首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Root-knot nematodes (RKNs) are one of the most important biotic factors limiting crop productivity in many crop plants. The major RKN control strategies include development of resistant cultivars, application of nematicides and crop rotation, but each has its own limitations. In recent years, RNA interference (RNAi) has become a powerful approach for developing nematode resistance. The two housekeeping genes, splicing factor and integrase, of Meloidogyne incognita were targeted for engineering nematode resistance using a host-delivered RNAi (HD-RNAi) approach. Splicing factor and integrase genes are essential for nematode development as they are involved in RNA metabolism. Stable homozygous transgenic Arabidopsis lines expressing dsRNA for both genes were generated. In RNAi lines of splicing factor gene, the number of galls, females and egg masses was reduced by 71.4, 74.5 and 86.6%, respectively, as compared with the empty vector controls. Similarly, in RNAi lines of the integrase gene, the number of galls, females and egg masses was reduced up to 59.5, 66.8 and 63.4%, respectively, compared with the empty vector controls. Expression analysis revealed a reduction in mRNA abundance of both targeted genes in female nematodes feeding on transgenic plants expressing dsRNA constructs. The silencing of housekeeping genes in the nematodes through HD-RNAi significantly reduced root-knot nematode infectivity and suggests that they will be useful in developing RKN resistance in crop plants.  相似文献   

2.
The molecular interactions between plants and sedentary nematodes are undergoing intense study, not only for reasons of fundamental research but also for the potential benefits to agriculture. The present technology allows the transformation of an increasing number of crop plants, providing new ways to introduce resistance against plant-parasitic nematodes. The ability of sedentary nematodes to induce specialized feeding sites in plant roots is one of the most fascinating aspects of this host–parasite interaction. Molecular approaches have been initiated to identify and characterize plant genes altered in expression after infection by sedentary nematodes. The results obtained indicate that many genes indeed become up-regulated upon nematode infection. Surprisingly, several so-called constitutive promoters that are normally used to achieve high expression in plant cells are completely ‘silenced’ in the feeding sites within days after nematode infection. Generally, there are two options available for the genetic engineering of nematode resistance: the synthesis of anti-nematode proteins or the localized production of a cytotoxic protein that interferes with the development of feeding cells. Nematode-induced promoters are very useful for the production by plants of sufficiently high levels of anti-nematode proteins at feeding sites. Alternatively, interfering with feeding-cell development is somewhat similar to the hypersensitive response evoked by nematodes in a naturally resistant plant. Here, destruction of specific plant cells can be achieved by the localized expression of a cytotoxin such as barnase, a potent ribonuclease. This approach, however, calls for a highly specific ‘non-leaky’ promoter, which is active only in the feeding cells. Another possibility is to use a two-component system, where the leakiness of the promoter in other tissues is counterbalanced by the constitutive expression of a neutralizing gene.  相似文献   

3.
ABSTRACT Digestive cysteine proteinases have been isolated from plant-parasitic nematodes as well as coleopteran and hemipteran insects. Phytocystatins, inhibitors of cysteine proteinases, are found in a number of plants where they may play a role in defense against pathogens and pests. The cDNAs of the phytocystatins from rice, oryzacystatin I (OC-I) and oryzacystatin II (OC-II), were expressed in alfalfa (Medicago sativa) plants under the control of the potato protease inhibitor II (PinII) promoter and the plants were evaluated for resistance to the root-lesion nematode (Pratylenchus penetrans). A PinII-beta-glucuronidase (GUS) gene was introduced into alfalfa to determine the pattern of gene expression from this promoter. Constitutive GUS expression was observed in leaf and root vascular tissue, and in some plants, expression was observed in leaf mesophyll cells. Mechanical wounding of leaves increased GUS expression approximately twofold over 24 h. Inoculation with root-lesion nematodes resulted in localized GUS expression. Populations of root-lesion nematodes in alfalfa roots from one line containing the PinII::OC-I transgene and one line containing the PinII::OC-II transgene were reduced 29 and 32%, respectively, compared with a transgenic control line. These results suggest that oryzacystatins have the potential to confer increased resistance to the root-lesion nematode in alfalfa.  相似文献   

4.
植物寄生线虫是严重危害农业生产的一类重要病原生物,对全球作物产量造成重大损失.抗线虫基因在植物抗线虫反应中发挥重要作用,发掘抗线虫基因并培育抗线虫品种是防治线虫病害的一条有效途径.抗线虫基因的定位与克隆对解析植物抗线虫性的分子机理做出了巨大贡献,明确线虫与寄主植物之间的互作关系及抗线虫机制,可以为制定和采取更加有效的防控策略提供借鉴.  相似文献   

5.
植物抗虫基因工程为控制害虫的危害提供了新的途径。目前,对同翅目害虫具抗虫活性的基因有三种来源,(1)植物:如植物凝集素基因、番茄抗线虫基因Mi等;(2)微生物:如异戊烯转移酶抗性基因;(3)动物:如来自一些昆虫的蛋白酶抑制素基因。其中一些基因已被成功地转入植物体内,并且获得的转基因抗虫植物对同翅目害虫的生长、发育、繁殖能力等方面都具有一定的抑制作用,表现出这些抗虫基因在防治这类害虫中的应用潜力。雪花莲凝集素可通过人工饲料或转基因作物进入昆虫体内,并通过营养级传递于天敌,进而对天敌造成直接或间接的影响。  相似文献   

6.
Oka Y  Cohen Y  Spiegel Y 《Phytopathology》1999,89(12):1138-1143
ABSTRACT Chemical inducers of pathogenesis-related proteins and plant resistance were applied to tomato plants, with the aim of inducing resistance to the root-knot nematode Meloidogyne javanica. Relative to control plants, foliar spray and soil-drenching with dl-beta-amino-n-butyric acid (BABA) reduced root-galling 7 days after inoculation, as well as the number of eggs 30 days after inoculation. Other chemicals (alpha- and gamma-amino-n-butyric acid, jasmonic acid, methyl jasmonate, and salicylic acid) were either phytotoxic to tomato plants or did not improve control of root-knot nematodes. Fewer second-stage juveniles invaded BABA-treated tomato roots, and root-galling indices were lower than in control tomato plants. Resistance phenomena in seedlings lasted at least 5 days after spraying with BABA. Nematodes invading the roots of BABA-treated seedlings induced small, vacuolate giant cells. Postinfection treatment of tomato plants with BABA inhibited nematode development. It is speculated that after BABA application tomato roots become less attractive to root-knot nematodes, physically harder to invade, or some substance(s) inhibiting nematode or nematode feeding-site development is produced in roots.  相似文献   

7.
用转基因方法进行抗线虫农作物育种的研究进展   总被引:1,自引:0,他引:1  
在许多农作物中,植物寄生线虫引起重大损失。有幸的是,某些植物对线虫有抗性,而且存在于栽培种和其近亲野生种中的抗性基因,可以用分子标记方法建立图谱。标记辅助的选择方法已广泛应用于育种工作中,两种抗线虫的基因已经通过定位克隆技术分离出来,并成功地在栽培作物中得到表达。建立线虫抗性的另一个方法是将具有杀线剂效应的基因导入植物中,该方法也已取得了一些进展。  相似文献   

8.
在许多农作物中,植物寄生线虫引起重大损失。有幸的是,某些植物对线虫有抗性,而且存在于栽培种和其近亲野生种中的抗性基因,可以用分子标记方法建立图谱。标记辅助的选择方法已广泛应用于育种工作中,两种抗线虫的基因已经通过定位克隆技术分离出来,并成功地在栽培作物中得到表达。建立线虫抗性的另一个方法是将具有杀线剂效应的基因导入植物中,该方法也已取得了一些进展。  相似文献   

9.
Plant hosts can be engineered to disrupt the development of sedentary plant-parasitic nematodes or proper functioning of the feeding sites the nematodes induce. The use of constitutive promoters to express dsRNAs or nematode inhibitor proteins may be unreliable because of possible silencing or yield penalty from continuous expression in a plant host. This ill-effect can be avoided if a root-specific, nematode-responsive promoter (NRP) is used to drive the target nematode-inhibitory message. This study used the In Plant Activation (INPACT) system to express a barstar-controlled barnase in galls of Meloidogyne javanica and assessed how the engineered tobacco lines affected the growth and development of the nematodes. Of the 11 combinations of four NRPs and the CaMV 35S promoter assessed, the AtCel1 and TobRB7 combinations activated specific expression of split β-glucuronidase (GUS) and barnase genes in and around giant cells. The same NRP combination directed expression of the barnase gene in tobacco roots also constitutively expressing the barstar gene (SPBB transgenic lines). On roots of six T1 SPBB lines, there was up to 94% reduction in the number of galls with significantly smaller adult females compared to those on wild-type plants. Some of the females on lines SPBB4-1 and SPBB-4-2, for example, were not associated with galls. The results indicated the engineered plants disrupted M. javanica development and demonstrate the potential for controlled and localized expression of peptides, such as those that could block specific effectors, to disrupt initiation, formation, establishment, or proper functioning of feeding cells induced by damaging sedentary nematodes.  相似文献   

10.
根结线虫的研究现状   总被引:50,自引:0,他引:50  
概述了根结线虫的发生分布和传统分类鉴定,以及分子生物学技术(同工酶电泳技术、DNA重组技术、PCR技术)在根结线虫种和生理小种鉴定中的运用及其防治,并对生物防治及抗根结线虫育种、转基因工程在植物线虫学研究领域上的应用前景作了展望。  相似文献   

11.
Plant products are receiving greater attention as prophylactics against several species of plant-parasitic nematodes. Numerous experiments have shown the potential nematicidal value of plant parts and their by-products when incorporated into soil or when the plants themselves are interplanted as seedlings among crop plants. Various products (oils, cakes, extracts, etc.) prepared from the leaves and seeds of the neem plant (Azadirachta indica A. Juss) (Family Meliaceae) have been reported as effective protectants against nematode pests when used as root-dips and seed treatments. Nemato-toxic compounds of the neem plant, especially the azadirachtins, are released through volatilization, exudation, leaching and decomposition. The modes of action of these compounds are complex, and a number of mechanisms in relation to nematode management are yet to be fully explored. This review critically assesses the potential of these products in the management of nematodes in tropical agriculture.  相似文献   

12.
植物抗线虫基因工程新途径及其在分子育种中的应用   总被引:3,自引:0,他引:3  
 植物寄生线虫种类繁多、危害严重,给世界农业生产造成巨大经济损失。目前防治线虫通常采用轮作、杀线虫药剂、生物防治和应用抗性品种等措施,但存在一定局限性。随着植物与寄生线虫之间相互作用机制的深入研究以及分子遗传操作技术的逐渐成熟,利用基因工程技术构建环保、方便、有效的线虫防治策略逐渐成为研究热点。本文从植物抗线虫基因、抑制线虫的外源活性蛋白、特异表达启动子,以及RNAi介导的抗线虫基因工程策略等方面,简要概述了国内外近年来植物抗线虫基因工程新途径研究进展以及在分子抗病育种中的应用。  相似文献   

13.
Efficient management of plant-parasitic nematodes requires the carefully integrated combination of several methods. Although each individual method of management has a limited use, together, they help in reducing the nematode populations in agricultural soils or in plants. A public desire for methods of managing plant pests in ways that do not pollute or otherwise degrade the environment has increased concomitantly with progress in research. Integrated pest management (IPM) provides a working methodology for pest management in sustainable agriculutural systems. In this paper, current methods for the management of plant-parasitic nematodes are discussed within the guidelines of IPM. The emphasis is on the methods by which decisions are made to manage nematode problems with the most effective and widely used management strategies. The advantages and difficulties associated with nematicidal chemicals (i.e. cost, reinfestation of soil after harvest, contamination of ground water and residues in fruits and vegetables), biological control (by predatory or parasitic fungi and nematodes) and management with cultural methods (including the use of uncontaminated plants or seeds, crop rotation, modification of sowing and/or harvesting times, trap crops and resistant varieties etc.) are considered  相似文献   

14.
植物寄生线虫现已成为危害农业生产的第二大类病害,其防治迫在眉睫。线虫的生物防治是一种新型的线虫防治策略,主要是利用动植物和微生物及其次级代谢产物对线虫进行防治。植物源次级代谢产物即植物源化合物,源于自然,是植物源农药的核心。相比于化学杀线虫剂,植物源杀线虫剂对环境影响较小、靶向性强且不易使线虫产生抗药性。因此,从植物中获得结构新颖且杀线虫活性好的小分子化合物并将其开发成绿色农药,对于线虫病的防治具有重要意义。本文对杀线虫植物、具有杀线虫活性的植物源化合物及其杀虫机理、植物源杀线虫农药的应用情况展开综述,并对该研究领域进行了展望,希望能为植物寄生线虫病的防治与植物源杀线虫农药的开发利用提供参考和帮助。  相似文献   

15.
The development ofHeterodera schachtii Schm. (beet cyst nematode, BCN) juveniles in roots of resistant and susceptible genotypes belonging to cruciferous crop species and hybrids was studied from 4 to 28 days after inoculation. No difference in root penetration by larvae was observed between resistant and susceptible plants.The development of nematodes in roots from resistant plants ofRaphanus sativus L., resistant xBrassicoraphanus Sageret and a resistant hybrid xBrassicoraphanus x Brassica napus L. was similar. BCN resistance in these three sources of plant material appeared to be related to an increased male:female nematode ratio as compared to the ratio found in susceptibleR. sativus plants.Also in resistant plants ofSinapis alba L. and a resistant intergeneric hybridS. alba x B. napus the increase in male:female nematode ratio, as compared to the ratio found for susceptibleS. alba cultivars and a susceptible intergeneric hybridS. alba x B. napus, seemed to be related with the observed resistance. In roots of the resistantS. alba and of a resistant hybridS. alba x B. napus, however, BCN resistance might also be due to a slower development of larvae and increased necrosis of root cells at the site of larval penetration.  相似文献   

16.
RNA interference (RNAi) or gene silencing is a natural defence response of plants to invading viruses. Here, we applied this approach against pepino mosaic virus (PepMV) isolates in their natural host, tomato. PepMV isolates differ in their genetic sequences, the severity of the disease they induce, and their worldwide distribution. PepMV causes heavy crop losses, mainly due to impaired tomato fruit quality. Resistant varieties are not yet available, despite many years of resistance breeding efforts within the tomato seed industry. To generate broad resistance to PepMV strains, conserved sequences from three different strains of PepMV (US1, LP, and CH2) were synthesized as a single insert and cloned in a hairpin configuration into a binary vector, which was used to transform tomato plants. Transgenic tomato lines that expressed a high level of transgene-siRNA exhibited immunity to PepMV strains, including a new Israeli isolate. This immunity was maintained even after graft inoculation, in which a transgenic scion was grafted onto nontransgenic infected rootstocks. However, an immune transgenic rootstock was unable to induce resistance in a nontransformed scion. These results provide the first example of engineered immunity to diverse PepMV strains in transgenic tomato based on gene silencing.  相似文献   

17.
马铃薯孢囊线虫包括马铃薯金线虫Globodera rostochiensis和马铃薯白线虫G. pallida, 是马铃薯生产上危害最为严重的植物寄生线虫, 一般造成30%的产量损失, 在热带发病严重地区, 产量损失高达80%~90%, 甚至绝收?由于其危害严重性, 包括我国在内的100多个国家将其列为重要检疫性有害生物?我国目前尚无马铃薯金线虫和白线虫的发生报道, 但随着贸易全球化, 马铃薯孢囊线虫传入我国的风险日趋增高?本文主要对马铃薯孢囊线虫的发生分布?危害症状?经济损失?生物学特性?传入我国的潜在风险和预防控制措施进行综述, 旨在为防止马铃薯孢囊线虫入侵我国提供参考?  相似文献   

18.
The effect of root-knot nematodes ( Meloidogyne javanica and M. incognita ) on production of the isoflavonoid phytolexin, cajanol, was investigated in pigeonpea ( Cajanus cajan ) plants infected with Fusarium udum , the causal organism of Fusarium wilt. Seven-day-old seedlings of a wilt-resistant pigeonpea cultivar, ICP 9145 and a wilt-susceptible cultivar, Malawi Local, both of which were moderately susceptible to the nematode, were grown in soil infested with 2000 Meloidogyne juyeniles per plant. A duplicate set of plants remained free from nematodes. Twenty-one days later, all the plants were inoculated with F. udum by stem puncture. Quantitative estimates of cajanol in the vascular tissues were made at intervals up to 15 days after inoculation with the fungus. No external symptoms of wilt appeared in any plants of the wilt-resistant cultivar in the absence of the nematode. However, when inoculated with the nematode, two thirds of the plants developed wilt symptoms. Cajanol levels were lower in both the wilt-resistant and wilt-susceptible plants in the presence of the nematode than in its absence, although this effect was considerably more marked in the wilt-resistant cultivar. These results indicate that the root-knot nematode is capable of breaking resistance of ICP 9145 to Fusarium wilt and that at least part of the mechanism of this effect is retarded cajanol accumulation.  相似文献   

19.
The polyphagous obligate parasites Meloidogyne spp. devastate a wide range of crop plants including bananas and plantains. Their infestations impact agriculture worldwide. Therefore, an effective combating regime against this nematode species and an in-depth understanding of plant-nematode interaction are essential. Early detection of infection by visual inspection is not possible. This hampers early control strategy efforts and makes in-depth research of the early infection and plant defence unfeasible. A simple and robust in planta PCR-based nematode detection method is described here as the first crucial step. This PCR-based detection assay exploits the existence of the Internal Transcribed Spacer 1 (ITS 1) region of the ribosomal DNA (rDNA) gene family in the nematodes for early detection of nematode penetration into the roots. The results demonstrate that this detection assay is suitable to serve as a molecular screening tool for plant root diagnostic purposes.  相似文献   

20.
Damage caused by nematodes is one of the limiting factors in crop production. Traditional nematode management is based on the use of crop rotations, resistant cultivars, nematicides, or combinations of these methods. For a crop like peanut (Arachis hypogaea), cultivars resistant to root-knot nematodes are not available. There are soybean (Glycine max) cultivars resistant to some of the species of root-knot nematodes (Meloidogyne spp.); however, most fields have nematode infestations composed of mixtures of species. Research at Auburn has shown that tropical crops can be used effectively in rotation to manage nematode problems. Rotations with American jointvetch (Aeschynomene americana), castor (Ricinus communis), hairy indigo (Indigofera hirsuta), partridge pea (Cassia fasciculata), sesame (Sesamum indicum), and velvetbean (Mucuna deeringiana) have resulted in good nematode control and increased yields of peanut and soybean. Some crops (castor, sesame) are considered ‘active’ in that they produce compounds that are nematicidal, whereas others (e.g. corn, sorghum) are simply non-host, that is, ‘passive’.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号