首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Fourier transform infrared (FT-IR) microspectroscopy and low-field (LF) proton NMR transverse relaxation measurements were used to study the changes in protein secondary structure and water distribution as a consequence of aging (1 day and 14 days) followed by salting (3%, 6%, and 9% NaCl) and cooking (65 degrees C). An enhanced water uptake and increased proton NMR relaxation times after salting were observed in aged meat (14 days) compared with nonaged meat (1 day). FT-IR bands revealed that salting induced an increase in native beta-sheet structure while aging triggered an increase in native alpha-helical structure before cooking, which could explain the effects of aging and salting on water distribution and water uptake. Moreover, the decrease in T2 relaxation times and loss of water upon cooking were attributed to an increase in aggregated beta-sheet structures and a simultaneous decrease in native protein structures. Finally, aging increased the cooking loss and subsequently decreased the final yield, which corresponded to a further decrease in T2 relaxation times in aged meat upon cooking. However, salting weakened the effect of aging on the final yield, which is consistent with the increased T2 relaxation times upon salting for aged meat after cooking and the weaker effect of aging on protein secondary structural changes for samples treated with high salt concentration. The present study reveals that changes in water distribution during aging, salting, and cooking are not only due to the accepted causal connection, i.e., proteolytic degradation of myofibrillar structures, change in electrostatic repulsion, and dissolution and denaturation of proteins, but also dynamic changes in specific protein secondary structures.  相似文献   

2.
Continuous low-field (LF) (1)H NMR relaxometry was used to monitor the structural changes during cooking of potatoes with two different dry matter (DM) contents. A principal component analysis of the relaxation decay curves revealed major events related to water mobility during cooking, which occur at 53 and 60 degrees C for potatoes with medium and low DM contents, respectively. Exponential analysis of the relaxation decays reveals two major water populations in the potato: a slow-relaxing (assigned to water in cytoplasm and extracellular cavities) water component, T(22) ( approximately 350-550 ms), and a fast-relaxing component (primarily assigned to water associated with starch and cell walls), T(21) ( approximately 45-65 ms). Significant DM dependent shifts in both the T(21) and T(22) relaxation time constants were observed during cooking, indicating that starch gelatinizes between 53 and 70 degrees C with water exchanging with the hydroxyls of starch (transition in T(21)) and cells start to disrupt with an increase in diffusion volumes at approximately 60 degrees C (transition in T(22)). The study reveals that continuous LF NMR measurement is an excellent and highly sensitive method to study changes in water mobility and water populations during the cooking of potatoes.  相似文献   

3.
The objective of this study was to investigate the influence of heating rate on myowater dynamics and protein secondary structures in three pork qualities by proton NMR T2 relaxation and Fourier transform infrared (FT-IR) microspectroscopy measurements. Two oven temperatures at 100 degrees C and 200 degrees C corresponding to slow and fast heating rates were applied on three pork qualities (DFD, PSE, and normal) to an internal center temperature of 65 degrees C. The fast heating induced a higher cooking loss, particularly for PSE meat. The water proton T21 distribution representing water entrapped within the myofibrillar network was influenced by heating rate and meat quality. Fast heating broadened the T21 distribution and decreased the relaxation times of the T21 peak position for three meat qualities. The changes in T21 relaxation times in meat can be interpreted in terms of chemical and diffusive exchange. FT-IR showed that fast heating caused a higher gain of random structures and aggregated beta-sheets at the expense of native alpha-helixes, and these changes dominate the fast-heating-induced broadening of T21 distribution and reduction in T21 times. Furthermore, of the three meat qualities, PSE meat had the broadest T21 distribution and the lowest T21 times for both heating rates, reflecting that the protein aggregation of PSE caused by heating is more extensive than those of DFD and normal, which is consistent with the IR data. The present study demonstrated that the changes in T2 relaxation times of water protons affected by heating rate and raw meat quality are well related to the protein secondary structural changes as probed by FT-IR microspectroscopy.  相似文献   

4.
Low-field (LF) (1)H NMR T 2 relaxation measurements were used to study changes in water distribution in lean (Atlantic cod) and fatty (Atlantic salmon) fish during salting in 15% NaCl and 25% NaCl brines. The NMR data were treated by PCA, continuous distribution analysis, and biexponential fitting and compared with physicochemical data. Two main water pools were observed in unsalted fish, T 21, with relaxation times in the range 20-100 ms, and T 22, with relaxation times in the range 100-300 ms. Pronounced changes in T 2 relaxation data were observed during salting, revealing changes in the water properties. Salting in 15% brine lead to a shift toward longer relaxation times, reflecting increased water mobility, whereas, salting in saturated brines had the opposite effect. Water mobility changes were observed earlier in the salting process for cod compared to salmon. Good linear correlations ( F 相似文献   

5.
Proton mobility was studied in molecular fractions of some model systems and of cake using a 1H nuclear magnetic resonance (NMR) relaxation technique. For cake, five spin-spin relaxation times (T2) were obtained from transverse relaxation curves: T2 (1) approximately 20 micros, T2 (2) approximately 0.2 ms, T2 (3) approximately 3 ms, T2 (4) approximately 50 ms, and T2 (2) approximately 165 ms. The faster component was attributed to the solid phase, components 2 and 3 were associated with the aqueous phase, and the two slowest components were linked to the lipid phase. After cooking, the crust contained more fat but less water than the center part of the cake. The amount of gelatinized starch was lower in the crust, and water was more mobile due to less interaction with macromolecules. This preliminary study revealed different effects of storage on the center and crust.  相似文献   

6.
Nuclear magnetic resonance (NMR) measurements were carried out on pork longissimus muscle, which pre rigor had been manipulated to various muscle lengths, to investigate the relationship between the microstructure of meat and the NMR T(2) relaxation. Distributed exponential analysis of the NMR T(2) relaxation data revealed the existence of three distinct water populations: T(2b), T(21), and T(22). A high, significant correlation was found between the T(21) time constant and the sarcomere length (r = 0.84) and calculated ration of myofilament lattice volume in the I-band and A-band regions, respectively (r = 0.84), considering sigmoid relationships. The result implies that the T(21) time constant mainly is determined by the structure of the myofilament lattice and so strongly supports a previously proposed theory that the T(21) population corresponds to water located within a highly organized myofibrillar protein matrix including actin and myosin filament structures. A high correlation was also found between the T(22) population and the water-holding capacity (WHC) (r = 0.76), which suggests that the WHC is mainly determined by the amount of loosely bound extramyofibrillar water. However, the correlation between NMR T(2) parameters and WHC was further increased (r = 0.84) by including the T(21) time constant in the correlation analysis. This implies that the formation of drip loss is an ongoing process involving the transfer of water from myofibrils to the extracellular space and is affected by structural features at several levels of organization within the muscle tissue. This study demonstrates the advantages of NMR T(2) relaxation as an effective technique for obtaining further understanding of the relationship between the microstructure of meat, its WHC, water mobility, and water distribution.  相似文献   

7.
Continuous NMR T(2) relaxation measurements were carried out on seven rabbit longissimus muscle samples in the period from 25 min to 28 h post-mortem at 200 MHz for (1)H. To display differences in post-mortem pH progress and extent of changes in water characteristics during conversion of muscle to meat, three of the seven animals were pre-slaughter injected with adrenaline (0.5 mg/kg live weight 4 h before sacrifice) to differentiate muscle glycogen stores at the time of slaughter. Distributed analysis of T(2) data displayed clear differences in the characteristics of the various transverse relaxation components dependent on progress in pH, as did the water-holding capacity of samples 24 h post-mortem. This reveals a pronounced effect of the progressive change in pH on the subsequent development in physical/chemical states of water during the conversion of muscle to meat. Finally, the relaxation characteristics are discussed in relation to supposed post-mortem processes of protein denaturation.  相似文献   

8.
This study introduces the use of combined 23Na magnetic resonance imaging (MRI) and 23Na NMR relaxometry for the study of meat curing. The diffusion of sodium ions into the meat was measured using 23Na MRI on a 1 kg meat sample brined in 10% w/w NaCl for 3-100 h. Calculations revealed a diffusion coefficient of 1 x 10(-5) cm2/s after 3 h of curing and subsequently decreasing to 8 x 10(-6) cm2/s at longer curing times, suggesting that changes occur in the microscopic structure of the meat during curing. The microscopic mobility and distribution of sodium was measured using 23Na relaxometry. Two sodium populations were observed, and with increasing length of curing time the relaxation times of these changed, reflecting a salt-induced swelling and increase in myofibrillar pore sizes. Accordingly, the present study demonstrated that pore size and thereby salt-induced swelling in meat can be assessed using 23Na relaxometry.  相似文献   

9.
Hydration of freeze-dried chicken breast meat was followed in the water activity range of aw=0.12-0.99 by a multianalytical approach comprising of sorption isotherm, differential scanning calorimetry (DSC), and nuclear magnetic resonance (NMR). The amount of frozen water and the shape of the T2-relaxogram were evaluated at each water content by DSC and NMR, respectively. Data revealed an agreement between sorption isotherm and DSC experiments about the onset of bulk water (aw=0.83-0.86), and NMR detected mobile water starting at aw=0.75. The origin of the short-transverse relaxation time part of the meat NMR signal was also reinvestigated through deuteration experiments and proposed to arise from protons belonging to plasticized matrix structures. It is proved both by D2O experiments and by gravimetry that the extra protons not contributing to the water content in the NMR experiments are about 6.4% of the total proton NMR CPMG signal of meat.  相似文献   

10.
We present the results of a Fourier transform infrared (FT-IR) microspectroscopic study using conventional FT-IR microscopy and FT-IR imaging to detect the denaturation process during four different heating temperatures (raw, 45, 60, and 70 degrees C) spatially resolved in bovine cryosections from longissimus dorsi muscle. FT-IR imaging, employing a focal plane array detector, which allowed the simultaneous collection of spectra at 4096 pixels, enabled the investigation of the heat-induced changes in the two major meat constituents, i.e., myofibrillar and connective tissue proteins, spatially resolved. The infrared spectra of both compounds revealed that the major spectral changes involved an increase in beta-sheet and a decrease in alpha-helical structures, which appeared to be much more pronounced for the myofibers than for the connective tissue. These conformational changes could be correlated to the denaturation of the major meat proteins, such as myosin, actin, and collagen.  相似文献   

11.
Water characteristics and meat microstructure of NaHCO3-enhanced pork were compared with NaCl- and Na4O7P2-enhanced pork using low-field proton NMR relaxometry, advanced microscopy techniques, and traditional meat quality measurements. Porcine samples were enhanced at 4 degrees C for 48 h with sodium salts individually and in the following combinations: (i) 5% NaCl, (ii) 5% Na4O7P2, (iii) 3% NaHCO3, (iv) 5% NaCl and 5% Na4O7P2, (v) 5% NaCl and 3% NaHCO3, (vi) 5% Na4O7P2 and 3% NaHCO3, and (vii) 5% NaCl, 5% Na4O7P2, and 3% NaHCO3. Independently of the marinade used, the water-binding capacity was improved, cooking loss was reduced, and the yield was enhanced compared with nonmarinated pork samples. This was also reflected in the water mobility within the samples measured by proton NMR relaxometry. Visualization of samples by confocal laser scanning microscopy (CLSM) revealed salt-dependent microstructural changes in the green pork samples treated with NaHCO3, giving rise to nearly complete disintegration of overall structures. High-resolution visualization by atomic force microscopy (AFM) further suggested that a higher cooking loss in sodium chloride-enhanced samples could be ascribed to less solubilization and higher heat-induced protein denaturation compared with phosphate- and bicarbonate-enhanced samples.  相似文献   

12.
The molecular motion of water was studied in glucono-δ-lactone-acidified skim milk powder (SMP) solutions with various pH values and dry matter contents. NMR relaxometry measurements revealed that lowering the pH in SMP solutions affected 17O and 1H T2 relaxation rates almost identically. Consequently, the present study indicates that the proteins present in the samples do not affect the 1H relaxation behavior markedly, even at relatively high SMP concentrations (15-25%). Comparison of rheological measurements and NMR measurements suggested that the collapse of κ-casein during acidification could contribute to the initial decrease in 17O and 1H relaxation rate in the pH range between 6.6 and 5.5 for 15% SMP and in the pH range between 6.6 and 5.9 for 25% SMP. However, below pH 5.5 the viscosity and 17O and 1H NMR relaxation rates did not correlate, revealing that the aggregation of casein micelles, which increases viscosity below pH 5.5, does not involve major repartitioning of water.  相似文献   

13.
Postmortem changes in rabbit muscle tissue with different glycogen status (normal vs low) were followed continuously from 13 min postmortem until 8 h postmortem and again 20 h postmortem using simultaneous magic angle spinning (1)H and (31)P NMR spectroscopy together with measurement of the transverse relaxation time, T(2), of the muscle water. The (1)H metabolite spectra were measured using the phase-altered spinning sidebands (PASS) technique at a spinning rate of 40 Hz. pH values calculated from the (31)P NMR spectra using the chemical shifts of the C-6 line of histidine in the (1)H spectra and the chemical shifts of inorganic phosphate in the (31)P spectra confirmed the different muscle glycogen status in the tissues. High-resolution (1)H spectra obtained from the PASS technique revealed the presence of a new resonance line at approximately 6.8 ppm during the postmortem period, which were absent in muscles with low muscle glycogen content. This new resonance line may originate from the aminoprotons in creatine, and its appearance may be a result of a pH effect on the exchange rate between the amino and the water protons and thereby the NMR visibility. Alternatively, the new resonance line may originate from the aromatic protons in tyrosine, and its appearance may be a result of a pH-induced protein unfolding exposing hydrophobic amino acid residues to the aqueous environment. Further studies are needed to evaluate these hypotheses. Finally, distributed analysis of the water T(2) relaxation data revealed three relaxation populations and an increase in the population believed to reflect extramyofibrillar water through the postmortem period. This increase was significantly reduced (p < 0.0001) in samples from animals with low muscle glycogen content, indicating that the pH is controlling the extent of postmortem expulsion of water from myofibrillar structures. The significance of the postmortem increase in the amount extramyofibrillar water on the water-holding capacity was verified by centrifugation, which showed a reduced centrifugation loss in muscles with low preslaughter glycogen status (0.9 vs 1.9%, p = 0.07).  相似文献   

14.
Understanding and controlling structural and physical changes in meat during cooking is of prime importance. Nuclear magnetic resonance imaging (MRI) is a noninvasive, nondestructive tool that can be used to characterize certain properties and structures both locally and dynamically. Here we show the possibilities offered by MRI for the in situ dynamic imaging of the connective network during the cooking of meat to monitor deformations between 20 and 75 °C. A novel device was used to heat the sample in an MR imager. An MRI sequence was developed to contrast the connective tissue and the muscle fibers during heating. The temperature distribution in the sample was numerically simulated to link structural modifications and water transfer to temperature values. The contraction of myofibrillar and collagen networks was observed at 42 °C, and water began to migrate toward the interfascicular space at 40 °C. These observations are consistent with literature results obtained using destructive and/or nonlocalized methods. This new approach allows the simultaneous monitoring of local deformation and water transfer, changes in muscle structure and thermal history.  相似文献   

15.
用低场核磁研究烫漂对甜玉米水分布和状态影响   总被引:16,自引:12,他引:4  
该文旨在用低场核磁(NMR)及其成像技术(MRI)研究甜玉米粒中的水分布和水状态,为探讨烫漂后甜玉米失重和热特性参数变化的原因提供理论依据。试验通过T2加权成像技术,观察到烫漂后的甜玉米粒出现新的水信号分布区;通过研究烫漂时间和温度对甜玉米粒横向弛豫信号的影响,发现弛豫时间为450~750 ms和50~70 ms的结合水的百分比例明显变化,并具有一定规律,这种变化是由于淀粉糊化造成的。研究表明,烫漂改变了甜玉米中水的分布和结合状态;低场核磁技术揭示了甜玉米水状态的变化规律,为食品加工过程中物性参数的研究提供了一种有效方法。  相似文献   

16.
Extracted fractions from black and red common beans (Phaseolus vulgaris) were studied using Fourier transform infrared spectroscopy (FT-IR). Beans were stored under three conditions: control at 4 degrees C; hard-to-cook (HTC) at 29 degrees C, 65% RH for 3.5 months; and refrigerated at 2 degrees C, 79% RH for 3.5 months after a HTC period (called HTC-refrigerated). Two fractions isolated from the beans, the soluble pectin fraction (SPF) and the water insoluble residue of the cell wall (WIRCW), were analyzed using diffuse reflectance (DRIFTS) FT-IR. The soaking water and cooking water from the beans were also studied using attenuated total reflectance (ATR) FT-IR. The DRIFTS FT-IR results from the SPF and WIRCW fractions were consistent with previously published data for Carioca beans showing that in general, more phenolic compounds were associated with the SPF of HTC beans than in the control beans. Results also showed that HTC-refrigerated beans had higher concentrations of phenolic compounds than control beans in the SPF. The ATR FT-IR results for soaking and cooking waters from the HTC-refrigerated and HTC beans had higher concentrations of absorbing compounds than the control beans, indicating that they lost more constituents to the water. Additionally, results indicate that the mechanism(s) for reversibility of the HTC defect could be different than the one(s) involved in the development of the defect.  相似文献   

17.
17O NMR spectroscopy and (13)C NMR spectroscopy have been used to study the mechanism of interaction of sugars with bovine and caprine caseins in D(2)O. The (17)O NMR relaxation results showed in all cases an increase in water of hydration, as a result of added sugar; this was predominantly associated with "trapped" water in the caseins. Analysis of the vir al coefficients, obtained from the (17)O relaxation data, suggested that preferential interactions occur in the sugar-protein solutions. This could be the result of either sugar binding or a solute-solute thermodynamic effect, preferential hydration. The addition of sugars to deuterated solutions of bovine casein and caprine casein high in alpha(s1)-casein had little or no effect on either line width or chemical shifts of the (13)C NMR spectra of these milk proteins. (13)C NMR studies of sucrose, at various concentrations (100-300 mM) in the presence of caprine casein high in alpha(s1)-casein, showed no changes in either chemical shifts or T(1) values. This indicates that the sugar molecules tumble isotropically and therefore neither bind to the protein nor affect viscosity in the protein-sugar studies. All of these data suggest that the preferential exclusion of the sugar from the domain of the caseins results in preferential hydration of the caseins.  相似文献   

18.
小麦灌浆过程籽粒水分变化的核磁共振检测   总被引:1,自引:5,他引:1  
花期至成熟期是小麦产量形成的关键时期,在这一时期麦穗的水分状态随着干物质的积累而呈现出独特的变化特征。为了揭示活体冬小麦灌浆过程的水分变化规律,利用核磁共振技术的无损检测特性,结合核磁共振质子密度加权成像和核磁共振T2弛豫谱分析,对小麦麦穗进行了连续活体检测。核磁共振质子密度加权成像结果表明,灌浆前期籽粒的水分不断增加,至花后15 d籽粒的水分含量达到最大值,此后小麦籽粒的水分逐渐减少。在此过程中,灌浆物质在籽粒中积累的顺序是由外向内、自上而下的。经核磁共振T2弛豫谱分析,麦穗中的水分可分为结合水、半结合水和自由水三种相态。从籽粒形成至完熟期麦穗不同相态的水分都表现为先增大后减小的特点,但涨落步调不尽相同,其中结合水含量的增长期最长,至蜡熟期结束时(花后33 d)才达到最大值。籽粒形成后麦穗总水分含量维持在较高水平,即使在籽粒干质量快增期(花后15 d至花后27 d),籽粒中干物质的迅速积累也并未导致水分含量的明显减小,单穗的总水分含量与最大水分含量相比仅仅减少了十分之一。花后30 d之后,随着颖片及穗轴逐渐变黄衰老和籽粒的脱水成熟,麦穗水分含量才急剧减小。小麦灌浆中期麦穗维持较高水分含量,说明水分在同化物积累过程中的重要作用。除了灌浆中期较高的水分含量,蜡熟期的快速脱水亦有利于营养物质的贮存并减少呼吸消耗,对于小麦产量的形成和稳定亦具有重要意义。  相似文献   

19.
The molecular mobility of waxy corn starch was studied by using wide-line (1)H nuclear magnetic resonance (NMR) spectroscopy. A suite of NMR techniques was used to measure relaxation times (i.e., T(2), T(2), and T(1)) and to characterize water and solid (starch) mobility of waxy corn starch. It was observed that the spectrum of each sample includes a complex broad proton component upon which is superimposed a narrow proton component over water activity (a(w)) ranges from 0.33 to 0.97 (i.e., 10.-25.6% water content) at 25 degrees C. Line shape analysis and relaxation times of both broad and narrow components show that T(2) and T(2) values decrease (i.e., decreasing mobility) with increasing solid concentration and show a "break point" in a concentration range between 19.8 and 21.9% water content. The T(1) shows a "T(1) minimum" in the same concentration range. Starch samples change from the glassy to viscous rubbery state in this same concentration range. This demonstrates that wide-line (1)H NMR relaxation times (i.e., T(2), T(2), and T(1)) may be useful as indicators of glass transition for starch samples in the solid state. The results demonstrate that wide-line (1)H NMR spectroscopy is able to separate modes and quantitate the magnitude of molecular mobility in complex systems.  相似文献   

20.
Pressure-assisted thermal processing (PATP) is being widely investigated for processing low acid foods. However, its microbial safety has not been well established and the mechanism of inactivation of pathogens and spores is not well understood. Fourier transform infrared (FT-IR) spectroscopy was used to study some of the biochemical changes in bacterial spores occurring during PATP and thermal processing (TP). Spore suspensions (approximately 10(9) CFU/mL of water) of Clostridium tyrobutyricum, Bacillus sphaericus, and three strains of Bacillus amyloliquefaciens were treated by PATP (121 degrees C and 700 MPa) for 0, 10, 20, and 30 s and TP (121 degrees C) for 0, 10, 20, and 30 s. Treated and untreated spore suspensions were analyzed using FT-IR in the mid-infrared region (4000-800 cm(-1)). Multivariate classification models based on soft independent modeling of class analogy (SIMCA) were developed using second derivative-transformed spectra. The spores could be differentiated up to the strain level due to differences in their biochemical composition, especially dipicolinic acid (DPA) and secondary structure of proteins. During PATP changes in alpha-helix and beta-sheets of secondary protein were evident in the spectral regions 1655 and 1626 cm(-1), respectively. Infrared absorption bands from DPA (1281, 1378, 1440, and 1568 cm(-1)) decreased significantly during the initial stages of PATP, indicating release of DPA. During TP changes were evident in the bands associated with secondary proteins. DPA bands showed little or no change during TP. A correlation was found between the spore's Ca-DPA content and its resistance to PATP. FT-IR spectroscopy could classify different strains of bacterial spores and determine some of the changes occurring during spore inactivation by PATP and TP. Furthermore, this technique shows great promise for rapid screening PATP-resistant bacterial spores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号