectare) than the other genotypes. Sugar beet genotype Serenada supplied with NP at 120:90 kg ha?1is recommended for the general cultivation in the agro-climatic conditions of Peshawar valley.  相似文献   

19.
Effects of stabilized urea fertilizers [Alzon 46 (A) and UREAstabil (US)] on soil microbiological and chemical parameters and also on grain yield, 1000-grain weight, and oil content were tested in a precise field study on Luvisol in 2010–2012. Winter rapeseed (Brassica napus L. cv. Californium) was fertilized both in autumn [45 kg nitrogen (N) ha?1] and in spring (155 kg N ha?1) with A [urea with DCD (dicyandiamide) plus pyrrodiazole (1,2,4-1H-triazole)], US {urea with NBPT [N-(n-butyl)-thiophosphoric acid triamide]}, and conventional N fertilizers (pure urea, calcium ammonium nitrate). Eleven parameters were used to evaluate the soil status: microbial biomass carbon (C; microwave method [MW]), dehydrogenase activity, arylsulfatase activity, available organic carbon, electroconductivity, Corg (MW method), and pH (in water, H2O). None of the 11 parameters demonstrated significant difference between control, conventional N fertilizers, and stabilized urea fertilizers. The greatest yield significantly different from the control (zero kg N ha?1; 2598 ± 881 kg ha?1) was found for both stabilized urea fertilizers: A (200 kg N ha?1; 3772 ± 759 kg ha?1) and US (200 kg N ha?1; 3764 ± 625 kg ha?1). The control achieved the greatest oil content (46.0 ± 1.2%), which was significantly different from all N-fertilized variants, and also the greatest 1000-grain weight (5.62 ± 0.62 g).  相似文献   

20.
Singh  R. K.  Chaudhary  R. S.  Somasundaram  J.  Sinha  N. K.  Mohanty  M.  Hati  K. M.  Rashmi  I.  Patra  A. K.  Chaudhari  S. K.  Lal  Rattan 《Journal of Soils and Sediments》2020,20(2):609-620
Purpose

Accelerated erosion removes fertile top soil along with nutrients through runoff and sediments, eventually affecting crop productivity and land degradation. However, scanty information is available on soil and nutrient losses under different crop covers in a vertisol of Central India. Thus, a field experiment was conducted for 4 years (2010–2013) to study the effect of different crop cover combinations on soil and nutrient losses through runoff in a vertisol.

Materials and methods

Very limited information is available on runoff, soil, and nutrient losses under different vegetative covers in a rainfed vertisol. Thus, the hypothesis of the study was to evaluate if different crop cover combinations would have greater impact on reducing soil and nutrient losses compared to control plots in a vertisol.

This experiment consisted of seven treatment combinations of crop covers namely soybean (Glycine max) (CC1), maize (Zea mays) (CC2), pigeon pea (Cajanus cajan) (CC3), soybean (Glycine max)?+?maize (Zea mays) ??1:1 (CC4), soybean (Glycine ma x))?+?pigeon pea (Cajanus cajan) ?2:1 (CC5), maize (Zea mays)?+?pigeon pea (Cajanus cajan) ??1:1 (CC6), and cultivated fallow (CC7). The plot size was 10?×?5 m with 1% slope, and runoff and soil loss were measured using multi-slot devisor. All treatments were arranged in a randomized block design with three replications.

Results and discussion

Results demonstrated that the runoff and soil loss were significantly (p?<?0.05) higher (289 mm and 3.92 Mg ha?1) under cultivated fallow than those in cropped plots. Among various crop covers, sole pigeon pea (CC3) recorded significantly higher runoff and soil loss (257 mm and 3.16 Mg ha?1) followed by that under sole maize (CC2) (235 mm and 2.85 Mg ha?1) and the intercrops were in the order of maize?+?pigeon pea (211 mm and 2.47 Mg ha?1) followed by soybean?+?maize (202 mm and 2.38 Mg ha?1), and soybean?+?pigeon pea (195 mm and 2.15 Mg ha?1). The lowest runoff and soil loss were recorded under soybean sole crop (194 mm and 2.27 Mg ha?1). The data on nutrient losses indicated that the highest losses of soil organic carbon (SOC) (25.83 kg ha?1), total nitrogen (N), phosphorus (P), and potassium (K) (7.76, 0.96, 32.5 kg ha?1) were recorded in cultivated fallow (CC7) as compared to those from sole and intercrop treatments. However, sole soybean and its intercrops recorded the minimum losses of SOC and total N, P, and K, whereas the maximum losses of nutrients were recorded under pigeon pea (CC3). The system productivity in terms of soybean grain equivalent yield (SGEY) was higher (p?<?0.05) from maize?+?pigeon pea (3358 kg ha?1) followed by that for soybean?+?pigeon pea (2191 kg ha?1) as compared to sole soybean. Therefore, maize?+?pigeon pea (1:1) intercropping is the promising option in reducing runoff, soil-nutrient losses, and enhancing crop productivity in the hot sub-humid eco-region.

Conclusions

Study results highlight the need for maintenance of suitable vegetative cover as of great significance to diffusing the erosive energy of heavy rains and also safe guarding the soil resource from degradation by water erosion in vertisols.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号