首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A field experiment was conducted to assess the effect of the combined use of farmyard manure and inorganic fertilizer on the growth and yield of sorghum and on soil chemical properties in a semi-arid area in northeastern Ethiopia. Twelve treatments comprising factorial combinations of four levels of farmyard manure (0, 5, 10, and 15 t ha?1) and three levels of inorganic fertilizers (0%, 50%, and 100% of the recommended rate) were compared in a randomized complete block design with three replications over a period of six years. The results revealed significant improvements in the growth and yield of sorghum due to the main and interaction effects of farmyard manure and inorganic fertilizer application. The combined application of farmyard manure and inorganic fertilizers increased post-anthesis dry-matter production by 147%–390% and grain yield by 14%–36%. The main effects of farmyard manure and inorganic fertilizers increased stover yield by 8%–21% and 14%–21%, respectively. Farmyard manure application increased total nitrogen (N) uptake by 21%–36%, grain protein yield by 8%–11%, and grain protein concentration by 20%–29%. Application of farmyard manure along with 50% of the recommended inorganic fertilizer rate resulted in a grain yield equivalent to, or greater than that for 100% of the recommended inorganic fertilizer rate, thus effecting a 50% savings of inorganic N and phosphorus (P) fertilizer. Application of 5, 10, and 15 t farmyard manure ha?1along with 100% of the recommended fertilizer rate and 5, 10, and 15 t farmyard manure ha?1 along with 50% of the recommended fertilizer rate can be recommended for farmers who can and cannot afford to buy inorganic fertilizers, respectively.  相似文献   

2.
ABSTRACT

Nutrient uptake and grain and straw yield of Egyptian winter wheat (Triticum aestivum L. Merr.) were evaluated for two site-years after the seed inoculation with two biofertilizer products, Phosphorien, containing the phosphorus (P)-solubilizing bacteria Bacillus megatherium, and Nitrobien, containing a combination of nitrogen (N)-fixing bacteria Azotobacter chroococcum and Azospirillum liposerum. Ammonium nitrate and polymer-coated urea fertilizers were applied to plots alone and together with the biofertilizers at rates of either 83 kg N ha?1 or 186 kg N ha?1 for comparison. The highest grain yield (5.76–6.74 Mg ha?1) and straw yield (11.49–13.32 Mg ha?1) occurred at the highest fertilizer rates with N fertilizer. There was a slight additional increase in grain and straw yields when a biofertilizer was applied along with N fertilizer. A slightly higher grain and straw yield was measured with the polymer-coated urea treatment than with the ammonium nitrate treatment. The biofertilizer materials were not as effective as N fertilizers in producing grain (4.02–4.09 Mg ha?1) or straw (7.71–8.11 Mg ha?1) for either year, although the Nitrobien + Phosphorien combination increased these parameters over the N-fertilizer control. The effect of the Nitrobien biofertilizer in increasing grain yields was equivalent to a urea application rate of about 13 kg N ha?1. Biofertilizer inoculations increased iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) concentrations in wheat tissue (at boot stage), but these higher levels did not influence grain or straw yield.  相似文献   

3.
Studies were conducted on denitrification in the plough layer of an irrigated sandy-clay loam under a wheat-maize cropping system receiving different fertilizer treatments. The treatments were: N-100 (urea-N at 100kgha–1year–1), N-200 (urea-N at 200kgha–1year–1), FYM-16 (farmyard manure at 16 tonnes ha–1year–1), FYM-32 (farmyard manure at 32 tonnesha–1year–1) and the control (unfertilized). Averaged across sampling dates during the wheat season, the denitrification rate as measured by the C2H2-inhibition/soil-core incubation method was highest in N-200 (83gNha–1day–1), followed by FYM-32 (60gNha–1day–1, N-100 (51gNha–1day–1), FYM-16 (47gNha–1day–1) and the control (33gNha–1 day–1). During the maize growing season, average denitrification rate was highest in FYM-32 (525gNha–1day–1), followed by FYM-16 (408gNha–1day–1), N-200 (372gNha–1day–1, N-100 (262gNha–1day–1) and the control (203gNha–1day–1). Denitrification loss integrated over the whole vegetation period was at a maximum under FYM-32 (13.9kgNha–1), followed by N-200 (11.8kgNha–1), FYM-16 (10.6kgNha–1) and N-100 (8.0kgNha–1), whereas the minimum was observed for the control (5.8kgNha–1). Under both crops, denitrification was significantly correlated with water-filled pore space and soil NO3 -N. The best multiple regression models accounted for 52% and 70% of the variability in denitrification under wheat and maize, respectively. Results indicated that denitrification is not an important N loss mechanism in this well-drained, irrigated sandy-clay loam under a wheat-maize cropping system receiving fertilizer inputs in the range of 100–200kgNha–1year–1. Received: 14 January 1997  相似文献   

4.
Sorghum is cultivated on Vertisols in the Ethiopian Highlands. An experiment was conducted in the Gumara-Maksegnit watershed in 2013 and 2014 to assess the effect of rate and timing of nitrogen fertilizer application on the possibility to shorten the maturity period and to improve the productivity of sorghum. The experiment was laid out as Randomized Complete Block Design with three replications. Treatments were nitrogen doses between 0 and 87 kg N ha?1 as urea applied at planting, at knee-height stage or in split doses at both stages. Results showed that application of 23, 41, 64 and 87 kg ha?1 N gave a yield increase of 40, 53, 62 and 69% over the control (0 kg N ha?1), respectively. In addition, split application of 41 kg ha?1, 64 kg ha?1 and 87 kg ha?1 of nitrogen fertilizer, half at planting and half at knee height stage, gave 19%, 15% and 18% increase in sorghum grain yield over a single dose application, respectively. Applying 87 kg ha?1 nitrogen fertilizer with split application half at planting and half at knee height stage, along with 46 kg ha?1 of P2O5, gave the highest grain yield and income.  相似文献   

5.
Abstract

Forage sorghum (Sorghum bicolor (L.) Moench) is an important annual forage crop but prone to high nitrate concentration which can cause toxicity when fed to cattle (Bos taurus and Bos indicus). Two field experiments were conducted over six site-years across Kansas to determine the optimum nitrogen (N) rate for no-till forage sorghum dry matter (DM) yield and investigate the effect of N fertilization on sorghum forage nitrate content. A quadratic model described the relationship between sorghum DM and N rate across the combined site-years. Maximum DM yield of 6530?kg ha?1 was produced with N application rate of 100?kg N ha?1. The economic optimum N rate ranged from 55 to 70?kg N ha?1 depending on sorghum hay price and N fertilizer costs. Crude protein concentration increased with N fertilizer application but N rates beyond 70?kg N ha?1 resulted in forage nitrate concentrations greater than safe limit of 3000?mg kg?1. Nitrogen uptake increased with N fertilizer application but nitrogen use efficiency and N recovery decreased with increasing N fertilizer rates. In conclusion, forage sorghum required 55–70?kg N ha?1 to produce an economic optimum DM yields with safe nitrate concentration.  相似文献   

6.
The productivity of sorghum, an important staple food crops in semi-arid tropics of the world, is low due to scarcity of moisture and poor soil fertility. Response of crops to phosphorus (P) application in these soils is erratic and tricky, which depends upon the available P status in soils, distribution of rainfall, adsorption and desorption capacity of soil, and overall P sink created by crop depending upon its vigor. Delineation of optimum P level for higher productivity and to avoid wastage of precious P fertilizer thus becomes inevitable. Hence, an experiment was conducted at Hayathnagar Research Farm of Central Research Institute for Dryland Agriculture, Hyderabad to i) study the external (relative grain yields, agronomic efficiency, harvest index) and internal response (fertilizer P use efficiency, P uptake harvest index) indicators of sorghum to various levels of P application, ii) development of prediction functions to arrive at optimum P dose and iii) P use - removal balance for grain sorghum for these rainfed semi-arid tropical Alfisols. Results of the study indicated that P application to sorghum in these Alfisol soils beyond 23 kg ha?1 might not be much economical and desirable. It was observed that the maximum grain yield of 87% could be achieved at a leaf P concentration of 0.39% at boot leaf or flag leaf stage and 0.30% at 50% flowering stage. The prediction functions were developed to understand the quantitative relationship between external and internal response indicators. The zero P balance (neither depletion nor excessive build up) obtained at 20 kg ha?1 level (per se near 23 kg P ha?1) indicates that this level is sufficient for sorghum crop to perform with an agronomic efficiency of 19.42 kg grain kg?1 P. The findings of this study would help in efficient use of P fertilizer for achieving desirable yield levels and will in turn reduce the expenditure on P fertilizers that are mostly imported by India and majority of other developing countries.  相似文献   

7.
Field experiments were conducted at Water Management Research Station, Begopara, Nadia, WB, India, during the rabi seasons of 2008–2009 and 2009–2010 to find out the integrated effect of nitrogen (N), phosphorus (P), potassium (K), farmyard manure (FYM) and zinc (Zn) under the system of rice intensification (SRI) techniques using eight treatments on the fertility changes in soil. The results revealed that the amounts of organic carbon and available N content in soil were found to maintain the highest fertility status with the highest yield in T6 (NPK + FYM 10 tha?1 + Zn 5 kgha?1) and gave the highest N uptake (55.98 kgha?1). The availability of P decreased with the increased level of Zn application and gave the highest P uptake (23.52 kgha?1) in the treatment T5 (NPK + FYM 10 tha?1). The highest Zn content (4.71 mgkg?1) was recorded in the treatment T7 (NPK + FYM 10 tha?1+ Zn 10 kgha?1).  相似文献   

8.
This paper considers the implications of ORYZA2000 model in simulating physiological traits of rice at different nitrogen concentrations. The experiment was conducted over the course of the growing season in 2012 and 2013 in Rice Research Institute, Deputy of Mazandaran, Iran. The variety used was Shiroudi as a high yielding variety. The considered factors were the amount of nitrogen at four levels (40, 80, 120, 160 kg N ha?1 and control) and nitrogen splitting in four levels. We compared simulated and measured grain yield, biomass, grain nitrogen, total plant nitrogen uptake, and leaf area index (LAI) by Student’s t-test of means and by absolute and normalized root mean square errors (RMSE). Results showed that grain yield was simulated with an RMSE of 411–423 kg ha?1 and a normalized RMSE of 6%. RMSE was 671–910 kg ha?1 for biomass on harvesting date. RMSE were 7–11 for grain nitrogen, and 10–13 for total plant nitrogen uptake. LAI was simulated with a normalized RMSE of 17–23%. Generally the model simulated LAI, an exceeded measured value for different nitrogen treatments. The most obvious finding that emerged from this study was that ORYZA2000 model can be applied as a supportive research tool for selecting the most appropriate strategies for rice yield improvement at various nitrogen fertilization concentrations.  相似文献   

9.
ABSTRACT

Organic amendments in the soil perform better than synthetic fertilizers in regards to soil fertility and sustainable crop productivity. Experiments were conducted to compare the effects of organic and synthetic fertilizers on soil fertility and wheat (Triticum aestivum L.) productivity. Soil fertility and protein contents of wheat grains (13.2% and 13.3% during 2005–06 and 2006–07, respectively) were improved by organic amendments. However, synthetic fertilizer (at the rate of 150, 100, and 60 kg ha?1 N, P2O5, and K2O, respectively) applications resulted in the maximum grain yield (4.05 and 4.46 t ha?1 during 2005–06 and 2006–07, respectively). The observed and simulated soil organic carbon (SOC) reasonably agreed during RothC model validation (R 2 = 0.99). Economic analysis showed the maximum net profit and relative increase in income ($729 US ha?1 and 309%, respectively) from inorganic treatment. Application of synthetic fertilizers increased grain yield and farm profit while organic manure enhanced grain quality. The RothC model had potential for determining the SOC in organic farming under arid environment.  相似文献   

10.
Abstract

Results of 240 annual N fertilizer trials in 1991–2007 in spring and winter cereals are presented. On average, spring barley and oat yields increased little beyond 120 kg N ha?1 in fertilizer. Somewhat higher figures were found for spring and winter wheat. Regression equations for yield and N uptakes in grain and straw were derived, related to N fertilizer input and the yield level in individual trials (indicator of yield expectancy). These equations accounted for 90% of the variation in yield and 80% of that in N uptake. Quadratic N responses were significant in all cases, as were interactions between N responses and yield level. They were verified with data from 27 separate trials performed in 2008–2010. The yield equations were used to calculate economically optimum N fertilizer levels with varying ratios of product price to fertilizer cost at contrasting levels of yield. The optimum N fertilizer level for barley and oats was found to increase by 8.3 kg N ha?1 per Mg increase in expected yield. The equivalent figure in wheat was 16.3 kg N ha?1. Optimum N fertilizer levels decreased by 4.1 and 6.7 kg N ha?1, for barley/oats and wheat respectively, per unit increase in the cost/price ratio. The equations for N uptake were used to calculate simple N balances between fertilizer input and removal in crop products. Large N surpluses were indicated at low levels of yield expectancy, but the surplus declined markedly with increasing yield level, despite greater N fertilizer inputs at high yield. Calculations made for national average yield levels in recent years showed N surpluses of 50–60 kg N ha?1 when only grain is removed and 25–40 kg N ha?1 when straw is removed also. Limiting N input to obtain zero balance reduces yields considerably at average levels of yield expectancy.  相似文献   

11.
Data from a 49-year-long organic–mineral fertilization field experiment with a potato–maize–maize–wheat–wheat crop rotation were used to analyse the impact of different fertilizer variations on yield ability, soil organic carbon content (SOC), N and C balances, as well as on some characteristic energy balance parameters. Among the treatments, the fertilization variant with 87 kg ha?1 year?1 N proved to be economically optimal (94% of the maximum). Approximately 40 years after initiation of the experiment, supposed steady-state SOC content has been reached, with a value of 0.81% in the upper soil layer of the unfertilized control plot. Farmyard manure (FYM) treatments resulted in 10% higher SOC content compared with equivalent NPK fertilizer doses. The best C balances were obtained with exclusive mineral fertilization variants (?3.8 and ?3.7 t ha?1 year?1, respectively). N uptake in the unfertilized control plot suggested an airborne N input of 48 kg ha?1 year?1. The optimum fertilizer variant (70 t ha?1 FYM-equivalent NPK) proved favourable with a view to energy. The energy gain by exclusive FYM treatments was lower than with sole NPK fertilization. Best energy intensity values were obtained with lower mineral fertilization and FYM variants. The order of energy conversion according to the different crops was maize, wheat and potato.  相似文献   

12.
Abstract

Assessing the fertilizer phosphorus (P) requirements (FPR) of crops is an important component of research for efficient and rational use of fertilizers. Soil and plant tests are employed to determine the FPR. Two methods were evaluated for determining the FPR of sorghum grown on a Vertisol under rainfed conditions. The first method was based on P on applied P uptake, and grain yield relationships for grain sorghum. In this method, P uptake at a given yield was determined from the relationship between total P uptake and grain yield. The amount of fertilizer P applied for the given P uptake and grain yield was then, determined from the relationship between P applied and P uptake. In the second method, FPR was determined using the equation: FPR=(Up‐U0)/PRF, where Up is P uptake at a given yield, U0 is P uptake from unfertilized soil, and PRF is the recovery of applied P. The parameters, U0, Up, and PRF were determined in a field experiment with sorghum grown on a Vertisol under rainfed conditions. There was a good agreement between the observed value of FPR and predicted values determined by the two methods. These results suggest that the simple models based on P uptake can be utilized for determining the fertilizer requirements of crops.  相似文献   

13.
Field experiments were conducted to compare the effects of allelopathic sorghum cultivars ‘Enkath’ and ‘Rabeh’ at three planting densities (6.6, 13.3 and 26.6 plant m?2) on weed growth and sorghum yields in 2009 and 2010. Sorghum planting densities suppressed average weed population by 26–42% and average weed biomass by 46–57% compared with weedy check in 2009. A similar trend in the reduction in weed population and weed biomass was observed in 2010. Planting densities at 6.6, 13.3 and 26.6 plant m?2 significantly suppressed average weed population by 26, 31 and 42% and average weed biomass by 88, 91 and 96% compared with weedy check, respectively, during 2009. A similar trend in effect was also recorded during 2010. Enkath cultivar reduced average weed density and dry biomass by 25 and 44% during 2009 and by 23 and 30% in 2010 compared with Rabeh cultivar. Root exudates of Enkath inhibited more weed growth than Rabeh. Increased planting density significantly increased average grain yield of sorghum. The highest grain yield of sorghum (12.68 t ha?1) was recorded in plots in which the planting density was 26.6 plant m?2.  相似文献   

14.
In order to optimize N application and understand how the different combinations of water and N management affect grain filling characteristics and yield, we designed three irrigation regimes (W1 submerged irrigation, W2 alternate irrigation, W3 dry cultivation), and different N application strategies at 180 kg ha?1 in 2010 and 2011. The relationship between grain filling characteristics and grain yield formation were respectively investigated. The results revealed that there were obvious interacting effects of irrigation regime and N application strategies on grain yield and grain-filling characteristics as well. Compared with W1 and W3 treatments, under W2, the N-fertilizer should account for 30% base, 30% tillering, and 40% panicle fertilizer with the last being applied equally at 4th and 2nd leaves emerged from the top. Correlation analysis revealed that grain filling rate during middle grain-filling stage was the largest and contribute more than 50% to grain-filling. Grain yield was significantly related to grain filling rate (Gmax or Gmean), final weight of a kernel (A), and mean grain filling rate (MGR) of the early, mid and late stages during grain filling in inferior spikelets, which is the important reason for water and N coupling effect further to increase yield and fertilizer use efficiency.  相似文献   

15.
3年田间试验结果表明:每hm^2施氮570kg,玉米产量转折点亦不太明显,用一元二次方程模拟氮肥效应曲线,正常年份最高产量点氮肥用量在403kg/hm^2左右,而用对数曲线或幂函数模拟,相关性提高,但无最高产量点。说明氮肥对春玉米的增产潜力很大。超低量施氮,春玉米能显示明显的增产效果和,能改善玉米籽粒蛋白质含量,其效应曲线在低肥段与传统看法不同。  相似文献   

16.
Field experiments during two successive rainy seasons were conducted in southern Vietnam to evaluate the effects of a commercial inoculant biofertilizer (‘BioGro’) and fused magnesium phosphate (FMP) fertilizer on yield and nitrogen (N) and phosphorus (P) nutrition of rice. Inoculation with BioGro containing a pseudomonad, two bacilli and a soil yeast significantly increased grain yield in the second season and straw yield in both seasons by 3–5%. The FMP fertilizer significantly increased grain yield from 1.72–2.33 t ha?1 to 2.99–3.58 t ha?1 along with total N and P accumulation at all rates in both cropping seasons. In the first season the difference in grain yield between BioGro treated and untreated plots was marginal but in the second season BioGro out-yielded the control at all the rates of added P. Overall, BioGro application did not compensate for low P fertilizer application to the same extent previously demonstrated for low N fertilizer applications.  相似文献   

17.
CERES-Maize model was used to determine nitrogen fertilizer requirements of early maturing maize varieties in the Sudan Savanna. Data were collected from 2013 to 2014 field experiments conducted in Bayero University Kano, (BUK), Kano, Nigeria. The experiments consisted of three nitrogen fertilizer levels (0, 60, and 120 kg N ha?1) and two early maize varieties (EVDT and 2009 TZEEW). Sensitivity analysis was performed to evaluate the responses of the two maizes to N fertilizers and for economic and strategic responses. The model predicted grain yield and harvest index reasonably well for the two varieties. Increasing N application from 0 to 30 kg N ha?1 increased grain yield by 105%, when nitrogen (N) rate was increased to 60 kg N ha?1, grain yield increased by 226%. Yield increases of 364%, 451%, and 461% was observed when N rate increased from 0 to 90, 120, and 150 kg ha?1, respectively.  相似文献   

18.
生物质炭与氮肥配施对春小麦产量及其C︰N︰P的影响   总被引:2,自引:0,他引:2  
碳(C)、氮(N)、磷(P)生态计量化学为研究作物-土壤生态系统物质循环及其能量流动提供了崭新视角,研究生物质炭配施不同用量氮肥下小麦C、N、P计量特征,可为探明区域养分限制性以及进行合理施肥等提供理论依据。本文通过田间定位试验,测定施50 kg(N)·hm~(-2)氮肥、100 kg(N)·hm~(-2)氮肥、施生物质炭、生物质炭与50 kg(N)·hm~(-2)氮肥配施、生物质炭与100 kg(N)·hm~(-2)氮肥配施等处理下小麦产量、CNP含量及其生态化学计量等指标。结果表明:相比空白对照(不施氮肥和生物质炭)处理,其他不同处理均显著提高了小麦秸秆和籽粒产量,除了单施生物质炭处理,其他处理均不同程度提高了小麦地上部各器官N含量,生物质炭配施不同用量氮肥显著提高了茎秆和籽粒C和P含量。计量比结果表明,相比对照处理,生物质炭和50 kg(N)·hm~(-2)氮肥配施显著降低了叶片C∶N和C∶P,生物质炭和100 kg(N)·hm~(-2)氮肥配施处理则显著降低了茎秆C∶N、C∶P、N∶P以及籽粒C∶N、C∶P。研究区小麦叶片N∶P大多为18~23,因此小麦可能受到P元素的限制。生物质炭配施氮肥显著提高了作物产量,增加了小麦CNP养分含量,降低了植物C∶N、C∶P、N∶P。总体而言,生物质炭配施100 kg(N)·hm~(-2)氮肥施肥措施的综合表现最优。  相似文献   

19.
The field experiment was conducted on black soil (Vertic Ustropept) at Zonal Agricultural Research Station farm, Solapur, for successive 30 years from 1987–1988 to 2016–2017 under dryland condition in a randomized block design with 10 treatments and 3 replications. The pooled results of seven years (2010–2011 to 2016–2017) revealed that the application of 25 kg N ha?1 through crop residue (CR, byre waste) along with 25 kg N ha-1 through Leucaena lopping (Leucaena leucocephala) to rabi sorghum gave significantly higher grain and stover yield and Sustainable Yield Index (14.61 and 36.11 q ha?1 and 0.47, respectively) which was on par with T7, where 25 kg N ha?1 through farmyard manure (FYM) + 25 kg N ha?1 through urea was applied for grain and stover yield (13.95 and 34.46 q ha?1 and 0.44, respectively). The gross and net monetary returns and benefit–cost ratio were also influenced significantly due to integrated nitrogen management (Rs. 59,796, Rs. 47,353 ha?1, and 3.13, respectively). This was also reflected in residual soil fertility status of soil after harvest of rabi sorghum. The organic carbon content and available nitrogen content of soil, as well as nitrogen uptake and moisture use efficiency for grain, were also increased. The total microbial count of bacteria, fungi, and actinomycetes was more where FYM or CR addition was done. The count of N fixers and P solubilizers was more under Leucaena application either alone or with CR or urea. Application of CR at 4.8 t ha?1 (25 kg N ha?1) along with Leucaena lopping at 3.5 t ha?1 (25 kg N ha?1) as green leaf manure is the best alternative organic source for fertilizer urea (50 kg N ha?1) to increase the production of dryland rabi sorghum.  相似文献   

20.
Grain sorghum [Sorghum bicolor (L.)], grown on the often infertile claypan soils of the eastern Great Plains, requires attention to soil fertility. Experimental objectives were to determine the effects of phosphorus (P) and potassium (K) fertility levels, N application, and legume residual on grain sorghum production and stalk rot. Following alfalfa and birdsfoot trefoil, first-year sorghum yield was 7 Mg ha?1 and not affected by N fertilizer. In subsequent years, yield increases due to N were less than 20%. Sorghum yield increased at low P and K rates, especially with nitrogen (N) fertilization and was greater following birdsfoot trefoil than following alfalfa. In 1995 when fertilized with N, lodging and stalk rot severity were increased by P and reduced by K. In 1996, stalk rot severity was reduced by K fertilization. Grain sorghum, grown after legume crops, required minimal levels of P and K, especially when N fertilizer was added.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号