首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 888 毫秒
1.
Different methods of fertilizer application-drip fertigation and conventional fertilizer application under drip, surface irrigation, and rainfed conditions were evaluated during 2009–2012 at Krishi Vigyan Kendra, Shimla, India. The experiment was arranged in randomized block design (RBD), replicated thrice. Results suggest that fertigation significantly increased growth parameters over conventional methods. Fruit yield was significantly higher under fertigation (13.7 t ha?1) over conventional fertilizer application with drip (11.6 t ha?1), surface irrigation (10.6 t ha?1), and under rainfed (8.6 t ha?1). Fruit quality parameters were also superior under fertigation. Fertigation maintained higher available nitrogen (N) and potassium (K) content in 0-30 cm soil layers. Available phosphorus (P) was higher in 0-20 cm soil depths in all the treatments. Fertigation with 80 and 100 percent recommended NPK dose registered statistically comparable results. In addition to higher productivity, fertigation resulted in 20 percent fertilizer savings over drip irrigation and 20 percent fertilizer besides 40 percent water savings over surface irrigation.  相似文献   

2.
ABSTRACT

The present investigation was carried out to study the effect of irrigation intervals and fertigation on growth, yield, and quality of peanut as well as an account of fertilizer and water savings under drip irrigation combined with fertigation. Pod and haulm yields and economics of peanut with application of irrigation water at I1, i.e. 4 day interval through drip (10 day in surface irrigation) did not differ significantly compared with I2, i.e. 6 day interval through drip (15 day in surface irrigation). However, significantly higher kernel and oil yields were obtained at I1 and also recorded higher partial factor productivity (PFP). Our study showed that drip irrigation saved 37.2% irrigation water over surface method. Fertigation at 75% Nitrogen & potassium (NK) through drip with 75% P in soil (F3) significantly improved pod, haulm, kernel, and oil yields by 14.3%, 11.5%, 13.9%, and 12.3%, respectively, while net returns increased by INR 13,499 ha?1 over 50% NK through drip with 50% P in soil (F2) and at par with others. Fertigation at 50–100% NK with 50?100% P in soil (F2 to F4) could save 36.4–37.3% irrigation water over F1. Maximum PFP was recorded under F2.

Abbreviations: N: Nitrogen; P: phosphorus; K: potassium; M: million  相似文献   

3.
Field studies were conducted during 2008–2009 and 2009–2010 at the Gangetic alluvial plains of West Bengal, India, to assess the different levels of drip fertigation at variable evaporation replenishment compared to surface irrigation and conventional soil fertilization on yield, water use efficiency, and nutrients availability in plant and ratoon crop of banana. The experiment was laid in an Augmented Factorial Complete Block Design with three replications having three drip irrigation schedules at 50%, 60%, and 70% of cumulative pan evaporation (CPE) and three drip fertigation schedules at 50%, 60%, and 80% of recommended nitrogen, phosphorus, and potassium (NPK) fertilizers with inclusion of conventional surface irrigation at 100% of IW/CPE. The results showed that fruit yield of plant and ratoon crop increased progressively with increasing levels of irrigation water (up to 60% CPE) and NPK fertigation through the drip system. However, maximum fruit yield and water use efficiency of crops was obtained with drip irrigation at 60% CPE with NPK fertigation at 80% of recommended dose. Drip irrigation, as a whole, registered higher fruit yields and water use efficiency with savings of 38.3–41.5% of water compared to surface irrigation. Availability of N, P, and K in soil at vegetative, shooting, and harvesting stages for plant and ratoon crop consistently increased with increasing rate of irrigation water and NPK fertigation through the drip system. Higher availability of macronutrients in soil was recorded with drip irrigation at 70% CPE with 80% of recommended drip NPK fertigation. Overall drip fertigation system improved the available plant nutrients in the soil as compared with traditional surface irrigation.  相似文献   

4.
ABSTRACT

In the scheduling of nutrient supply programs, analysis of plant nutrient status has been found to be useful to prevent the deficiency or toxic effects of nutrients in any horticultural crop. So the present study was framed to assess the foliage nutrient content and vegetative growth under different irrigation and fertigation combination modules. Recently apple (Malus ×domestica) orchards in the state Himachal Pradesh of India have converted from the traditional royal delicious orchard at 6 × 6 m spacing with rainfed/basin irrigation to early spur varieties on dwarfing rootstock with drip irrigation, both with or without fertigation. An experimental field trial was started at the end of 2018 in a ‘Super Chief’/MM106 orchard at an experimental farm of the department of Soil Science & Water Management, Dr. YS Parmar University of Horticulture and Forestry, Nauni, Solan (HP). A factorial experiment with 16 treatment combinations of 4 irrigation levels viz. I1 – drip irrigation at 100% ETc, I2 – drip irrigation at 80% ETc, I3 – drip irrigation at 60% ETc, I4 – conventional irrigation, and four fertigation levels viz. F0 – No fertilizer application (absolute control), F1 – 100% of AD (NPK), F2 – 75% of AD (NPK) and F3 – 50% of AD (NPK) were replicated thrice with 3 plants in each replication. Vegetative growth parameters and leaf nutrient contents were affected by both fertilization and water rate. Irrigation and nutrient levels and their interactions exhibited significant effect on leaf N (3.10%), P (0.28%), K (1.77%), and S (0.44%) contents. Significantly maximum contents were observed in the irrigation level I1 (DI at 100% ETc). Among fertigation level, F1 [100% AD (NPK)] recorded highest contents of leaf N (3.17%), P (0.29%), K (1.80%), S (0.46%). Interaction I1F1 registered maximum leaf N (3.36%), P (0.36%), K (1.92%) and S (0.63%).

With an increase in the water volume and an increasing dose of NPK, vegetative growth parameters, i.e., tree height, plant spread, tree volume, trunk girth, and annual extension growth were noted to increase proportionately. Treatment DI at 100% ETc (I1), increased the tree height by 9.41, plant spread (EW by 32.0, NS by 16.3), tree volume by 61.36, trunk girth by 8.05, and annual extension growth by 14.22% over conventional irrigation (I4). Drip fertigated trees with F1 [100% AD (NPK)] reported the highest growth parameters. The results of two years apple trial suggested a positive effect of fertigation on enhanced effectiveness of fertilization and improved foliage nutrient content and vegetative growth.  相似文献   

5.
Crop productivity and nutrient use are mainly water restricted in semi-arid regions. This study was conducted to find out whether the onion seed crop productivity could be elevated through drip fertigation. The effects of irrigation and fertigation levels on yield, yield components, quality, and nutrient use of onion seed crop (Allium cepa L.) were investigated at Mahatma Phule Krishi Vidyapeeth, Rahuri, Maharashtra, western India on a sandy clay loam soil. Irrigation water applied at evapotranspiration (ETc) levels at 80% (I1), 90% (I2), and 100% (I3), whereas drip fertigation levels at 60%, 80%, 100%, and 120% of recommended dose [120:60:60 nitrogen, phosphorus, potassium (NPK) kg/ha] were investigated. Three-year experiment results showed no significant differences in number of seed per umbel, seed yield per umbel per plant, seed and straw yield per hectare from the comparison between 100% ETc and 90% ETc. In fertigation, 120% and 100% levels gave significantly higher values of yield components and seed yield than the 80% and 60% levels. The quality parameters decreased with decrease in ETc, but increased with increase in fertigation levels. Fertilizer-use efficiency (FUE) was highest in 60% fertigation and then declined with the increase in fertigation levels. Irrigation at 100% ETc and fertigation at 120% resulted in higher nutrient use, but the difference with 90% ETc and 100% fertigation was non-significant. The 90% ETc and 100% fertigation dose (120:60:60 NPK kg/ha) appears a useful practice to increase onion seed productivity under the semi-arid climate of western India.  相似文献   

6.
The long-term control of fertilizer pollution in the Danjiangkou Reservoir is an important task, and promoting good fertilizer pollution control methods is necessary to conserve water quality. A 3-year experiment was conducted to evaluate the fertilizer losses, economic benefits, and feasibility of different nutrient and water management methods in the area. The experiment included the following treatments: (1) local recommended fertilizer dose (450, 144, and 189 kg ha?1 y?1 of N, P2O5, and K2O) under rain-fed conditions (CK); (2) chicken manure at 7500 kg ha–1 without drip irrigation (OF); (3) same dosage of treatment OF but with drip irrigation (OFD); and (4) drip fertigation with 30% of the fertilization dose of CK (DF). The results showed that organic fertilizer and drip fertigation treatments reduced total N (TN) and total P (TP) losses compared to CK due to considerably less amounts of N and P nutrient inputs. Total N runoff losses, and TN and TP concentrations in leaching water did not differ significantly among treatments OF, OFD, and DF. Net income among the CK, OF, and OFD treatments did not differ significantly. Treatment DF resulted in 19.5% and 13.8% more net income than CK and OFD, respectively. Such results provided guidance for promotion to maximize benefits and minimize environmental impacts.  相似文献   

7.
Studies were conducted to evaluate the effect of nitrogen, phosphorus and potassium (NPK) fertigation through drip on nutrient distribution and productivity of capsicum. The experiment was set up in Randomized Block Design with three levels of fertigation (100, 80 and 60% of recommended NPK) without humic acid (sole fertigation) and with humic acid (combined fertigation). Combined fertigation registered lower available N and K and higher available P in deeper soil layers. Fruit yield was 17–27 percent higher under combined fertigation over sole fertigation. Fertilizer use efficiency was higher in combined fertigation. Significantly higher N, P and K uptake was also observed under combined fertigation. Further, growth and yield of capsicum were statistically at par between 100 percent (sole fertigation) and 80 percent recommended NPK dose (combined fertigation). The results, therefore, ensures the partial replacement of chemical fertilizers with more economic and environmentally safe organic materials when applied through drip.  相似文献   

8.
In the present study, seven fertilizer treatments [T1, 50% NPK; T2, 100% NPK (Recommended dose of fertilizer, 200–65.4–124.5 kg N-P-K ha?1); T3, 150% NPK; T4, 100% PK; T5, 100% NK; T6, 100% NP and T7, control (zero NPK)] with four replications were assessed in the new alluvial soil zone (Entisols) of West Bengal, India. The objectives of the study were to generate information on potato productivity, profitability, indigenous nutrient supply and net gain/loss of NPK in post-harvest soil. Plants grown under higher NPK supply resulted in higher tuber yield and there were significant (p ≤ 0.05) reductions in total yield with nutrient omissions. Nutrient?limited yields were 19.78, 2.83 and 1.77 t ha?1 for N, P and K, considering total tuber yield (28.24 t ha?1) obtained under 100% NPK as targeted yield. Indigenous nutrient supply of N, P and K were estimated at 24.1, 22.34 and 110.22 kg ha?1, respectively that indicates higher K?supplying capacity of experimental soil as compared to N and P. Net income (US$1349 ha?1 year?1) and B:C ratio (1.91) was highest with 100% NPK, and further addition of NPK (150%) resulted in decrease on net return (US$1193 ha?1 year?1) and B:C ratio (1.73).  相似文献   

9.
A study was carried out in a split plot design in three replicates during 2016–17 to monitor the performance of soilless cucumbers in relation to differential fertigation. The treatments included fertigation levels viz. 100.0% (F1), 85.0% (F2) and 70.0% (F3) in main plots and varieties viz. Kafka (V1), Multistar (V2) and PBRK-4 (V3) in sub plots. Fertigation levels and varieties significantly affected the fruit yield being highest and lowest values for F1V2 and F3V3, respectively. The average fruit yield with and without fruit thinning was obtained in the range of 2.4–3.5?kg plant?1 and 3.3–4.4?kg plant?1, respectively. The crop water use efficiency (CWUE) was computed to be in the range of 60.4–86.3?kg m?3 and 84.6–108.9?kg m?3 with and without fruit thinning. Overall, the soilless cucumber cultivation in relation to differential fertigation under naturally ventilated greenhouse conditions proved to be a success in terms of plant growth, yield, quality and economic viability.  相似文献   

10.
水肥一体化技术对不同生态区果园苹果生产的影响   总被引:11,自引:0,他引:11  
为探究水肥一体化技术对陕西省不同生态区苹果生产的影响,分别选取渭北旱塬区和关中平原区典型‘红富士’苹果园,研究了相同肥料用量的NPK传统施肥[NPK(C)]、NPK水肥[NPK(F)]和肥料用量减半的NPK水肥[1/2NPK(F)]对苹果产量、品质、肥料利用效率、果实养分吸收和果园经济效益的影响。结果表明,因不同生态区环境条件和果园自身土壤和肥力等存在差异,水肥一体化技术对苹果生产的影响也不同。渭北旱塬区果园,与NPK(C)相比,NPK(F)处理苹果增产13.0%,果实硬度增加10.6%,糖酸比提高19.1%,化肥偏生产力(PFP)由18.2 kg·kg?1提高至36.3 kg·kg?1,果实N、P和K养分吸收量分别增加36.0%、75.3%和44.8%;1/2NPK(F)处理对苹果生产的影响基本不显著。关中平原区果园,与NPK(C)相比,1/2NPK(F)使苹果增产26.2%,糖酸比提高16.9%,PFP从27.2 kg·kg?1提高至68.7 kg·kg?1,果实N、P和K养分吸收量分别增加41.8%、98.9%和58.9%;然而,NPK(F)处理苹果仅增产14.1%,果实养分吸收无显著增加,品质亦无明显改善。经济收益方面,在相同肥料用量下,采用水肥一体化技术可使渭北旱塬区和关中平原区果园分别增收1.55万元·hm?2和3.65万元·hm?2;当肥料用量减半时,收益增加分别为0.21万元·hm?2和7.28万元·hm?2。总体而言,在陕西渭北旱塬区和关中平原区果园采用水肥一体化技术均能显著提高苹果产量和改善品质,但其效果存在明显差异,实践中需因地制宜,根据果园实际情况,采用适宜的水肥用量以求达到高产、高效和优质的目标。  相似文献   

11.
ABSTRACT

This study was carried out in 2001–2003 at the Experimental Orchard of the Research Institute of Pomology and Floriculture, Skierniewice, Poland, on mature ‘Jonagold’ apple (Malus domestica Borkh.) trees (M.26 EMLA) planted at 4 × 2.5 m spacing on a sandy loam soil with low boron (B) availability. The trees were drip fertigated with B at rates of 0.5, 1, or 1.5 g tree? 1 over 4 weeks at 3-d intervals beginning at the stage of bud break. Plants that did not receive B via drip irrigation system served as a control. Drip B fertigation effectively increased water-soluble B concentrations in the soil and the status of this microelement in leaves of current season shoots. However, the B fertigation had no effect on tree vigor. In 2 out of 3 years, the drip B fertigation improved flower B status, fruit set, and yield. The efficiency of the drip B fertigation was not influenced by B rate. In all growing seasons, the drip B fertigation increased B level and a soluble solids concentration in the fruit flesh, but had no effect on mean fruit weight, color, titratable acidity, and fruit firmness. It was concluded that on coarse-textured soils with low B availability, the drip B fertigation of mature apple trees in high-density orchards can be recommended from the stage of bud burst to petal fall at a rate of 0.5 g tree? 1.  相似文献   

12.
The intensive winter wheat (Triticum aestivum L.)–summer maize (Zea mays L.) cropping systems in the North China Plain (NCP) rely on the heavy use of mineral nitrogen (N) fertilizers. As the fertigated area of wheat and maize in the NCP has grown rapidly during recent years, developing N management strategies is required for sustainable wheat and maize production. Field experiments were conducted in Hebei Province during three consecutive growth seasons in 2012–2015 to assess the influence of different N fertigation rates on N uptake, yield, and nitrogen use efficiency [NUE: recovery efficiency (REN) and agronomic efficiency (AEN)]. Five levels of N application, 0 (FN0), 40 (FN40%), 70 (FN70%), 100 (FN100%), and 130% (FN130%) of the farmer practice rate (FP: 250 kg N ha?1 and 205.5 kg N ha?1 for wheat and maize, respectively), corresponding to 0, 182.2, 318.9, 455.5, and 592.2 kg N ha?1 y?1, respectively, were tested. Nitrogen in the form of urea was dissolved in irrigation water and split into six and four applications for wheat and maize, respectively. In addition, the treatment “drip irrigation + 100% N conventional broadcasting” (DN100%) was also conducted. All treatments were arranged in a randomized complete block design with three replications. The results revealed the significant influence of both N fertigation rate and N application method on grain yield and NUE. Compared to DN100%, FN100% significantly increased the 3‐year averaged N recovery efficiency (REN) by 0.09 kg kg?1 and 0.04 kg kg?1, and the 3‐year averaged N agronomic efficiency (AEN) by 2.43 kg kg?1 and 1.62 kg kg?1 for wheat and maize, respectively. Among N fertigation rates, there was no significant increase in grain yield in response to N applied at a greater rate than 70% of FP due to excess N accumulation in vegetative tissues. Compared to FN70%, FN100%, and FN130%, FN40% increased the REN by 0.17–0.57 kg kg?1 and 0.03–0.34 kg kg?1and the AEN by 4.60–27.56 kg kg?1 and 2.40–10.62 kg kg?1 for wheat and maize, respectively. Based on a linear‐response relationship between the N fertigation rate and grain yield over three rotational periods it can be concluded that recommended N rates under drip fertigation with optimum split applications can be reduced to 46% (114.6 kg N ha?1) and 58% (116.6 kg N ha?1) of FP for wheat and maize, respectively, without negatively affecting grain yield, thereby increasing NUE.  相似文献   

13.
The effects of integrated nutrient management, cultivation method, and variety on root and shoot growth, grain yield and its components of lowland rice under alternate wetting and drying (AWD) irrigation were evaluated. Treatments included were three varieties (Pathumthani 1, RD57, and RD41), three cultivation methods [dry direct seeding, wet direct seeding, and transplanting], and three nutrient combinations [100% NPK (160?kg ha?1), 50% NPK (80?kg ha?1) + 50% FYM (5 t ha?1), and 100% FYM (10 t ha?1)] under AWD. Root dry matter of RD41 and RD57 was reduced by 12–25% at the 100% NPK and 100% FYM compared with the 50% NPK + 50% FYM. Panicle number, panicle length, and 1000-grain weight were higher at the 50% NPK + 50% FYM. Application of the 50% NPK + 50% FYM could be a feasible option under AWD irrigation; however, benefits may vary with varieties and cultivation methods.  相似文献   

14.
A field experiment was conducted for 3 years during 2006–2009 in India to study the effects of plant nutrient recycling through crop residue management, green manuring, and fertility levels on yield attributes, crop productivity, nutrient uptake, and biofertility indicators of soil health in a rice–wheat cropping system. The study revealed that soil microbial biomass carbon (SMBC) and carbon dioxide (CO2) evolution were significantly greatest under crop residue incorporation (CRI) + Sesbania green manuring (SGM) treatment and were found at levels of 364 μg g?1 soil and 1.75 μg g?1 soil h?1, respectively; these were increased significantly by recycling of organic residues. Activities of dehydrogenase and phosphatase enzymes increased significantly after 3 years, with maximum activity under CRI + SGM treatment. The CRI with or without SGM significantly influenced the plant height, number of tillers m?2, number of grains panicle?1 or ear?1, and 1000-grain weight. Mean yield data of rice and wheat revealed that CRI or crop residue burning (CRB) resulted in slightly greater yield over crop residue removal (CRR) treatment. The CRI + SGM treatment again observed significantly greatest grain yields of 7.54 and 5.84 t ha?1 and straw yields of 8.42 and 6.36 t ha?1 in rice and wheat, respectively, over other crop residue management treatments. Total nitrogen (N), phosphorus (P) and potassium (K) uptake in rice–wheat system was greatest with amounts of 206.7, 37.2, and 205.6 kg ha?1, respectively, in CRI + SGM treatment. Fertility levels significantly influenced the rice and wheat yield with greatest grain yields of 6.66 and 5.68 t ha?1 and straw yields of 7.94 and 5.89 t ha?1 in rice and wheat, respectively, with the application of 150% of recommended NPK. Total NPK uptake in rice–wheat system also increased significantly with increase in fertility levels with greatest magnitude by supplying 150% of recommended NPK. Overall, nutrient recycling through incorporation of crop residues and Sesbania green manuring along with inorganics greatly improved the crop productivity, nutrient uptake, and biofertility indicators of soil health with substantial influence on SMBC, CO2 evolution, and dehydrogenase and phosphatase enzyme activities. This indicates that crop residue management along with Sesbania green manuring practice could be a better option for nutrient recycling to sustain the crop productivity and soil health in intensive rice–wheat cropping system in India as well as in similar global agroecological situations, especially in China, Pakistan, and Bangladesh.  相似文献   

15.
不同滴灌施肥模式对棉花产量及养分吸收的影响   总被引:5,自引:1,他引:4  
通过等养分和等成本施肥田间试验,研究不同滴灌施肥模式对棉花产量及养分吸收的影响。试验设4种滴灌施肥模式,分别为常规基施(CK)、常规追施(DCK)、普通滴灌专用肥(F1)和高磷钾滴灌专用肥(F2)。结果表明,在等养分施用条件下,高磷钾滴灌专用肥和普通滴灌专用肥处理的棉花干物质重、养分吸收量和产量均显著高于常规基施处理,但普通滴灌专用肥和常规追施处理差异不大;常规基施处理的氮肥和磷肥的利用率最低,普通滴灌专用肥和常规追施处理的氮肥和磷肥利用率差异不显著,高磷钾滴灌专用肥可显著提高磷肥利用率。在等成本施用条件下,常规追施处理的棉花干物质重、养分吸收量和产量最高,而高磷钾滴灌专用肥、普通滴灌专用肥和常规基施处理无显著差异。因此,滴灌专用肥尤其是高磷钾滴灌专用肥具有较好的应用效果,但是如何降低肥料成本是滴灌专用肥技术面临的重要问题。  相似文献   

16.
Field experiments were conducted on cotton to evaluate the different cotton-based intercropping system along with balanced nutrient management practices on enhancing cotton productivity. Cropping systems have been considered as main plots and nutrient management practices have been considered as subplots. The results showed that cotton + onion system recorded the highest cotton equivalent yield (CEY) of 2052 and 1895 kg ha?1 which was on par with cotton intercropped with dhaincha, which recorded 2010 and 1894 kg of CEY ha?1 in both the seasons. Combined application of 100% recommended NPK with bioinoculants (S5) registered highest CEY in both the seasons. Cotton intercropped with dhaincha (M2) recorded highest uptake of N, P, and K. Among the nutrient management practices, application of 100% recommended NPK with bioinoculants (S5) showed highest uptake of N, P, and K. A similar trend was noticed in the post-harvest soil fertility too and it is significantly higher under cotton + dhaincha and application of 100% recommended NPK with bioinoculants treatment compared to 100% recommend NPK alone. It could be concluded from these results that crop productivity can be improved and soil fertility status can be sustained with integrated plant nutrient management practices.  相似文献   

17.
The effects of drip fertigation of NPK and vermicompost extract (VCE) on soil fertility status of arecanut-only and arecanut-cocoa systems were assessed in a 4-year field study. In arecanut, soil pH was reduced over initial levels. At 0–30 cm deep, fertigation of 75 percent NPK to arecanut only and organic-matter recycling in arecanut + cocoa maintained significantly greater soil organic carbon (SOC) and soil-test phosphorus (P). At the first depth, soil potassium (K) was significantly greater with 75 percent NPK (246 mg kg?1) than other treatments. In cocoa, soil pH varied significantly due to fertigation at both depths. The SOC was reduced due to 75 percent NPK at the first depth. In cocoa, the P availability increased significantly with application of VCE at 20 percent N. Fertigation of 75 percent NPK maintained significantly greater soil K and soil Mg than other treatments. The results suggest that drip fertigation of NPK sustains the soil fertility status in arecanut and cocoa.  相似文献   

18.
ABSTRACT

We studied the effect of integrated nutrient management (INM) combinations on supplement of plant nutrient for quantitative and qualitative fruit production in sapota. Thus, 17 combinations of INM practices were evaluated on fruit yield of sapota and nutrient availability in a Vertisol of Chambal region, India. The results demonstrated that almost all treatment combinations comprised of recommended dose of fertilizer (RDF), i.e. 1,000:500:500 g NPK plant?1 with application of organic and inorganic sources of nutrients had a significant effect on the fruit yield of sapota, soil microbial biomass, NPK content of leaf, fruit and soil over control (T1). Among different treatments, application of 2/3rd part of RDF + 50 kg FYM + 250 g Azospirillum + 250 g Azotobacter plant?1 (T11) significantly enhanced the number of fruits plant?1 (327.88), yield plant?1 (29.03 kg) and yield ha?1 (4.52 t). However, the soil microbial count of fungi (8.89 cfu g?1 soil), bacteria (11.19 cfu g?1 soil) and actinomycetes (5.60 cfu g?1 soil) at fruit harvest was higher under the 2/3 of RDF +10 kg vermicompost + 250 g Azospirillum + 250 g Azotobacter plant?1 (T15). The leaf nitrogen content (N, 2.03%) was higher in T15, while phosphorus (P, 0.28%) and potassium (K, 1.80%) content were higher in T11. It is evident that treatment T11 increased fruit yield by 32% in Sapota cv. Kalipatti compared to control. Therefore, combined application of nutrient sources proved not only beneficial for enhancing fruit yield of sapota but also sustaining soil health in Chambal region of south-eastern Rajasthan.  相似文献   

19.
A drip fertigation system should use low-cost phosphorus fertilizer available in small markets to smallholders such as especially Brazilian tomato growers. A study was conducted in an unheated greenhouse to establish an optimum rate of single superphosphate (SS) to formulate an aqueous solution that can be applied to tomato plants through a low-pressure drip irrigation system. Five rates of SS [18% phosphorus pentoxide (P2O5)] 0, 25, 50, 100, and 200 g·plant?1, were evaluated in a randomized block design with four replications. Each rate was subdivided into 15 equal parts. Each part was dissolved in water (210 mL for each plant) and the mixture left to settle for 24 hours. The supernatant was applied by drip irrigation every week for 15 weeks. The tomato plants were grown in 9 dm3 plastic bags containing fertilized substrate in an unheated greenhouse. The leaf contents of nitrogen (N), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), copper (Cu), and zinc (Zn) were not affected by the treatments. The highest phosphorus (P), manganese (Mn), and iron (Fe) leaf contents were obtained from plants fertilized with SS at 79; 0; 0 g·plant?1, respectively. The marketable tomato fruit yield, measured up to 123 days after transplanting, increased with the increasing SS up to 54 g·plant?1, resulting in a yield of 6.16 kg·plant?1, corresponding to 10.3 kg·m?2. A settled aqueous solution of SS (54 g·210 mL?1 of water) can be applied weekly to tomato plant through a low-pressure drip irrigation system during the plant cycle.  相似文献   

20.
The Mediterranean area has been experiencing an extensive development of intensive horticulture, with a majority of that located in arid and semi-arid regions with limited water resources and poor water quality. One of the most important greenhouse vegetable crops is melon. This article studies the effects of different nitrogen–potassium (N–K) fertilizers applications and two types of irrigation water on yield and nutritional behavior of melon crop Cucumis melo L. (var. cantalupensis Naud. Alpes). The trial was conducted during two cycles under Mediterranean greenhouse conditions, on sandy mulching soil. The experimental design was bifactorial: NK fertigation and water quality, with three nutrition levels and two water qualities [MS with electrical conductivity (EC) = 0.6 dS m?1 and HS with EC = 2.3 dS m?1]. During the first cycle, the fertigation levels were F1 (50% NK), F2 (100% NK), and F3 (125% NK). In the second cycle, the fertigation levels were F2, F4 (125% N and 150% K) and F5 (180% N and 220% K). Treatment F2 was the recommended total doses (220 kg N ha?1 and 355 kg K ha?1). The increase in the NK concentration of the nutritive solution produced a rise in commercial production. The salinity of irrigation water did not affect marketable yield but had an effect on the fruit size, which was compensated for by an increase in the amount of fruit produced. Dry-matter production, N, and K uptake by plant (g m?2) were evaluated in the first and second trials. Salinity and NK nutrition levels significantly affected (P < 0.05) dry matter and N and K uptake by melon plant. Nitrogen and K uptake present interesting correlations with production and with each other, as established by mean regression analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号