首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
 The effect of tool angles on the shapes of chips generated by parallel-to-grain and end-grain milling was explored for China fir and maple under fixed spindle and feed speeds and cutting depth. The milling path was up-milling by straight router-bits with a diameter of 12 mm. The chip shapes could be distinguished as five types: spiral, splinter, flow, thin, and granules or powder. The flow and thin chips were generated most often (on a weight percentage basis) for all tool angles investigated for parallel-to-grain and end-grain milling of China fir and maple. More granule chips were produced with parallel-to-grain milling than with end-grain milling for both woods. The measured chip thickness (t′) was thicker than the calculated thickness (t max). Thicker and longer maple chips were produced by end-grain milling than by parallel-to-grain milling. The tool geometries of 40°/15° (sharpness of the angle–rake angle), 50°/15°, and 60°/15° for China fir and 40°/25°, 50°/5°, and 60°/5° for maple produced relatively more flow chips with parallel-to-grain milling. Furthermore, the tool geometries of 40°/5°, 50°/15° and 60°/25° produced more flow chips (weight percentage) by end-grain milling of China fir and maple. Received: May 23, 2001 / Accepted: June 28, 2002 Acknowledgment This study was supported by a grant from the National Council of Science, Taiwan (NSC89-2313-B-415-011).  相似文献   

2.
 Some tropical fast-growing woods were converted to edge-jointed lumber, and their fire-retardant properties due to chemical coating were evaluated using cone calorimetry and a standard fire test. The woods used were Indonesian and Malaysian albizia and gmelina plantation trees, with Japanese hinoki as a reference. The lumber was coated with 100 g/m2 of trimethylol melamine phosphoric acid in a 25% aqueous solution. The treated and untreated lumber was tested in a laboratory-scale exposure furnace in accordance with JIS A 1304 and the cone calorimeter test with heat flux of 40 kW/m2 following the ISO 5660. Results showed that fire endurance of all lumber was enhanced by the treatment. The fire-retardant properties were improved with increasing surface density. Though a similar trend was seen, the fire-retardant properties of the lumber revealed by the cone calorimeter test were inferior to those seen with standard fire test. Addition of thermocouples to the cone calorimeter allowed us to obtain information on the critical temperature (260°C) and charring temperature (300°C) of the lumber. Received: January 23, 2002 / Accepted: July 15, 2002 Acknowledgment The authors thank Dr. Shigehisa Ishihara, Professor Emeritus of the Wood Research Institute, Kyoto University for his suggestions about this experiment.  相似文献   

3.
 The chemical conversion of Japanese beech (Fagus crenata Blume) and Japanese cedar (Cryptomeria japonica D. Don) woods in supercritical methanol was studied using the supercritical fluid biomass conversion system with a batch-type reaction vessel. Under conditions of 270°C/27 MPa, beech wood was decomposed and liquefied to a greater extent than cedar wood, and the difference observed was thought to originate mainly from differences in the intrinsic properties of the lignin structures of hardwood and softwood. However, such a difference was not observed at 350°C/43 MPa, and more than 90% of both beech and cedar woods were effectively decomposed and liquefied after 30 min of treatment. This result indicates that the supercritical methanol treatment is expected to be an efficient tool for converting the woody biomass to lower-molecular-weight products, such as liquid fuels and useful chemicals. Received: December 19, 2001 / Accepted: March 15, 2002 Acknowledgments This research has been done under the research program for the development of technologies for establishing an eco-system based on recycling in rural villages for the twenty-first century from the Ministry of Agriculture, Forestry and Fisheries, Japan and by a Grant-in-Aid for Scientific Research (B)(2) (no.12460144, 2001.4–2003.3) from the Ministry of Education, Culture, Sports, Science and Technology, Japan. This study was presented in part at the 45th Lignin Symposium, Ehime, Japan, October 2000 and the 51st Annual Meeting of the Japan Wood Research Society, Tokyo, Japan, April 2001. Correspondence to:S. Saka  相似文献   

4.
We investigated a method for measuring the refining degree of bamboo charcoal using an alternating current. The bamboo charcoal was made under heating conditions of 400°–900°C (set temperature) and 0—3 h (holding time at each set temperature). The qualities of the bamboo charcoal could not be estimated from the yield, and electric tests were required. The effect of the variation in sample thickness on the impedance could be ignored. Attaching two plate electrodes to the same surface of a specimen enabled high accuracy and practical use. The impedance was found to be a suitable index for estimating the refining degree of the bamboo charcoal, such as the specific electric resistance. We believe that bamboo changes from an insulator to a conductor suddenly when processed at 600°–750°C for 0–2 h. It is possible that the integral of temperature with time in a specimen during heating is useful for approximately estimating impedance.  相似文献   

5.
 Raman spectra were measured for Japanese cedar wood and bark pyrolyzed in a nitrogen atmosphere at various temperatures (200°–1100°C). Two characteristic bands, near 1340 and 1590 cm−1, denoted as the D-band and G-band due to graphitic carbon, respectively, appeared on all the spectra; and the spectral features changed markedly with increasing heat-treatment temperature (HTT). The Raman parameters (band position, band width, D/G ratio) of the bands were deconvolved using of a curve-fitting method. There was no significant difference in the values of the parameters between the wood and bark. The D-band position and the G-band width showed a marked HTT dependence in the region of 400°–800°C. We described the correlations of the Raman parameters with HTT and investigated the availability of Raman spectroscopy as a means for evaluating HTT. Received: January 28, 2002 / Accepted: June 14, 2002  相似文献   

6.
 Spruce wood specimens were acetylated with acetic anhydride (AA) solutions of glucose pentaacetate (GPA), and their viscoelastic properties along the radial direction were compared to those of the untreated and the normally acetylated specimens at various relative humidities and temperatures. Higher concentrations of the GPA/AA solution resulted in more swelling of wood when GPA was introducted into the wood cell wall. At room temperature the dynamic Young's modulus (E′) of the acetylated wood was enhanced by 10% with the introduction of GPA, whereas its mechanical loss tangent (tan δ) remained almost unchanged. These changes were interpreted to be an antiplasticizing effect of the bulky GPA molecules in the wood cell wall. On heating in the absence of moisture, the GPA-acetylated wood exhibited a marked drop in E′ and a clear tan δ peak above 150°C, whereas the E′ and tan δ of the untreated wood were relatively stable up to 200°C. The tan δ peak of the GPA-acetylated wood shifted to lower temperatures with increasing GPA content, and there was no tan δ peak due to the melting of GPA itself. Thus the marked thermal softening of the GPA-acetylated wood was attributed to the softening of wood components plasticized with GPA. Received: March 29, 2002 / Accepted: May 21, 2002 Correspondence to:E. Obataya  相似文献   

7.
Intercalation of wood charcoal with sulfuric acid (H2SO4) was investigated. Carbonized sugi (Japanese cedar) samples were prepared by heating at various temperatures in the range 1700°–2700°C. Electrochemical oxidization was carried out in H2SO4 and the feasibility of intercalation was determined. In potentiometric analysis, plateaus appeared for samples carbonized at temperatures above 2300°C. In their X-ray diffraction profiles, the peak at around 26° was shifted to a smaller angle of about 22.4°. These results can be considered as signs of intercalation with acid molecules. Fourier transform infrared analysis of charcoal heated at 2700°C, following washing with water and drying of the sample, showed a band at 1220 cm−1 that was assigned to a sulfonate group. This band was not observed for samples heated at 1900°C. These observations suggest the occurrence of intercalation in the former charcoal, but not in the latter. It is concluded that wood charcoal can undergo intercalation when it has ordered stacking of hexagonal carbon layers. Part of this article was presented at the 55th, 56th, and 57th Annual Meetings of the Japan Wood Research Society, Akita, Hiroshima, and Tsukuba, August 2006, August 2007, and March 2008, respectively, and at the International Conference on Carbon “CARBON 2008,” Nagano, July 2008  相似文献   

8.
 Some methods to reduce residual stress inside logs have been reported, although the conditions for stress relaxation are not yet clarified. Our study using precise experiments revealed that residual stress relaxation occurs only when both heat and moisture exist inside the logs. We then determined the heating time and temperature required to relax the residual stress inside the logs. Short air-drying treatments did not relax residual stress even though free water in the logs was greatly reduced. The residual stress of the 33-h 80°C-heated bolts was relaxed, whereas that of the 48-h 70°C-heated bolts was not. As for the influence of treatment time, bolts heated at 100°C were relaxed after 18 h of treatment. The 13-h heated bolts did not show any relaxation. Therefore, residual stress relaxation occurred rapidly owing to the thermomechanical change of the individual wood components comprising the cell wall. The moisture content inside all the bolts was much higher than the fiber saturation point. This is because relaxation occurs only when the heating temperature is maintained above 80°C for a particular duration of treatment. Received: December 12, 2001 / Accepted: February 18, 2002 Present address: Institute for Structural and Engineering Materials, National Institute of Advanced Industrial Sciences and Technology, Independent Administrative Institution, Nagoya 463-8560, Japan Tel. +81-52-736-7320; Fax +81-52-736-7419 e-mail: m.nogi@aist.go.jp Part of this report was presented at the 50th Annual Meeting of the Japan Wood Research Society, Kyoto, April 2000 Correspondence to:M. Nogi  相似文献   

9.
TGA modeling of the thermal decomposition of CCA treated lumber waste   总被引:1,自引:0,他引:1  
 To guide the development of thermal decomposition methods for disposal of CCA treated wood, reactions during the thermal decomposition of CCA treated wood were modeled using thermogravimetric analysis (TGA), with special focus placed on arsenic volatilization. Simple inorganic compounds, such as As2O5, CuO, and Cr2O3, were used to model the thermal behavior of the inorganics in CCA treated wood. In air and nitrogen, arsenic (V) oxide began to volatilize at 600 °C during temperature ramps at 5 °C/min. During a 5 °C/min ramp in a hydrogen mix, arsenic (V) oxide began decomposition at 425 °C. Arsenic volatile loss from CCA treated wood can depend strongly on the gases produced by wood thermal decomposition. In the presence of As2O5, chromium (III) oxide and copper (II) oxide formed arsenates in air and nitrogen. Chromium arsenates began decomposition as low as 790 °C. This suggested that chromium arsenates in CCA treated wood formed during original preservative fixation may decompose as low as 790 °C. Copper arsenates were stable up to 900 °C in air, but showed only a limited range of stability in nitrogen. Depending on process conditions, the formation of copper arsenates may limit arsenic loss during thermal decomposition of CCA treated wood up to 900 °C. The thermal decomposition of inorganic oxides was influenced by interactions with wood and wood decomposition products. In a dry YP sawdust/As2O5 mix, arsenic (V) oxide volatilized at 370 °C during inert pyrolysis at 5 °C/min and at 320 °C during smoldering combustion at 5 °C/min. Thermal dwells of a dry YP/As2O5 mix showed no arsenic loss at 250 °C, but significant loss occurred during higher temperature dwells. During inert pyrolysis at 5 °C/min, the formation of complexes and hydrates were shown to prevent arsenic loss up to 400 °C. Received 14 July 1999  相似文献   

10.
Chinese fir (Cunninghamia lanceolata), a type of subtropical fast-growing conifer tree, is widely distributed in South China. Its plantation area covers more than 7 × 106 hm2, accounting for 24% of the total area of plantation forests in the country. In recent decades, the system of successive plantation of Chinese fir has been widely used in southern China due to anticipated high economic return. However, recent studies have documented that the practice of this system has led to dramatic decreases in soil fertility and forest environment as well as in productivity. Some forest ecologists and managers recognize the ecological role performed by broadleaf trees growing in mixtures with conifers, and a great deal of studies on mixture effects have been conducted, particularly on mixture species of temperate and boreal forests, but these research results were not completely consistent. Possibilities include dependence of the mixture effects in large part to specific site conditions, the interactions among species in mixtures and biological characteristics of species. Although some researchers also studied the effects of mixtures of Chinese fir and broadleaf tree species on soil fertility, forest environment and tree growth status, little information is available about the effects of Chinese fir and its mixtures with broadleaves on carbon and nitrogen stocks. The experimental site is situated at the Huitong Experimental Station of Forest Ecology, Chinese Academy of Sciences, Hunan Province (26°40′–27°09′ N, 109°26′–110°08′ E). It is located at the transition zone from the Yunnan-Guizhou Plateau to the low mountains and hills of the southern bank of the Yangtze River at an altitude of 300–1,100 m above mean sea level. At the same time, the site is also a member of the Chinese Ecosystem Research Network (CERN), sponsored by the Chinese Academy of Sciences (CAS). This region has a humid mid-subtropical monsoon climate with a mean annual precipitation of 1,200–1,400 mm, most of the rain falling between April and August, and a mean temperature of 16.5°C with a mean minimum of 4.9°C in January and a mean maximum of 26.6°C in July. The experimental field has red-yellow soil. After a clear-cutting of the first generation Chinese fir (Cunninghamia lanceolata) plantation forest in 1982, three different plantation forest ecosystems, viz. mixture of Michelia macclurei and Chinese fir (MCM), pure Michelia macclurei stand (PMS) and pure Chinese fir stand (PCS), were established in the spring of 1983. A comparative study on C and N stocks under these three plantation forest ecosystems was conducted in 2004. Results showed that carbon stocks were greater under the mixtures than under the pure Chinese fir forest and the pure broad-leaved forest, and the broadleaves and the mixtures showed higher values in nitrogen stocks compared with the pure Chinese fir forest. The spatial distribution of carbon and nitrogen stocks was basically consistent, the value being greater in soil layer, followed by tree layer, roots, understory and litter layer. The carbon and nitrogen stocks in soil layer were both highly correlated with the biomass in understory and litter layer, indicating that understory and forest litterfall exerted a profound effect on soil carbon and nitrogen stocks under plantation ecosystems. However, correlations among soil carbon, nitrogen stocks and below ground biomass of stand have not been observed in this study. Translated from Acta Ecologica Sinica, 2005, 25(12): 3,146–3,154 [译自: 生态学报]  相似文献   

11.
 The effects of pasture fertilization frequency and two vertical positions in the stem on elasticity and strength parameters during static bending (modulus of elasticity, stress at proportional limit, modulus of rupture) of Pinus radiata wood growing in a silvopastoral system were evaluated. Twenty-seven trees were selected randomly from three silvopastoral trials established at Tanumé Experimental Center (34°9′–34°15′ S; 72°53′–72°59′ W). The results indicated that pasture fertilization frequency had no significant effect on the physical and mechanical parameters evaluated. However, the vertical position in the stem did have a significant effect on stress at the proportional limit and on the modulus of rupture due to different average values for the annual ring width and nominal density found in the specimens obtained from logs at two different heights of the stem. Received: February 20, 2002 / Accepted: June 5, 2002 Acknowledgments The authors thank the following institutions and people for their support: CONAF, VI Region; Dr. Rolando Rodríguez, CONAF VIII Region; Cesar Cabrera, Forestry Engineer, CONAF VI Region; Osvaldo Herrera, Director of Experimental Center “Tanumé”; Dr. Manuel Sánchez, Faculty of Forestry Sciences, University of Concepción; Dr. Glenn Hofmann, Faculty of Physics and Mathematics, University of Concepción; Alex Opazo, M.Sc.(C), Faculty of Forestry Sciences, University of Concepción; Staff of Experimental Center “Tanumé”. Correspondence to:M.H.R. Vidal  相似文献   

12.
Thermal conductivity and diffusivity of wood   总被引:5,自引:0,他引:5  
Summary Transient simultaneous measurements of thermal conductivity and diffusivity of Swedish wood have been performed with the plane source technique on oven-dry hardwood (birch) samples at room temperature and at 100 °C. The influences of temperature, density, porosity and anisotropy on thermal conduction were investigated. The measurements were done in longitudinal (parallel to the grain) and transverse (intermediate between radial and tangential) directions. As the temperature increased from 20 to 100 °C, the thermal conductivity of each sample increased slightly for both longitudinal and transverse directions. The effect of density and porosity on the thermal conductivity may be related to the presence of other scattering mechanisms such as voids and cell boundaries. It seems that the dominant mechanism of heat transfer across the cell lumina in these types of wood is the heat conduction through the voids. An attempt was made to explain the behaviour of the effective thermal conductivity by adopting a model based on the ratio between heat conduction in parallel and serial layers of gas, liquid, and solid phases. Received 7 May 1997  相似文献   

13.
Delignified hinoki wood and cellulose as well as hinoki and lauan woods were carbonized at 590°C for 1 h. The dielectric properties of these specimens were measured at 20°C in a frequency range of 20 Hz to 1 MHz. Inflection points in the dielectric constant (ε′) versus the logarithm of frequency (log f) curves as well as in the logarithm of the electric conductivity (log σ) versus log f curves for all specimens prepared were recognized. Peaks in the dielectric loss and the imaginary part of the complex conductivity versus the log f curves were detected in the frequency location corresponding to the inflection point in the ε′ and log σ versus log f curves. It was considered that this relaxation was responsible for the interfacial polarization observed in heterogeneous materials because no permanent dipoles existed in the specimens carbonized above 500°C. The Cole–Cole circular arc law was applied to account for this relaxation. Similar average relaxation times were obtained for all specimens. These results suggested that the observed relaxation was ascribed to interfacial polarization at microscopic levels in the cell walls.  相似文献   

14.
 Somatic embryogenesis in Chamaecyparis pisifera Sieb. et Zucc. was initiated from immature seeds collected from the end of June to early July. Mass propagation through adventitious shoot bud production from somatic embryo culture on Woody Plant (WP) medium and artificial seed production using sodium alginate was achieved. A high bud forming index value (25.8) was obtained on medium supplemented with 1 μM 6-benzylaminopurine. The conversion rates from artificial seeds under aseptic and nonaseptic conditions were 60%–100% and 10%–12%, respectively. For germplasm conservation, somatic embryos and embryogenic cells were successfully stored at 4°C (medium-term storage) and in liquid nitrogen for long-term storage. Received: December 21, 2001 / Accepted: August 1, 2002 Acknowledgments This work was supported in part by the Japan Science and Technology Corporation and in part by a Grant for Research for the Future Program from the Japan Society for the Promotion of Science. Correspondence to:E. Maruyama  相似文献   

15.
In order to investigate the pyrolytic characteristics of the burning residue of fire-retardant wood, a multifunctional fire-resistance test oven aimed at simulating the course of a fire was used to burn fire-retardant wood and untreated wood. Samples at different distances from the combustion surface were obtained and a thermogravimetric analysis (TG) was applied to test the prrolytic process of the burning residue in an atmosphere of nitrogen. The results showed that: 1) there was little difference between fire-retardant wood and its residue in the initial temperature of thermal degradation. The initial temperature of thermal degradation of the combustion layer in untreated wood was higher than that in the no burning wood sample; 2) the temperature of the flame retardant in fire-retardant wood was 200°C in the differential thermogravimetry (DTG). The peak belonging to the flame retardant tended to dissipate during the time of burning; 3) for the burning residue of fire-retardant wood, the peak belonging to hemicellulose near 230°C in the DTG disappeared and there was a gentle shoulder from 210 to 240°C; 4) the temperature of the main peaks of the fire-retardant wood and its burning residue in DTG was 100°C lower than that of the untreated wood and its burning residue. The rate of weight loss also decreased sharply; 5) the residual weight of fire-retardant wood at 600°C clearly increased compared with that of untreated wood. Residual weight of the burning residue increased markedly as the heating temperature increased when burning; 6) there was a considerable difference with respect to the thermal degradation temperature of the no burning sample and the burning residue between fire-retardant wood and untreated wood. __________ Translated from Journal of Beijing Forestry University, 2006, 28(3): 133–138 [译自: 北京林业大学学报]  相似文献   

16.
Summary Wood thermal conductivities (from the literature) are directly related to the electrical properties of the same species (measured by the author) in the density range occurring in nature.The correlation coefficient between permittivity and conductivity was found to be higher than that between conductivity and density for various species of wood. Variation in the chemical components of woods results in variation in the thermal conductivities of woods.The author wishes to thank Dr. M. N. Carroll and Mr. D. G. Miller of this Laboratory for profitable discussions.  相似文献   

17.
On the loss factor of wood during radio frequency heating   总被引:2,自引:0,他引:2  
 The radial direction loss factor of full-size western hemlock sapwood and heartwood, as well as western red cedar heartwood timbers was measured using the direct calorimetric method with a laboratory-scale radio frequency/vacuum dryer at the frequency of 13.56 MHz, moisture content range between 10 and 80%, temperature range between 25 and 55 °C, and root mean square (rms) electrode voltages of 0.8 and 1.1 kV, respectively. The results indicated that the moisture content, temperature, electric field strength and wood type significantly affected the loss factor. Empirical regression equations were derived based on the experimental data that made possible the calculation of the loss factor and power density within wood during RF heating. Received 18 January 1997  相似文献   

18.
 The relations among internal temperature, internal pressure, and moisture content distribution in sugi square lumber during high-frequency (HF) heating were determined to clarify the mechanism of water movement during the combination of HF heating and hot air exposure. Green sugi square lumbers were subjected to HF heating under atmospheric pressure. The water movement and pathways in the lumber during HF heating were also investigated. Results showed that internal pressure is the driving force of water movement. HF heating causes a rise in the internal temperature and internal pressure in sugi square lumber. Ordinarily, water in lumber evaporates from the surfaces of lumber during hot air drying. However, with HF heating the internal pressure is generated by the increased temperature, and liquid water is driven not only parallel to the grain but also perpendicular to the grain of the lumber. The ratio of the amount of liquid flow in the parallel and perpendicular directions ranged from 2 : 3 to 1 : 3. When the movement of water in the lumber was traced with a 0.5% aqueous solution of acid fuchsin, water was found to move through the lumber in the longitudinal direction and then flow in a direction perpendicular to the grain or in the radial and tangential directions. Received: June 15, 2001 / Accepted: February 8, 2002 Acknowledgment The authors thank Dr. O.R. Pulido, Institute of Wood Technology, Akita Prefectural University, for discussions and for proofreading this paper. Part of this research was presented at the 51st Annual Meeting of the Japan Wood Research Society, Tokyo, April 2001 Correspondence to:Y. Kawai  相似文献   

19.
 Supercritical carbon dioxide (SC-CO2) was tested for its potential as a carrier solvent for preservative treatment of solid wood and wood-based composites. A preliminary trial showed that the treatability of solid wood varied with its original permeability and that the SC-CO2 treatment was not promising for refractory timber species such a Larix leptolepis Gordon. In contrast, 3-iodo-2-propynyl butylcarbamate (IPBC)/SC-CO2 treatment resulted in enhanced decay resistance without any detrimental physical or cosmetic damage in all structural-use wood-based composites tested: medium density fiberboard, hardwood plywood, softwood plywood, particleboard, and oriented strand board (OSB). Further trials under various treatment conditions [25°C/7.85 MPa (80 kgf/cm2), 35°C/7.85 MPa, 45°C/7.85 MPa, 35°C/11.77 MPa (120 kgf/cm2), and 45°C/11.77 MPa] indicated that although small changes in the weight and thickness of the treated materials were noted the strength properties were not adversely affected, except for a few cases of softwood plywood and oriented strand board. The results of this study clearly indicated that the treatment condition allowed SC-CO2 to transport IPBC into wood-based composites, and the optimum treatment condition seemed to vary with the type of wood-based composite. Received: October 24, 2001 / Accepted: February 15, 2002 Part of this work was presented at the 51st Annual Meeting of the Japan Wood Research Society, Tokyo, April 2001; and the 32nd Annual Meeting of the International Research Group on Wood Preservation, Nara, May 2001 Correspondence to:M. Muin  相似文献   

20.
利用竹炭(BC)的导电性和特殊的多孔结构,结合聚苯胺(PANI)的导电性,通过原位溶液聚合法制备了具有导电性能的聚苯胺/竹炭(PANI/BC)复合材料,考察了各种反应条件对复合材料电导率的影响.利用四探针、红外光谱、扫描电镜对复合材料的导电性能、分子结构、微观形貌进行表征测试.结果表明:当苯胺用量为1mL,引发剂过硫酸...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号