首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Borkhar district is located in an arid to semi-arid region in Iran and regularly faces widespread drought. Given current water scarcity, the limited available water should be used as efficient and productive as possible. To explore on-farm strategies which result in higher economic gains and water productivity (WP), a physically based agrohydrological model, Soil Water Atmosphere Plant (SWAP), was calibrated and validated using intensive measured data at eight selected farmer fields (wheat, fodder maize, sunflower and sugar beet) in the Borkhar district, Iran during the agricultural year 2004-2005. The WP values for the main crops were computed using the SWAP simulated water balance components, i.e. transpiration T, evapotranspiration ET, irrigation I, and the marketable yield YM in terms in terms of YMT−1, YM ET−1 and YM I−1.The average WP, expressed as $ T−1 (US $ m−3) was 0.19 for wheat, 0.5 for fodder maize, 0.06 for sunflower and 0.38 for sugar beet. This indicated that fodder maize provides the highest economic benefit in the Borkhar irrigation district. Soil evaporation caused the average WP values, expressed as YM ET−1 (kg m−3), to be significantly lower than the average WP, expressed as YMT−1, i.e. about 27% for wheat, 11% for fodder maize, 12% for sunflower and 0.18 for sugar beet. Furthermore, due to percolation from root zone and stored moisture content in the root zone, the average WP values, expressed as YMI−1 (kg m−3), had a 24-42% reduction as compared with WP, expressed as YM ET−1.The results indicated that during the limited water supply period, on-farm strategies like deficit irrigation scheduling and reduction of the cultivated area can result in higher economic gains. Improved irrigation practices in terms of irrigation timing and amount, increased WP in terms of YMI−1 (kg m−3) by a factor of 1.5 for wheat and maize, 1.3 for sunflower and 1.1 for sugar beet. Under water shortage conditions, reduction of the cultivated area yielded higher water productivity values as compared to deficit irrigation.  相似文献   

2.
Evapotranspiration (ET) is an important component of the water cycle at field, regional and global scales. This study used measured data from a 30-year irrigation experiment (1979-2009) in the North China Plain (NCP) on winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) to analyze the impacts of climatic factors and crop yield on ET. The results showed that grass reference evapotranspiration (ETo, calculated by FAO Penmen-Monteith method) was relatively constant from 1979 to 2009. However, the actual seasonal ET of winter wheat and maize under well-watered condition gradually increased from the 1980s to the 2000s. The mean seasonal ET was 401.4 mm, 417.3 mm and 458.6 mm for winter wheat, and 375.7 mm, 381.1 mm and 396.2 mm for maize in 1980s, 1990s and 2000s, respectively. The crop coefficient (Kc) was not constant and changed with the yield of the crops. The seasonal average Kc of winter wheat was 0.75 in the 1980s, 0.81 in the 1990s and 0.85 in the 2000s, and the corresponding average grain yield (GY) was 4790 kg ha−1, 5501 kg ha−1 and 6685 kg ha−1. The average Kc of maize was 0.88 in the 1980s, 0.88 in the 1990s and 0.94 in the 2000s, with a GY of 5054 kg ha−1, 7041 kg ha−1 and 7874 kg ha−1, respectively, for the three decades. The increase in ET was not in proportion to the increase in GY, resulting improved water use efficiency (WUE). The increase in ET was possibly related to the increase in leaf stomatal conductance with renewing in cultivars. The less increase in water use with more increase in grain production could be partly attributed to the significant increase in harvest index. The results showed that with new cultivars and improved management practices it was possible to further increase grain production without much increase in water use.  相似文献   

3.
Moisture content of shelled maize,Zea maysL., was correlated with the attenuation and phase shift of electromagnetic waves travelling through a layer of grain. Several calibration equations are presented in the paper that are based on measurements taken at 15·2 GHz for various grain densities, moisture contents and temperatures. Validation of the calibration equations indicated that moisture content can be predicted with an uncertainty less than ±0·72% moisture content w.b. at the 95% confidence level. Moisture predictions are largely independent of bulk density variations at temperatures from 4 to 45°C and moisture contents from 9 to 19% w.b. By following one approach described, the grain bulk density can be determined from the same measurements with an uncertainty of less than 25 kg/m3. With another approach, the grain bulk density cannot be determined, but moisture content is determined independent of the material bulk density and compensated for temperature. No differences among three maize hybrids were observed in the measured data.  相似文献   

4.
Crop production in Mediterranean-type environments is invariably limited by low and erratic rainfall (200-600 mm year−1), and thus soil moisture, and by high evapotranspiration resulting from high temperature. Consequently, a major research challenge is to devise cropping systems that maximize water-use efficiency (WUE). In a long-term trial in northern Syria (1986-1998) we compared the effects of seven wheat-based rotations on soil water dynamics and WUE in both the wheat and non-wheat phase. The cropping systems were durum wheat (Triticum turgidum L.) in rotation with fallow, watermelon (Citrullus vulgaris), lentil (Lens culinaris), chickpea (Cicer arietinum), vetch (Vicia sativa), medic pasture (Medicago spp.), and wheat. Seasonal recharge/discharge were identified using the neutron probe. Depth of wetting varied with seasonal rainfall (233-503 mm). Based on crop yields, WUE was calculated for each cropping option in relation to the durum wheat crop.The greatest limitation to growth was the supply of water and not the soil moisture storage potential. Wheat grain yield was dictated by the extent to which the alternative crops in the rotation dried out the soil profile, in addition to seasonal rainfall and its distribution. Chickpea and medic extracted as much water as continuous wheat. Wheat after these crops was solely dependent on current seasonal rainfall, but fallow, lentil, watermelon, and vetch did not deplete soil moisture to the same extent, leaving some residual soil moisture for the succeeding wheat crop. This difference in soil water resulted in a significant difference in wheat yield and hence WUE, which decreased in the following crop rotation sequence: fallow, medic, lentil, chickpea, and continuous wheat. However, on the system basis, the wheat/lentil or wheat/vetch systems were most efficient at using rainfall, producing 27% more grain than the wheat/fallow, while the wheat/chickpea system was as efficient as wheat/fallow system, with continuous wheat being least efficient. With N added to the cereal phase, system WUE of the system increased, being least for continuous wheat and greatest for wheat/lentil. Wheat-legume rotation systems with additional N input in the wheat phase not only can maintain sustainable production system, but also are more efficient in utilizing limited rainfall.  相似文献   

5.
Oilseed and pulse crops have been increasingly used to replace conventional summer fallow and diversify cropping systems in northern high latitude areas. The knowledge of water use (WU) and its distribution profile in the soil is essential for optimizing cropping systems aimed at improving water use efficiency (WUE). This study characterized water use and distribution profile for pulse and oilseed crops compared to spring wheat (Triticum aestivum L.) in a semiarid environment. Three oilseeds [canola (Brassica napus L.), mustard (Brassica juncea L.) and flax (Linum usitatissimum L.)], three pulses [chickpea (Cicer arietinum L.), dry pea (Pisum sativum L.) and lentil (Lens culinaris Medik.)], and spring wheat were seeded in removable 100 cm deep × 15 cm diameter lysimeters placed in an Aridic Haploboroll soil, in southwest Saskatchewan in 2006 and 2007. Crops were studied under rainfed and irrigated conditions where lysimeters were removed and sampled for plant biomass and WU at various soil depths. Wheat yields were greater than pulse crop yields which were greater than oilseed yields, and WUE averaged 4.08 kg ha−1 mm−1 for pulse crops, 3.64 kg ha−1 mm−1 for oilseeds, and ranged between 5.5 and 7.0 kg ha−1 mm−1 for wheat. Wheat used water faster than pulse and oilseed crops with crop growth. Pulse crops extracted water mostly from the upper 60 cm soil depths, and left more water unused in the profile at maturity compared to oilseeds or wheat. Among the three pulses, lentil used the least amount of water and appeared to have a shallower rooting depth than chickpea and dry pea. Soil WU and distribution profile under canola and mustard were generally similar; both using more water than flax. Differences in WU and distribution profile were similar for crops grown under rainfall and irrigation conditions. A deep rooting crop grown after pulses may receive more benefits from water conservation in the soil profile than when grown after oilseed or wheat. Alternating pulse crops with oilseeds or wheat in a well-planned crop sequence may improve WUE for the entire cropping systems in semiarid environments.  相似文献   

6.
Summary A coupled soil-vegetation energy balance model which treats the canopy foliage as one layer and the soil surface as another layer was validated againt a set of field data and compared with a single-layer model of a vegetation canopy. The two-layer model was used to predict the effect of increases in soil surface temperature (T s ) due to the drying of the soil surface, on the vegetation temperature (T v ). In the absence of any change in stomatal resistance the impact of soil surface drying on the Crop Water Stress Index (CSWI) calculated from T v was predicted. Field data came from a wheat crop growing on a frequently irrigated plot (W) and a plot left un watered (D) until the soil water depletion reached 100 mm. Vegetation and soil surface temperatures were measured by infrared thermometers from tillering to physiological maturity, with meteorological variables recorded simultaneously. Stomatal resistances were measured with a diffusion porometer intensively over five days when the leaf area index was between 5 and 8. The T v predicted by the single-layer and the two-layer models accounted for 87% and 88% of the variance of measured values respectively, and both regression lines were close to the 11 relationship. Study of the effect of T s on the CWSI with the two-layer model indicated that the CWSI was sensitive to changes in T s . The overestimation of crop water stress calculated from the CWSI was predicted to be greater at low leaf area indices and high levels of stomatal resistance. The implications for this bias when using the CWSI for irrigation scheduling are discussed.List of Symbols C Sensible heat flux from the soil-vegetation system (W m–2) - c l shade Mean stomatal conductance of the shaded leaf area (m s–1) - c l sun Mean stomatal conductance of the sunlit leaf area (m s–1) - c max Maximum stomatal conductance (m s–1) - c 0 Minimum stomatal conductance (m s–1) - C p Specific heat at constant pressure (J kg–1 °C–1) - C s Sensible heat flux from the soil (W m–2) - C v Sensible heat flux from the vegetation (W m–2) - c v Bulk stomatal conductance of the vegetation (m s–1) - CWSI Crop Water Stress Index (dimensionless) - e a Vapor pressure at the reference height (kPa) - e b Vapor pressure at the virtual source/sink height of heat exchange (kPa) - e 0 * Saturated vapor pressure at T 0 (kPa) - e s Vapor pressure at the soil surface (kPa) - e v * Saturated vapor pressure at T v (kPa) - G Soil heat flux (Wm–2) - GLAI Green leaf area index (dimensionless) - GLAIshade Green shaded leaf area index (dimensionless) - GLAIsun Green sunlit leaf area index (dimensionless) - k Extinction coefficient for photosynthetically active radiation (dimensionless) - k 1 Damping exponent for Eq. A 5 (m2 W–1) - LAI Leaf area index (dimensionless) - LE Latent heat flux from the soil-vegetation system (W m–2) - LE s Latent heat flux from the soil (W m–2) - LE v Latent heat flux from the vegetation (W m–2) - p a Density of air (kg m–3) - PARa Photosynthetically active radiation above the canopy (W m–2) - PARu Photosynthetically active radiation under the canopy (W m–2) - r a Aerodynamic resistance (s m–1) - r b Heat exchange resistance between the vegetation and the adjacent air boundary layer (s m–1) - r c Bulk stomatal resistance of the vegetation (s m–1) - R n Net radiation above the canopy (W m–2) - R s Net radiation flux at the soil surface (W m–2) - r st Mean stomatal resistance of leaves in the canopy (s m–1) - R v Net radiation absorbed by the vegetation (W m–2) - r w Heat exchange resistance between the soil surface and the boundary layer (s m–1) - S Photosynthetically active radiation on the shaded leaves (W m–2) - S d Diffuse photosynthetically active radiation (W m –2) - S 0 Photosynthetically active radiation on a surface perpendicular to the beams (W m–2) - T a Air temperature at the reference height (°C) - T b Temperature at the virtual source/sink height of heat exchange (°C) - T 0 Aerodynamic temperature (°C) - T s Soil surface temperature (°C) - T v Vegetation temperature (°C) - w 0 Single scattering albedo (dimensionless) - Psychrometric constant (kPa °C) - 0 Cosine of solar zenith angle (dimensionless)  相似文献   

7.
Selecting more water efficient cultivars is an important way to reduce water use in a water-scarce region. The objectives of this study were to measure the grain yield and water use efficiency (WUE) of winter wheat (Triticum aestivum L.) cultivars to understand the genetic gains in yield and WUE and their associated physiological and agronomic traits in Hebei province, North China Plain (NCP). Two groups of winter wheat cultivars were tested. Group 1 included 16 winter wheat cultivars that were released between 1998 and 2002 and were tested during the 2002/2003 and 2003/2004 seasons under two water regimes. Group 2 included 10 cultivars released between 1970 and 2000, and were tested during the 2005/2006 and 2006/2007 seasons under three water regimes. Results showed that WUE increased substantially from 1.0-1.2 kg m−3 for cultivars from the early 1970s to 1.4-1.5 kg m−3 for recently released cultivars. There was also a variation in yield and WUE of about 20% among Group 1 cultivars. Most of the cultivars in both groups had similar responses to water supply. WUE was greater for less irrigated treatments and maximum grain production was achieved with moderate water deficit. The genetic gains in grain yield were associated with increasing in biomass, harvest index and kernel numbers per spike for cultivars released in different years. Among the Group 1 cultivars, the ones with higher yield generally had higher WUE. No significant correlations were found between WUE and physiological traits such as ash content, chlorophyll content, or relative water content among the cultivars released recently. However, a significant relationship was found between stomatal conductance or ash contents and WUE or grain yield among the Group 2 cultivars. Relationships were apparent between WUE and date of anthesis and harvest index (P < 0.05) in Group 1. Earlier flowering cultivars tended to have higher grain yield. In Group 2, flowering date was advancing by about 4 days over the 30 years of crop breeding. The positive relationship between grain yield and WUE for all the cultivars indicated that using a higher yielding cultivar has the potential to improve WUE and thereby to save water.  相似文献   

8.
Summary Four irrigation treatments: no irrigation; early irrigation (150 mm); late irrigation (150 mm); and early+late irrigation (275 mm), with 363 mm of rain; and four basic applications of nitrogen (0, 60, 120, 180 kg ha–1), with and without an additional nitrogen top dressing of 60 kg ha–1, were applied to autumn-sown wheat.For any given total nitrogen rate, there was no difference between the single and the split application.Grain yields ranged from 3040 kg ha–1 for the unirrigated, zero-nitrogen treatment to 6340 kg ha–1 for the two irrigations, 180 kg ha –1 N treatment. There was a strong interaction of irrigation and nitrogen on grain yields which was due mainly to the late irrigation: in the absence of the late irrigation the optimal nitrogen rate was 120 kg hat, followed by a marked decline in yield with additional nitrogen, whereas the application of the late irrigation shifted the optimum nitrogen rate to 180 kg ha–1. In the absence of the late irrigation, increasing the nitrogen rate from 0 to 240 kg ha –1 reduced kernel weight from 42 to 32 mg, whereas late irrigation largely prevented this decrease (42 to 39 mg). The reduction in kernel weight was evident even at the first nitrogen increments, in the range where grain yield was still increasing. Lack of nitrogen reduced soil moisture extraction during the grain filling stage, particularly from soil layers deeper than 60 cm.Stomatal aperture in the irrigated treatments was markedly larger in nitrogen-supplied than in nitrogen-deficient wheat, although the leaf hydration was similar; in the unirrigated treatment, the nitrogen-supplied plants had a lower hydration and smaller stomatal aperture than nitrogen-deficient plants.Contribution from the Agricultural Research Organization, Bet Dagan, Israel, No: 282-E, 1977 series  相似文献   

9.
《Agricultural Systems》2001,67(2):83-103
Using an on-farm approach, we investigated constraints to actual yield of sunflower in six agroecological zones within the Argentine Pampas during three growing seasons. In 249 large, grower-managed paddocks, we quantified a series of variables related to: (1) crop phenology, growth, and yield; (2) the physical and biological environment; and (3) management practices. Variation in yield among zones and seasons was analysed on the basis of four biologically-founded assumptions: (1) grain number accounts for a large proportion of the variation in yield; (2) grain number is associated with a photothermal coefficient, Q=R (T-Tb)−1, where R and T are average solar radiation and air temperature respectively, during the 50-day period bracketing anthesis; and Tb is a base temperature; (3) crop growth and yield are proportional to light interception, and therefore proportional to canopy ground cover; and (4) yield is proportional to the fraction of seasonal rainfall that occurs after anthesis. Average yield ranged from 1.1 to 2.7 t ha−1, grain number from 2400 to 5400 m−2, individual grain mass between 40 and 69 mg and grain oil concentration between 42 and 52%. Grain number accounted for 43% of the variation in average yield while Q accounted for 23% of the variation in grain number. Low yield was associated with deficient ground cover in 25% of the crops; part of the remaining variation in yield was accounted for by sets of measured variables particular to each zone, including soil shallowness, low available P, low initial water content, weeds and diseases — chiefly Verticillium wilt (Verticillium dahliae) and Sclerotinia head rot (Sclerotinia sclerotiorum). Across zones and seasons, the proportion of seasonal rainfall occurring after anthesis accounted for 28% of the variation in crop yield. A trade-off is highlighted whereby beneficial effects of rainfall that favours growth and yield may be offset by the detrimental effect of abundant moisture that favours major fungal diseases. We emphasised the value of combining experimental studies — which provide biological background in the form of working hypotheses — with on-farm research that realistically quantifies yield response to key factors.  相似文献   

10.
The dependence of physical properties of gram on moisture content was determined. The best approximate shape was found to be a prolate spheroid. At 10·9% moisture content d.b., the measurements yielded an average 1000 grain weight of 0·173 kg, a mean surface area of 133·4 mm2, and sphericity and roundness of 74% and 70% respectively. In the moisture range from 9·64 to 31·0% d.b., studies on rewetted gram showed that the bulk density changed from 780 to 708 kg/m3, kernel density from 1311 to 1257 kg/m3; porosity from 40·5 to 43·7% and static coefficient of friction from 0·384 to 0·651 over surfaces of different materials. The angle of repose was observed to change from 25·5° to 30·4° in the moisture range from 8·62 to 17·6% d.b.  相似文献   

11.
This study evaluated the performance of three soil water content sensors (CS616/625, Campbell Scientific, Inc., Logan, UT; TDT, Acclima, Inc., Meridian, ID; 5TE, Decagon Devices, Inc., Pullman, WA) and a soil water potential sensor (Watermark 200SS, Irrometer Company, Inc., Riverside, CA) in laboratory and field conditions. Soil water content/potential values measured by the sensors were compared with corresponding volumetric water content (θv, m3 m−3) values derived from gravimetric samples, ranging approximately from the permanent wilting point (PWP) to field capacity (FC) volumetric water contents. Under laboratory and field conditions, the factory-based calibrations of θv did not consistently achieve the required accuracy for any sensor in the sandy clay loam, loamy sand, and clay loam soils of eastern Colorado. Salt (calcium chloride dihydrate) added to the soils in the laboratory caused the CS616, TDT, and 5TE sensors to experience errors in their volumetric water content readings with increased bulk soil electrical conductivity (EC; dS m−1). Results from field tests in sandy clay loam and loamy sand soils indicated that a linear calibration (equations provided) for the TDT, CS616 and 5TE sensors (and a logarithmic calibration for the Watermark sensors) could reduce the errors of the factory calibration of θv to less than 0.02 ± 0.035 m3 m−3. Furthermore, the performance evaluation tests confirmed that each individual sensor needed a unique calibration equation for every soil type and location in the field. In addition, the calibrated van Genuchten (1980) equation was as accurate as the calibrated logarithmic equation and can be used to convert soil water potential (kPa) to volumetric soil water content (m3 m−3). Finally, analysis of the θv field data indicated that the CS616, 5TE and Watermark sensor readings were influenced by diurnal fluctuations in soil temperature, while the TDT was not influenced. Therefore, it is recommended that the soil temperature be considered in the calibration process of the CS616, 5TE, and Watermark sensors. Further research will be aimed towards determining the need of sensor calibration for every agricultural season.  相似文献   

12.
This study was aimed to investigate dual effects of irrigation regimes and N fertilizer rates on some agronomic traits (with emphasis on yield qualitative and quantitative characteristics) and finding optimized irrigation level and N application rate for two canola (Brassic napus L.) cultivars. For this purpose, two variety of canola (Zarfam and Modena), four irrigation regimes including 30%, 45%, 60% and 75% (I1-I4) of maximum allowable depletion (MAD) of available soil water (ASW) and four nitrogen rates (viz. 0, 90, 180 and 270 kg N ha−1 (N1-N4) were involved in Karaj, Iran for two successive years (2007-2008). Our results revealed special fertilizer threshold for each irrigation regime in respect to seed yield. Response rate to fertilizers was ceased in lower fertilizer rates by prolonging irrigation. The response rate showed a decrease of 15.4%, 17.2% and 30.7% in I2, I3 and I4 in comparison with I1, but I2 response to fertilizer ceased in higher N rate as Ncritical (189.8 kg N ha−1). This implies that I2 improved response of canola cultivars to N fertilizer, which was accompanied by its higher WUE. Also, all estimated Ncriticals for all irrigation levels were higher than the current recommendation of 130 kg N ha−1. This show the capability of increasing canola cultivars yield in study region by reasonable increasing of fertilizer rate (decreasing gap between recommended N rate and estimated values) in advisable irrigation regime (I2). Cultivars tended to respond similarly to irrigation and nitrogen for seed yield in both years, but Zarfam was more efficient than Modena in respect to response to diverse treatments.  相似文献   

13.
The effect on compressibility of incorporating peat into four remoulded Trinidadian agricultural soils was investigated over a range of stresses from 0 to 1000 kPa using a compression machine. Air-dry peat was applied at four levels (0, 4, 8 and 12% by mass) to the soils (two sandy loams, clay loam and clay) and tested at three moisture contents close to the Proctor optimum moisture content of the soils. Compression curves (bulk density versus log applied stress) for each soil at the moisture levels tested were almost linear and parallel over the range of stresses from about 100 to 1000 kPa.Mean values of dry bulk density declined significantly at 0.001 level with increasing peat content from 1·23 to 0·87 Mg m-3. Mean bulk density values increased significantly at 0·001 level with increasing applied stress and moisture content and declined with increasing clay content. Significant interaction effects were observed between soil type and peat content and between peat content and moisture content. Peat incorporation resulted in greater soil compression, but the increases were less evident in clay than in sandy loam soils. Soil compression refers to the decrease in soil volume with the application of external load. The compression index, C (slope of the dry bulk density versus log applied stress relationship), increased significantly at 0·05 level from 0·21 Mg/m3 in one sandy loam soil to 0·38 Mg/m3 in the clay soil. While the C value did not differ significantly with increasing peat content in the sandy loams and the clay loam, it decreased significantly at 0·01 level in the clay soil. An equation expressing C as a function of initial soil bulk density before compression and a strain parameter was developed in order to explain the variation of C in the soils tested. A method is described that can be adopted to quantify the effect of peat on soil compressibility.  相似文献   

14.
A field study was carried out in order to determine the effect of deficit irrigation regimes on grain yield and seasonal evapotranspiration of safflower (Carthamus tinctorius L.) in Thrace Region of Turkey. The field trials were conducted on a loam Entisol soil, on Dincer, the most popular variety in the research area. A randomised complete block design with three replications was used. Combination of four well-known growth stages of the plant, namely vegetative (Va), late vegetative (Vb), flowering (F) and yield formation (Y) were considered to form a total of 16 (including rain fed) irrigation treatments. The effect of irrigation and water stress at any stage of development on grain yield per hectare and 1000 kernels weight was evaluated. Results showed that safflower was significantly affected by water stress during the sensitive late vegetative stage. The highest yield was obtained in VaVbFY treatment. Seasonal irrigation water use and evapotranspiration were 501 and 721 mm, respectively, for the non-stressed treatment. Safflower grain yield of this treatment was 5.22 Mg ha−1 and weight of 1000 kernels was 55 g. The seasonal yield-water response factor value was 0.87. The total water use efficiency was 7.2 kg ha−1 mm−1. Irrigation schedule of the non-stressed treatment may be as follows: the first irrigation is at the vegetative stage, when after 40-50 days from sowing/elongation and branching stage, that is the end of May; the second irrigation is at the late vegetative stage, after 70-80 days from sowing/heading stage, that is in the middle of June; the third irrigation is at the flowering stage, approximately 50% level, that is the first half of July; and the fourth irrigation is at the yield formation stage, seed filling, that is the last week of July.  相似文献   

15.
Canopy water use efficiency of winter wheat in the North China Plain   总被引:4,自引:0,他引:4  
Canopy water use efficiency (W), the ratio of crop productivity to evapotranspiration (ET), is critical in determining the production and water use for winter wheat (Triticum aestivum L.) in the North China Plain, where winter wheat is a major crop and rainfall is scarce and variable. With the eddy covariance (EC) technique, we estimated canopy W of winter wheat at gross primary productivity (WG) and net ecosystem productivity (WN) levels from revival to maturing in three seasons of 2002/2003, 2003/2004 and 2004/2005 at Yucheng Agro-ecosystem Station. Meanwhile we also measured the biomass-based water use efficiency (WB). Our results indicate that WG, WN and WB showed the similar seasonal variation. Before jointing (revival-jointing), WG, WN and WB were obviously lower with the values of 2.09-3.54 g C kg−1, −0.71 to 0.06 g C kg−1 and 1.37-4.03 g kg−1, respectively. After jointing (jointing-heading), the winter wheat began to grow vigorously, and WG, WN and WB significantly increased to 5.26-6.78 g C kg−1, 1.47-1.86 g C kg−1 and 6.41-7.03 g kg−1, respectively. The maximums of WG, WN and WB occurred around the stage of heading. Thereafter, WG, WN and WB began to decrease. During the observed periods, three levels of productivity: GPP, NEP and aboveground biomass (AGB) all had fairly linear relationships with ET. The slopes of GPP-ET, NEP-ET and AGB-ET were 4.67-6.12 g C kg−1, 1.50-2.08 g C kg−1 and 6.87-11.02 g kg−1, respectively. Generally, photosynthetically active radiation (PAR) and daytime vapor pressure deficit (D) had negative effects on WG, WN and WB except for on some cloudy days with low PAR and D. In many cases, WG, WN and WB showed the similar patterns. While there were still some obvious differences between them besides in magnitude, such as their significantly different responses to PAR and D on cloudy and moist days.  相似文献   

16.
In 2006 a comprehensive sampling program was undertaken in two pre-selected peri-urban villages in Faisalabad, Pakistan to evaluate the soil and agronomic impacts of long-term (25–30 years) untreated wastewater re-use on wheat grain and straw yields and attributes of wheat straw fodder quality. Soil SAR, ESP, RSC and ECe were 63%, 37%, 31%, and 50% higher under wastewater (WW) as compared with canal water (CW) irrigated plots. Further, 2.7 and 6.65 fold increases in soil NO 3 ? + NO 2 ? - N and Olsen-P were observed in WW as compared with CW irrigated plots. However, no significant differences in grain yield, wheat straw biomass, or fodder quality attributes were observed between WW and CW irrigated plots. In addition, for both CW and WW irrigated plots wheat straw, Cd and Pb concentrations were orders of magnitude below the EC Maximum permissible levels for Pb and Cd in feed materials and thus pose no threat to the fodder-livestock food chain. Further, elevated soil N associated with WW irrigated plots has a significant (p?<?0.01) positive influence on fodder quality by increasing the N content. Factorial ANOVA with covariance indicates that effective management of the elevated soil ECe in WW irrigated plots would increase grain yield and wheat straw biomass by 853 kg ha?1 (19.5%) and 819 kg ha?1 (18.6%) respectively as compared with CW irrigated plots. In Faisalabad, if managed appropriately to address emerging salinity issues the contribution of wastewater irrigation to the achievement of MDGs 1 and 7 could be significant if adverse impacts remain as marginal as found in this study.  相似文献   

17.
A field experiment was conducted for 3 years to evaluate the effect of deficit irrigation under different soil management practices on biomass production, grain yield, yield components and water productivity of spring wheat (Triticum estivum L.). Soil management practices consisted of tillage (conventional and deep tillage) and Farmyard manure (0 and 10 t ha?1 FYM). Line source sprinkler laterals were used to generate one full- (ETm) and four deficit irrigation treatments that were 88, 75, 62 and 46 % of ETm, and designated as ETd1, ETd2, ETd3, and ETd4. Deep tillage significantly enhanced grain yield (14–18 %) and water productivity (1.27–1.34 kg m?3) over conventional tillage. Similarly, application of FYM at 10 t ha?1 significantly improved grain yield (10–13 %) and water productivity (1.25–1.31 kg m?3) in comparison with no FYM. Grain yield response to irrigation varied significantly (5,281–2,704 kg ha?1) due to differences in soil water contents. Water productivity varied from 1.05 to 1.34 kg m?3, among the treatments in 3 years. The interactive effect of irrigation × tillage practices and irrigation × FYM on grain yield was significant. Yield performance proved that deficit irrigation (ETd2) subjected to 75 % soil water deficit had the smallest yield decline with significant water saving would be the most appropriate irrigation level for wheat production in arid regions.  相似文献   

18.
Summary An irrigation experiment was conducted on wheat in the northern Negev, Israel. The growing season rainfall was 198 mm; six irrigation treatments, ranging from 0 to 320 mm were applied at different stages of growth. The grain yields ranged from 1.20 to 5.84 t/ha. Stomatal aperture was evaluated by leaf permeability, as measured with a fast-reading viscous flow porometer. Other indices of soil-plant water status measured were: soil moisture with a neutron probe; leaf water potential with a pressure chamber; CO2 uptake with a 14CO2-pulse apparatus; and leaf water saturation deficit.For the penultimate and flag leaves, midday leaf permeability was highly correlated with the soil moisture in the upper 60-cm layer. CO2-uptake, however, remained constantly high (ca. 0.8 mg m–2s–1 = 29 mg dm–2h–1) throughout a wide range of leaf permeability, from 10 down to 2 porometer units (p. u.); below this value, it decreased linearly with leaf permeability. Therefore, the value of 2 p. u. was tentatively regarded as a critical value for judging the critical values of the other indices studied; these were estimated to be: leaf water potential, –1.57 MPa = –15.7 bars; leaf saturation deficit, 18,8% and soilmoisture, 12.6% representing a 83% depletion of the available moisture in the Gilat soil. The grain yield was highly negatively correlated with the duration of period when the soil moisture was below these critical values. The use of the porometer method for evaluating water stress is discussed.  相似文献   

19.
Wheat is the most important cereal crop in the semi-arid eastern Mediterranean region that includes northern Syria. Knowledge of wheat root depth and the vertical distribution during the winter growing season is needed for sound scheduling of irrigation and efficient use of water. This article reports evaluation of root development for three winter-grown bread (Triticum aestivum L.) and durum (Triticum turgidum L.) wheat under four soil water regimes (rainfed and full irrigation with two intermediate levels of 33 and 66% of full irrigation). Roots were sampled by soil coring to a depth of 0.75 m at four occasions during 2005-2006 growing season. Two distinct phases of root development were identified, a rapid downward penetration from emergence to end tillering phase, followed by a substantial root mass growth along the profile from tillering to mid-stem-elongation phase. Roots were detected as deep as 0.75 m during the initial rapid penetration, yet only 29% of the total seasonal root mass was developed. This downward penetration rate averaged 7 mm d−1 and produced 10.8 kg ha−1 d−1 of root dry-biomass. The bulging of root mass from tillering to mid-stem-elongation coincided with vigorous shoot growth, doubling root dry-biomass at a rate of 52 kg ha−1 d−1, compared to the seasonal root growth rate of 18.3 kg ha−1 d−1. A second-degree equation described the total root dry-biomass as a function of days after emergence (r2 = 0.85), whereas a simpler equation predicted it as a function of cumulative growing degree days (r2 = 0.85). The final grain yield was a strong function of irrigation regimes, varying from 3.0 to 6.5 t ha−1, but showed no correlation with root biomass which remained similar as soil water regimes changed. This observation must be viewed with care as it lacks statistical evidence. Results showed 90% of root mass at first irrigation (15 April) confined in the top 0.60-0.75 m soil in bread wheat. Presence of shallow restricting soil layers limited root depth of durum wheat to 0.45 m, yet total seasonal root mass and grain yield were comparable with non-restricted bread wheat. Most root growth occurred during the cool rainy season and prior to the late irrigation season. The root sampling is short of rigorous, but results complement the limited field data in literature collectively suggesting that irrigation following the rainy season may best be scheduled assuming a well developed root zone as deep as the effective soil depth within the top meter of soil.  相似文献   

20.
Conservation tillage systems generally improve soil organic C (SOC), plant available water capacity (PAWC), aggregation and soil water transmission. A field experiment was conducted for 4 years (2001-2002 to 2004-2005) to study tillage (conventional tillage (CT) and zero tillage (ZT)) systems. The selected irrigation treatments were at four levels (I1: pre-sowing (PS), I2: PS + active tillering (AT)/crown root initiation (CRI), I3: PS + AT/CRI + panicle initiation (PI)/flowering (FL), and I4: PS + AT/CRI + PI/FL + grain filling (GF)), applied at the critical growth stages on rice (Oryza sativa L.) and wheat (Triticum aestivum L.). Their effects on direct seeded rice productivity and soil properties (SOC and selected physical properties) after rice and wheat harvest were investigated. Soil organic C contents after rice and wheat harvest in the 0-15 cm soil depth were higher under ZT than under CT. Soil organic C increased significantly with I2 over I1 for both crops and with I4 over I2 for the wheat crop. The PAWC was significantly higher with ZT than CT. Zero tilled and frequently irrigated plots showed enhanced infiltration characteristics (infiltration rate, cumulative infiltration and sorptivity) and saturated hydraulic conductivity. Both direct seeded rice and wheat yields were not significantly different in the plots under ZT and CT. There was a significant increase in both rice and wheat yields in the plots under I2 over I1. However, water use efficiency between irrigation treatments was not significantly different. Hence, under direct seeded rice-wheat system in a sandy clay loam soil of the sub-temperate Indian Himalayas, farmers may adopt ZT with two irrigations in each crop for optimum resource conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号