首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Five ruminally, duodenally, and ileally cannulated sheep (average BW 62 kg) were fed 65% roughage: 35% concentrate diets (CP = 15%) in a 5 x 5 Latin square design to study the applicability of using a combination of defaunation with N supplements (soybean meal [SBM], corn gluten meal [CGM], blood meal [BM], urea, and casein) with different extents of ruminal degradation to manipulate microbial protein synthesis and amount of ruminal escape protein. Diets were fed twice daily (1,759 g DM/d). Defaunation was accomplished with 30-ml doses of alkanate 3SL3 (active ingredient: sodium lauryl diethoxy sulfate)/sheep daily for 3 d with 2 d of fasting. Treatment 1 (control) involved feeding faunated sheep a diet in which the supplemental N (45% of total dietary N) was 67% SBM N and 33% urea N. Treatment 2 involved feeding defaunated sheep the same diet as the control. Treatments 3, 4, and 5 involved feeding defaunated sheep diets in which the supplemental N source was either 67% CGM-BM (1:1 N ratio) N:33% urea N, or 33% CGM-BM N:67% urea N or 33% CGM-BM N:33% urea N:33% casein N, respectively. Compared with the faunated control, defaunation decreased (P less than .05) ruminal ammonia concentration (19 vs 26 mg/dl) and increased (P less than .05) CP flow to the duodenum (253 vs 214 g/d) due to a trend for increases in both bacterial (BCP) and nonbacterial (NBCP) CP flows.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Five sheep (average BW 48 kg) with ruminal, duodenal, and ileal cannulas were fed 63% roughage: 37% concentrate diets (CP = 14.5%) in a 5 x 5 Latin square design to study effects of urea and sodium bicarbonate supplementation on nutrient digestion and ruminal characteristics of defaunated sheep. Diets were fed twice daily (DMI = 1,076 g/d). Defaunation was accomplished with 25-ml doses of alkanate 3SL3/sheep daily for 3 d. Control sheep were faunated (Treatment 1) and fed soybean meal as the major N supplement. Remaining sheep were maintained defaunated and fed either the same diet as Treatment 1 (Treatment 2), Treatment 1 with urea replacing 30% of the soybean meal N (Treatment 3), or Treatment 1 with 2% sodium bicarbonate in the diet (Treatment 4). Treatment 5 was a combination of Treatments 3 and 4. Compared with the faunated control, defaunation decreased (P less than .05) total tract DM, OM, NDF, ADF, and CP digestibilities (71.5 vs 69.4, 73.8 vs 71.7, 64.6 vs 61.4, 58.7 vs 55.8, and 74.2 vs 70.6%, respectively) and average (2 to 12 h postfeeding) ruminal fluid ammonia (23.5 vs 13.7 mg/dl) and isobutyrate (.9 vs .7 mM) concentrations. However, defaunation increased (P less than .05) linoleic and linolenic acid flows (.58 vs .45 g C18:2/d; .17 vs .14 g C18:3/d) to and disappearance (.50 vs .39 g C18:2/d; .14 vs .11 g C18:3/d) from the small intestine. Urea supplementation increased (P less than .05) total tract DM (70.2 vs 68.6%) and OM (72.3 vs 71.0%) digestibilities of defaunated sheep but lowered (P less than .05) ruminal fluid isobutyrate concentration (.6 vs .8 mM). Sodium bicarbonate supplementation increased (P less than .05) ruminal fluid pH (6.4 vs 6.2), isobutyrate concentration (.75 vs .60 mM), total tract ADF digestibility (57.6 vs 54.2%), and ruminal NDF (41.6 vs 28.5%), ADF (36.6 vs 22.8%), and CP (-5.5 vs -26.8%) digestibilities in defaunated sheep. Dietary supplementation of urea or sodium bicarbonate increased nutrient digestion by defaunated sheep.  相似文献   

3.
Effects of protozoa on bacterial nitrogen recycling in the rumen   总被引:7,自引:0,他引:7  
The effects of protozoa on ruminal NH3-N kinetics and bacterial N recycling were measured in five sheep (57.6+/-7.1 kg BW, x +/- SD) with ruminal and duodenal cannulas in naturally faunated, defaunated, and refaunated periods. The sheep were fed a diet of 239 g of alfalfa haylage and 814 g of barley concentrate per day (DM basis) divided into 12 equal portions and allocated at 2-h intervals. A pulse dose of 300 mg of 15N as [15N]NH4Cl was administered into the rumen (on d 1 and 15) and 300 mg of 15N as [15N]urea was administered intravenously to the blood (d 8). Enrichment of 15N was measured in ruminal NH3-N, bacterial N, and plasma urea N over a period of 35 h. Total collection of urine was made for 5 d and analyzed for purine derivatives to calculate the flow of microbial N. Ruminal parameters and nutrient digestibilities were also measured. Sheep were defaunated using a rumen washing procedure 50 d prior to measurements in the defaunated period. Sheep were refaunated with ruminal contents from a faunated sheep receiving the same diet. Measurements began 26 d following refaunation, at which time protozoal numbers had returned to those in the originally faunated sheep. Data reported in parentheses are for faunated, defaunated, and refaunated sheep, respectively. Total culturable and cellulolytic bacterial numbers were unaffected by defaunation, but there was an increase in flow of microbial N from the rumen (10.8, 17.3, and 11.1 g N/d; P < .05) in the defaunated period. Flux, irreversible loss, and intraruminal recycling of NH3-N and recycling of NH3-N from plasma urea N were not affected by defaunation. Defaunation had no effect on reducing the absolute amount (13.8, 10.0, and 11.3 g N/d; P > .20) of bacterial N recycling and the percentage of N flux through the bacterial N pool. Total-tract digestion was reduced in defaunated compared with faunated sheep by 8, 17, 15, and 32% for OM, N, NDF, and ADF, respectively. In conclusion, defaunation improved ruminal N metabolism through the enhancement of bacterial protein synthesis, and improvement in the flow of microbial protein to the host animal.  相似文献   

4.
Seven Holstein steers (340 kg) fitted with ruminal, duodenal and ileal cannulae were used to measure the influence of supplemental N source on digestion of dietary crude protein (CP) and on ruminal rates of protein degradation. Diets used were corn-based (isonitrogenous, 12% CP on a dry matter basis, and isocaloric, 80% total digestible nutrients) with urea, soybean meal (SBM), linseed meal (LSM) or corn gluten meal (CGM) as supplemental N. Ruminal ammonia N concentrations were higher (P less than .05) in steers fed LSM than in those fed CGM, but did not differ from those in steers fed urea or SBM (11.7, 6.7, 9.1 and 9.2 mg/100 ml, respectively). Due to the high degradability of urea, ruminal digestion of dietary CP was greater (P less than .05) in steers fed urea than in those fed CGM, but intermediate in steers fed SBM and LSM (58.4, 48.8, 53.1 and 53.9%, respectively). Flow of bacterial nonammonia N to the duodenum was highest (P less than .05) in steers fed SBM or LSM, intermediate (P less than .05) for urea and lowest (P less than .05) for CGM (86.8, 86.1, 76.3 and 65.9 g/d, respectively). Efficiency of bacterial protein synthesis was lowest in steers fed CGM and differed (P less than .05) from SBM (15.6 vs 21.8 g N/kg organic matter truly digested, respectively). Rate of ruminal digestion for SBM-CP differed (P less than .05) from that of CGM-CP but not from that of LSM-CP (17.70, 5.20 and 10.13%/h, respectively). The slow rate of ruminal degradability of CGM resulted in increased amounts of dietary protein reaching the intestinal tract but lower amounts of bacterial protein, thus intestinal protein supply was not appreciably altered.  相似文献   

5.
Trials were conducted to determine effects of defaunation procedures on protozoal concentrations and in situ nutrient disappearance in steers and to determine effects of defaunation and supplemental protein source on performance of lambs. Four ruminally cannulated steers were isolated from other ruminants and fed a dehydrated alfalfa-cracked corn diet for three periods with four replicates (steers) per period. Treatments were as follows: 1) control (no defaunation), 2) dosing fasted steers for two consecutive days with 40 g dioctyl sulfosuccinate (DSS) and 3) daily feeding of 40 g DSS to defaunated, nonfasted steers. Ten days post-dosing with DSS (treatment 2), three steers were free of protozoa but one steer still had a ruminal concentration of .6 x 10(4) protozoa/ml. Compared to steers prior to defaunation, treating steers for 2 d with DSS decreased (P less than .05) both in situ soybean meal (SBM) N disappearance at 3, 6 and 9 h of incubation and in situ orchardgrass DM disappearance at 24 h of incubation. Feeding 40 g of DSS daily for 10 d was not successful in maintaining the rumen free of protozoa. Thirty crossbred Targhee lambs (avg wt, 25 kg) were defaunated with DSS and allotted by BW and sex to five treatments: 1) defaunated, fish meal supplemented at 9.5% dietary CP (FM-9.5% CP), 2) defaunated, SBM-9.5% CP, 3) refaunated, FM-9.5% CP, 4) refaunated, SBM-9.5% CP and 5) refaunated SBM-12% CP. Defaunated lambs remained free of protozoa during the 56-d performance trial that was initiated 24 d after the defaunation procedure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The intestinal supply of amino acids (AA) in sheep fed alkaline hydrogen peroxide-treated wheat straw (AHPWS)-based diets supplemented with soybean meal (SBM) or corn grain plus combinations of corn gluten meal (CGM) and blood meal (BM) was measured in a 5 X 5 latin square. Sheep (avg wt 45 kg) with ruminal, duodenal and ileal cannulas were fed diets containing 65% AHPWS supplemented with the following protein sources: soybean meal (SBM), corn gluten meal (CGM), blood meal (BM), 2/3 CGM:1/3 BM and 1/3 CGM:2/3 BM. Total nitrogen (N) flow at the duodenum was not affected (P greater than .05) by protein source. Flows of bacterial N and AA increased (P less than .05) and flows of nonbacterial N and AA decreased (P less than .05) when wethers were fed SBM vs corn plus other protein sources. When diets contained SBM, quantities of total AA at the duodenum were lower (P less than .05) and the profile of AA supplied to the intestine was altered substantially. Total flows of AA at the duodenum and total quantities of AA disappearing from the small intestine were similar (P greater than .05) for all diets containing BM and CGM, but flows and disappearance of valine, histidine, lysine and arginine increased linearly (P less than .05), whereas flows and disappearance of leucine, isoleucine and methionine decreased linearly (P less than .05) as BM replaced CGM in the diets. Results suggest that quantities of individual AA flowing to the duodenum and disappearing from the intestine of wethers fed AHPWS-based diets can be altered by source of dietary protein. Furthermore, feeding protein sources resistant to ruminal degradation in combination may improve the profile of AA supplied to the intestine.  相似文献   

7.
Four experiments were conducted to determine the effect of adding corn gluten mean (CGM) or soybean meal (SBM) at 24- or 48-h intervals to diets based on corn stalks. In each experiment corn stalks was the primary diet ingredient fed to wethers or steers. Monensin was also fed to determine whether its effects on ruminal fermentation would improve the efficiency of N utilization under these conditions. Evaluation criteria included ruminal fermentation characteristics, DM intake and utilization, N balance in sheep, and steer feedlot performance. Ruminal ammonia nitrogen (NH3 N) concentrations measured over time were higher (P < .05) when diets contained SBM. Diet did not influence (P > .10) total VFA concentrations in ruminal fluid. Differences in diurnal shifts in ruminal NH3 N and total VFA due to protein source resulted in diet x hour interactions (P < .05). Dry matter intake response to protein source and frequency of supplement feeding was variable. Dry matter digestibility and nitrogen digestibility were not affected (P > .10) by protein source or feeding interval. The 48-h interval feeding of CGM was favorable compared with 24-h interval feeding (P < .05). The opposite response occurred with SBM, resulting in a diet x feeding interval interaction (P < .05). Nitrogen retention was greater (P < .05) when CGM was fed and with alternate day feeding. Diets that contained CGM supported higher (P < .05) ADG and gain/feed than diets that contained SBM when fed to steer calves. Alternate day feeding of supplements that contained monensin was detrimental to steer performance under the conditions of these experiments. Corn gluten meal is an effective substitute for SBM when alternate day protein supplementation is practiced.  相似文献   

8.
The objective of this study was to investigate the antioxidant status in ruminal fluid and blood plasma among three faunated and two defaunated (protozoa‐free) cattle (average bodyweight of 225 kg), fed hay plus concentrate. The extra cellular antioxidant activity of the mixed protozoa and bacteria suspensions were also studied in vitro. The antioxidant activity was detected by means of the free radical scavenging ability. The activity (units/microbial nitrogen) of the protozoal suspension increased from 59 (0 h) to 318 (18 h), and decreased to 40 (24 h) during incubation. The activity of the bacterial suspension also increased from 111 (0 h) to 644 (18 h), and decreased to 533 (24 h). The antioxidant activity (units/mL, U/mL) in the ruminal fluid of faunated (ranging from 116 to 254) and defaunated (ranging from 66 to 110) cattle was increased after 2 h and decreased after 5 h of feeding, being significantly higher in the faunated cattle. The antioxidant activity of blood plasma (U/mL) ranged from 248 to 316 in the faunated and 121–170 in the defaunated cattle during 0–5 h after feeding, being significantly higher in the faunated cattle. Therefore, defaunation possibly causes a decrease in the antioxidant level in the ruminal fluid, and may impair the health and performance of ruminants through an oxidant–antioxidant imbalance.  相似文献   

9.
The cell wall constituents of feces from three faunated and three defaunated (without ruminal ciliate protozoa) cattle fed on a Sudangrass hay and concentrate mixture (8:5) were analyzed. There was little difference in digestibility of dry matter between the faunated and defaunated cattle. Analysis of the fecal sugar residues revealed that the digestibilities of arabinose and galactose, derived from pectic and hemicellulosic substances located within the compound middle lamella, were higher in the defaunated cattle than the faunated cattle (P < 0.05), whereas the digestibilities of glucose and xylose, derived mainly from cellulose and xylan, were unchanged by the removal of protozoa. The digestibility of lignin was not different between the faunated and defaunated cattle, but those of mannose and p‐coumaric acid were lower in the defaunated than in the faunated animals (P < 0.05). The ratio of primary cell wall to secondary cell wall in fecal plant materials was lower for the defaunated than for the faunated cattle. The results in this study suggested that the defaunation enhanced the microbial degradation of the thin cell walls, but depressed the degradation of developed cell walls.  相似文献   

10.
Hydrolyzed feather meal as a protein source for growing calves   总被引:1,自引:0,他引:1  
Growth, digestion and in situ studies were conducted to determine the protein value of hydrolyzed feather meal (Fth) for growing ruminants. Dacron bags containing blood meal (BM), Fth, corn gluten meal (CGM) and soybean meal (SBM) were suspended in the rumen of two steers for 12 h to estimate escape protein. The escape protein value for Fth, 69.1%, was less than that for BM (82.8%) and CGM (80.4%; P less than .05) but greater than that for SBM (26.6%; P less than .05). Apparent protein digestion by lambs was similar (P greater than .10) for isonitrogenous diets containing urea (U), BM, Fth, CGM and SBM. Amino acid contents of the protein sources before vs after a 12-h ruminal in situ digestion were similar (P greater than .10). In a growth study, a basal diet of 80% ensiled corncobs and 20% alfalfa was fed to 60 individually fed crossbred steers (215 kg BW). Steers were supplemented with U, BM, Fth, 1/2 BM:1/2 Fth, 1/2 BM:1/2 CGM and 1/3 BM:1/3 Fth:1/3 CGM (protein basis). Protein sources were fed at 30, 45 and 60% of the supplemental N with urea supplying the remainder. Protein efficiency was calculated using the slope ratio technique. Protein efficiency was similar (P greater than .10) for BM- and Fth-supplemented calves. Protein efficiencies were similar (P greater than .10) for BM:CGM, BM:Fth and BM:Fth:CGM combinations. These data indicate the Fth is a digestible high escape protein source that is useful in diets for growing ruminants.  相似文献   

11.
The value of soybean meal (SBM), corn gluten meal (CGM), blood meal (BM) and fish meal (FM) in supplying N and amino acids (AA) escaping ruminal microbial degradation and disappearing from the small intestine (SI) was studied in steers using a regression approach. Replacement of corn starch in diets with protein sources resulted in decreases (P less than .05) in efficiency of microbial protein synthesis. Ruminal ammonia-N (NH3-N) had the greatest increase (P less than .05) when SBM was fed; BM supplementation resulted in only nonsignificant increases in ruminal NH3-N (P greater than .05). Soybean meal had the lowest proportion of N escaping ruminal degradation (.21). Corn gluten meal-N (.86) and BM-N (.92) escaped ruminal degradation to the greatest extent, and FM-N was intermediate (.68). Protein sources followed similar trends in providing absorbable nonbacterial N to the SI. Thirteen (+/- 6.2) percent of SBM-N was absorbed from the SI; 69 (+/- 6.2), 68 (+/- 9.1) and 50 (+/- 10.1)% of CGM-N, BM-N and FM-N, respectively, were absorbed from the SI. Values for ruminal escape and SI availability for individual and total AA are presented. Of the essential AA (EAA), threonine, valine and isoleucine were more resistant to ruminal degradation; methionine, cysteine, histidine and arginine were more extensively degraded than the total AA supply. Of the EAA escaping ruminal degradation, cysteine, histidine and threonine tended to be less digestible, whereas arginine was more digestible in the SI than the total AA supply.  相似文献   

12.
Six Japanese Black (Wagyu) steers (average initial weight 467 ± 45 kg) fitted with a ruminal cannula were used in a split‐plot design experiment comprising a 3 × 3 Latin square design (whole‐plot) and a randomized block design (subplot). The whole‐plot treatments were three different feeding levels of urea‐treated potato pulp (PP) silage‐based concentrate: 1.00%, 1.75% and 2.50% of body weight (BW) (on a dry matter (DM) basis). The subplot treatments consisted of the concentrate formulated to contain either soybean meal (SBM) as a rapidly rumen‐degraded protein source or corn gluten meal (CGM) as a slowly degraded protein source. Dry matter intake tended to be lower (P = 0.071) for CGM (8.9 kg/day) than for SBM (9.4 kg/day). Protein sources had no significant effect on digestibility and in situ degradation. Ruminal ammonia nitrogen (NH3‐N) was lower (P = 0.033) for CGM (7.5 mg/dL) than for SBM (9.5 mg/dL). Protein sources did not affect ruminal pH and the total volatile fatty acids (VFA) concentrations. The molar proportions of ruminal acetate and valerate were higher (P = 0.032) for CGM than for SBM. The maximum daily intake of the PP silage‐based concentrate expressed as a percentage of BW was approximately 1.4% of BW. Dry matter intake was higher (P = 0.046) for steers fed at 1.0% of BW of the PP silage‐based concentrate than for steers fed at 1.75% or 2.5% of BW of the concentrate. The feeding levels of the PP silage‐based concentrate had no effect on DM and nutrients digestibility, except for crude protein (CP) digestibility. CP digestibility tended to be lower (P = 0.071) for steers fed at 1.75% of BW of the PP silage‐based concentrate than for steers fed at 1.0% or 2.5% of BW of the concentrate. The feeding levels of the PP silage‐based concentrate also did not affect the in situ degradation parameter of hay and PP silage. The feeding levels of the PP silage‐based concentrate did not affect ruminal pH, NH3‐N and total VFA concentrations. The molar proportion of acetate was highest for steers fed at 1.0% of BW of the concentrate. In conclusion, in the urea‐treated PP silage‐based concentrate, CGM seems to be more effective than SBM for stabilizing the ruminal NH3‐N concentration and to be advantageous for fiber digestion in the rumen. The feeding levels of the PP silage‐based concentrate did not change the amount of VFA production in the rumen and the DM digestibility.  相似文献   

13.
Four Simmental steers with ruminal, duodenal, and ileal cannulas were used to examine effects of dietary forage: concentrate ratio and supply of ruminally degradable true protein on site of nutrient digestion and net ruminal microbial protein synthesis. Steers (345 kg) were fed ammoniated corn cob (high forage; HF)- or corn cob/ground corn/cornstarch (low forage; LF)-based diets supplemented with soybean meal (SBM) or a combination of corn gluten meal and blood meal (CB). Diets were fed at 2-h intervals with average DM intake equal to 2.2% of BW. Feeding LF vs HF increased (P less than .05) OM digestion (percentage of intake) in the stomach, small intestine, and total tract. Efficiency of microbial CP synthesis (EMCP; g of N/kg of OM truly fermented) decreased (P less than .05) for LF vs HF (24.1 vs 26.8), but microbial N and total N flows to the small intestine were similar (P greater than .05) between energy levels (average 112 and 209 g/d, respectively). Total N flows to the small intestine were 13.1% greater (P less than .05) for CB than for SBM because of increased (P less than .05) passage of nonmicrobial N. Feeding SBM vs CB increased (P less than .05) EMCP (27.3 vs 23.3) and microbial N flow to the small intestine (127.5 vs 112.5 g/d), but these increases were not likely due to increased ruminal concentrations of ammonia N (NH3 N). Decreased (P less than .05) incorporation of NH3 N into bacterial N and slower turnover rates of ruminal NH3 N for SBM vs CB suggest that direct incorporation of preformed diet components into cell mass increased when SBM was fed. Results of this study suggest that the inclusion of ruminally degradable protein in the diet may increase the supply of products from proteolysis and that this can increase EMCP and microbial protein flow to the small intestine.  相似文献   

14.
The objective of two experiments was to correlate plasma levels of urea N (PUN) and the percentage of urine N in the form of urea (UUN) to weight gain in response to different dietary protein regimens for growing Angus steers. In Exp. 1, 60 steers (302 kg BW) were assigned to various levels of dietary N (control plus supplemental N to provide from 100 to 400 g more crude protein daily) within two sources of supplemental N (soybean meal [SBM] or a mixture of two parts corn gluten meal:one part blood meal [CGM:BM]). In Exp. 2, 27 steers (229 kg BW) were fed two levels of SBM, and half of the steers received growth-promoting implants. Steers were housed in groups of 12 and fed individually for 84 d in both experiments. Corn silage was fed at a restricted rate to minimize orts. Jugular blood and urine samples were collected during the experiments. In Exp. 1, maximal ADG of steers fed SBM (1.0 kg) was reached with 671 g/d total crude protein, or 531 g/d metabolizable protein. Maximal ADG of steers fed CGM:BM (0.91 kg) was reached with 589 g/d total crude protein, or 539 g/d metabolizable protein. The DMI was higher (P < 0.07) for steers fed SBM (6.37 kg/d) than for steers fed CGM:BM (6.14 kg/d). Increasing ruminal escape protein from 36% (SBM) to 65% (CGM:BM) of CP decreased (P < 0.05) endogenous production of urea, as evidenced by lower concentrations of urea in blood and lower UUN. In Exp. 2, increasing supplemental protein from 100 to 200 g/d increased (P < 0.05) ADG and PUN. Implants lowered (P < 0.05) UUN, particularly at the higher level of supplemental protein. Protein supplementation of growing steers can be managed to maintain acceptable ADG yet decrease excretion of urea in the urine.  相似文献   

15.
A 4 x 4 Latin square metabolism trial with a 2 x 2 factorial arrangement of treatments was conducted to determine N kinetics in steers. Steers were fed either untreated (UNT-WS) or alkaline hydrogen peroxide-treated wheat straw (AHP-WS) based diets supplemented with soybean meal (SBM) or blood meal (BM). Single doses of (15NH4)2SO4 were infused into ruminal pools to determine N kinetics. Ruminal NH3N concentrations (main effects) were 3.81, 1.65, 3.18, and 2.28 mg/dL in steers when fed diets that contained UNT-WS, AHP-WS, SBM, and BM, respectively. Ruminal N pool size was greater (P < .05) for UNT-WS than for AHP-WS diets and also was greater (P < .10) for SBM than for BM diets. Nitrogen flux rate into the rumen was not affected (P > .10) by diet. However, production rate of N from the ruminal pool was greater (P < .05) for UNT-WS than for AHP-WS diets and greater (P < .10) for SBM than for BM diets. Nitrogen recycled into the rumen was 33% greater (P < .05) for AHP-WS than for UNT-WS diets and 26% greater (P < .05) for BM than for SBM diets. Nitrogen recycling (percentage of N intake) was 33, 56, 36, and 49% for UNT-WS, AHP-WS, SBM, and BM diets, respectively. The blood urea N (BUN) concentrations were 10.23, 4.58, 7.15, and 7.65 mg/dL for UNT-WS, AHP-WS, SBM, and BM diets, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Two experiments, using Angus x Hereford spring-calving beef cows in mid- or late lactation nursing Simmental-sired calves, were conducted to evaluate the relative value of a corn gluten meal-blood meal mixture (CGM-BM; 50% of supplemental protein from each source). In Exp. 1 (78 d), cows in late lactation were assigned to one of three treatments: control at 8.2% CP (C), soybean meal at 10.4% CP (SBM), or CGM-BM at 10.3% CP. Diets were calculated to be isocaloric at 55% TDN. In Exp. 2 (65 d), cows in mid-lactation were assigned to four treatments: urea, SBM, low CGM-BM (LM), and high CGM-BM (HM). Diets in Exp. 2 were isonitrogenous (9.5% CP) and isocaloric (55% TDN). Diets in both experiments were based on ammoniated wheat straw and corn silage. Weight gains of cows and cow-calf pairs were greater (P less than .06) when protein was supplemented in Exp. 1. Gains were lower for cows fed urea (P less than .03) in Exp. 2 but were similar when cows were supplemented with SBM vs either the low or the high level of CGM-BM. Performance of calves did not differ among dietary treatments.  相似文献   

17.
Two experiments were conducted to determine the effects of supplemental CP source and level of urea on intestinal amino acid (AA) supply and feedlot performance of lambs fed diets based on alkaline hydrogen peroxide-treated wheat straw (AHPWS). In Exp. 1, five cannulated (ruminal, duodenal, and ileal) crossbred wethers (61 kg) were used in a 5 x 5 Latin square design. Treatments consisted of different sources of CP and included soybean meal (SBM), a combination of urea, distillers dried grains (DDG), and fish meal, each provided an equal portion of supplemental CP (UDF), and three levels of urea (17, 33, and 50% of supplemental CP) fed in combination with DDG (U17, U33, and U50). Organic matter and N digestibilities decreased (P less than .05) when lambs were fed U17 compared with those fed SBM. There were no differences (P greater than .05) in bacterial N or AA flows to the duodenum due to CP source despite large differences in ruminal NH3 N concentrations and lower ruminal OM digestion when lambs were fed U17. Duodenal nonbacterial N and AA flows were highest (P less than .05) in lambs fed U17 and UDF and lowest when lambs were fed U50 and SBM. Lysine concentration in duodenal digesta decreased with incremental increases in DDG. In Exp. 2, 30 individually penned ram lambs (33 kg) were allotted to five CP treatments in a randomized complete block design. Treatments were similar to those of Exp. 1, with the exception that U17 was replaced by a 14% CP diet with SBM as the supplemental CP source; all other diets were formulated to contain 12% CP. Lambs fed U50 had decreased (P less than .08) ADG and gain/feed compared with all other treatments, and lambs fed UDF had greater (P less than .05) ADG and gain/feed than lambs fed U33. It was concluded that 17% of the supplemental CP from urea seems adequate to maximize bacterial protein synthesis and that no more than 33% of the supplemental CP should be provided by urea in diets based on AHPWS. Feeding a combination of ruminally resistant protein sources with complementary AA profiles of lysine and methionine (UDF) may enhance quality of protein entering the duodenum and feedlot performance.  相似文献   

18.
In Exp. 1, four Holstein heifers (112+/-5.5 kg BW) fitted with ruminal cannulas were used in a 4 x 4 Latin square to evaluate the effects of N source on ruminal fermentation and urinary excretion of purine derivatives. A 2 x 2 factorial arrangement of treatments was used; the factors were the type of protein source (soybean meal, SBM, vs a 50:50 mixture of fish meal and corn gluten meal, FMCGM) and the partial substitution of protein source by urea (with vs without). Heifers were allowed to consume concentrate and barley straw on an ad libitum basis. Barley straw:concentrate ratio (12:88) and average ruminal pH (6.25) were not affected (P > 0.05) by treatment. Ruminal NH3 N concentration and urinary excretion of purine derivatives were not affected (P > 0.05) by supplemental N source. In situ CP degradability of supplemented SBM was very low (50%). In Exp. 2, eight dual-flow continuous-culture fermenters were used to study diet effects on microbial fermentation and nutrient flow, using forage:concentrate ratio, solid and liquid passage rates, and pH fluctuation to simulate in vivo conditions. The treatment containing SBM without urea reached the greatest total VFA concentration (P < 0.01), molar percentage of acetate (P < 0.05), and NH3 N concentration (P < 0.05), followed by treatments with partial substitution of protein source by urea, and finally by the treatment containing FMCGM. True OM digestion tended to increase (P = 0.13) in treatments containing SBM. These results suggest that amino N from SBM and NH3 N concentration stimulated nutrient digestion. Microbial protein synthesis was lowest in treatments with FMCGM and without urea, indicating that rapidly available N limited microbial growth. The low CP degradability of SBM observed may have contributed to the limitation in N supply for microbial growth. Efficiency of microbial protein synthesis increased in treatments containing urea (P < 0.05). Protein source affected total (P < 0.05) and essential AA (P < 0.10) flows, which were greater in treatments containing FMCGM. Partial replacement of protein supplements by urea did not affect total and essential AA flows. Because mean dietary protein contribution to total N effluent was 46%, the AA profile of supplemental protein sources had a great impact on total AA flow and its profile.  相似文献   

19.
The effects of ammoniation of wheat straw on site and extent of digestion of nutrients by cattle and the nutritive value of the N added to the straw were studied using eight Hereford steers during three consecutive 21-d periods and analyzed in an incomplete block design with steers and periods as orthogonal blocking factors. The steers, approximately 30 mo old and weighing 360 +/- 24 kg, were cannulated in the rumen, duodenum and ileum. Diets consisted of untreated (US) or ammoniated (AS) wheat straw supplemented with a mineral-vitamin mixture. Steers fed US received four supplements in which the percentages of supplemental N from soybean meal (SBM) and urea were 0:100; 33:67; 67:33 or 100:0. Percentage of N and in vitro DM digestibility values were increased in US by the ammoniation process from .42 to 1.82 and 34.8 to 54.3, respectively. Total tract digestibility of OM consumed was similar among treatments, although total tract digestibility of dietary N was decreased by ammoniation. Ammoniation doubled (P less than .05) the synthesis of microbial N per unit of dietary OM truly fermented in the rumen. When SBM and urea were fed in combination they depressed (P less than .10) microbial N flow and synthesis of microbial N per unit of OM truly fermented more than each depressed flow and synthesis individually. The nutritive value of the increased N of AS was equivalent to between 67 and 100% of SBM N based on amounts (g/d) of non-ammonia N apparently digested in the small intestine.  相似文献   

20.
Eighty-eight yearling beef steers (308 +/- 1.4 kg) were used in two separate trials to determine the protein-sparing value of the N added to wheat straw during the ammoniation process and to determine the effects of supplementing ammoniated straw diets with energy and ruminal escape protein. In Exp. 1, steers were fed untreated straw (US) with either 0, 150, or 500 g of soybean meal (SBM) for 88 d. The addition of SBM to US diets increased (P less than .01) straw intake and average daily gains (ADG), indicating that N was limiting. When ammoniated straw (AS) was substituted for US, the N in the AS was used as efficiently as 500 g of SBM for growth. In Exp. 2, steers had ad libitum access to AS with three levels of supplemental corn (0, 1.23, or 2.45 kg DM.animal-1.d-1) either with or without .41 kg DM of corn gluten meal (CGM) added. Straw intake decreased (P less than .01) as the amount of corn in the diet was increased, but ADG increased (P less than .01) with the addition of corn. Straw consumption was not altered by the addition of CGM, but ADG was increased (P less than .01) by an average .35 kg by CGM. Rumen and blood N components indicated that the N from AS was contributing to the ruminal N pool and that CGM was compensating for microbial protein deficiencies postruminally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号