首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The effects of competition from red raspberry (Rubus idaeus L.) and northern hardwood tree species on white spruce (Picea glauca (Moench) Voss) seedlings were examined on a clearcut site of the boreal mixedwood forest of the Bas-Saint-Laurent region of Quebec, Canada. A controlled experiment involving a gradient of five vegetation densities on the basis of the leaf area index (LAI) was established in a completely randomized plot design with six replications. Each of the five levels of vegetation cover (including vegetation-free plots) were examined to evaluate how they affected environmental factors (quantity and quality of light reaching the spruce seedlings, and soil temperature), spruce growth (height, basal diameter, volume index, and above-ground biomass), spruce mortality, browsing damage, spruce foliar mineral nutrition, as well as the stand structural development, during the first 5 years after seedling planting.

Each spruce growth variable analyzed in this study, according to a RMANOVA procedure, followed a negative hyperbolic form of density dependence of competitive effects. Loss of growth in young white spruce plantations in competition with northern hardwoods is likely to occur with the first few competitors. In cases where higher levels of competing vegetation were maintained over time, loss of spruce growth was extremely severe, to an extent where the exponential growth character of the young trees has been lost. At the end of the fifth year, spruce growing with no interference were larger in mean total above-ground biomass by a factor of 9.7 than those growing with the highest level of vegetation cover. Spruce did not develop a strategy of shade avoidance by increasing tree height, on the contrary. Spruce mortality differed among treatments only in the fifth year, indicating that early evaluation of spruce survival is not a strong indicator of competitive effects, when compared to diameter growth. Spruce foliar N and Ca contents were significantly reduced by the first level of competing vegetation cover, while K increased with the density of the vegetation cover, and P and Mg were not affected. Nitrogen nutrition of young white spruce planted on recently disturbed sites is discussed in relation to the potential root discrimination of this species against soil nitrate, a reaction observed by Kronzucker et al. [Kronzucker, H.J., Siddiqi, M.Y., Glass, A.D.M., 1997. Conifer root discrimination against soil nitrate and the ecology of forest succession. Nature London 385, 59–61]. The effects of hardwood competition indicate a prevalence of competition for light over a competition for nutrients, as revealed by the substantial increase in the h/d ratio of white spruce. Two indicators, h/d ratio and the quantity of light received at the tree seedling level, are suggested as a basis for the management of hardwood competition in a white spruce plantation.

Analysis of the stand structural development indicates that spruce height distribution was affected only by moderate or dense cover of vegetation, while diameter distribution, when compared to competing vegetation-free plots, was affected by the lowest level of vegetation cover. This study shows that competition influenced the stand structural development in the same way as genetic and micro-site factors by aggravating the amplitude of size inequality. The impact of hardwood competition is discussed in view of reaching an equilibrium between optimal spruce plantation growth and benefits from further silvicultural treatments, and maintaining hardwood species known to improve long term site quality, within a white spruce plantation.  相似文献   


2.
Survival and growth of planted white spruce was assessed under partial harvest treatments and different site preparation techniques in mixedwood forests of two compositions prior to logging: deciduous dominated (d-dom) – primarily comprised of mature trembling aspen (Populus tremuloides Michx.) and coniferous dominated (c-dom) – primarily comprised of mature white spruce (Picea glauca (Moench) Voss). Levels of overstory retention were 0% (clearcut), 50% and 75% of original basal area, and site preparation techniques were inverted mounding, high speed mixing, scalping and control (no treatment). The survival and growth of white spruce were assessed seven years after planting. The experiment was established as a part of the Ecosystem Management Emulating Natural Disturbance (EMEND) experiment located in northern Alberta, Canada. In the c-dom, the 50% and 75% retention of overstory resulted in reduced growth and survival of white spruce seedlings compared to clearcuts. In contrast, in the d-dom, the seedlings performed best in sites that had 50% of the overstory retained. For the c-dom, the mounding and mixing treatments yielded the best growth of spruce seedlings, while scalping yielded the worst. In the d-dom, spruce growth was highest in sites with the mixing treatment. In the d-dom, growth and survival of the planted spruce was greater than in the c-dom. The natural regeneration of deciduous trees was suppressed by the retention of canopy regardless of original composition.  相似文献   

3.
Bareroot jack pine (Pinus banksiana Lamb.) seedlings (2 + 0) and bareroot white spruce (Picea glauca (Moench) Voss) transplants (1 1/2 + 1 1/2) were taken from cold storage and planted on a clearcut forest site in northeastern Ontario on several dates between May 6 and June 5 during which period soil temperature at 15 cm depth increased from 0 to 18 degrees C. Additional cold-stored trees were transferred to a greenhouse where they were grown in pots for 0, 7 or 28 days and then placed with their roots in aerated water maintained at one of a range of constant temperatures between 0 and 22 degrees C. In both species, daytime xylem pressure potentials (Psi(x)) and needle conductances (g(wv)) decreased with decreasing soil or water temperature. At all root temperatures, g(wv) was lower, and Psi(x) higher, in jack pine than in white spruce. After 28 days in the greenhouse, g(wv) of jack pine seedlings, and Psi(x) of white spruce, was higher than in plants just removed from cold storage. In both species, water-flow resistance through the soil-plant-atmosphere continuum (RSPAC) increased as root temperature decreased. At all root temperatures, RSPAC was higher in plants just removed from cold storage than in plants grown in the greenhouse for 28 days, during which time many new unsuberized roots were formed. At root temperatures above 10 degrees C, RSPAC of both species was higher in trees newly planted in mineral soil than in trees with roots in aerated water; presumably because the roots of planted trees had limited hydraulic contact with the soil. On the day following removal from cold storage, relative plant water flow resistance increased, in both species, more rapidly with declining root temperature than could be accounted for by the change with temperature in the viscosity of water, thus indicating an effect of temperature on root permeability. The same effect was evident in jack pine seedlings, but not white spruce transplants, that had been grown for 28 days in the greenhouse after removal from cold storage.  相似文献   

4.
Abstract

Effects of stump harvesting on the properties of surface soil and on the density, structure and growth of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) stands were estimated in a field trial in western Finland. The experiment was established in 1977 and measured in 2010. Stems and logging residues were harvested after clear-cutting, and stumps were lifted and removed from half of the experimental area. Sixteen plots were planted with pine seedlings and 16 with spruce. The main effects of stump harvesting were improved survival of planted trees and an increase in natural regeneration. No clearly negative effects were noted in the stand development. Stump harvesting had no or minimal effects on the properties of the organic layer and those of the 0- to 10-cm mineral-soil layer. Soil properties did not differ between tree species. Pine production was higher on plots with stump removal compared to plots without soil treatment.  相似文献   

5.
Abstract

Fungal root pathogens are widespread and may cause substantial seedling losses in conifer nurseries. Furthermore, poor seedling survival and growth on reforestation sites results in reduced forest regeneration. Use of microbial inoculants for disease control and plant growth promotion has become an important endeavour. A microbial culture collection of 500 strains was assessed for biological control of fungal root pathogens and/or plant growth promotion of conifer seedlings. Seven of these strains showed significant suppres-sive effects on various soil-bome fungal pathogens. On Douglas fir, two strains, RAL3 and 64-3, reduced disease caused by Fusariumby. 7-42% in repeated growth room assays. The same strains significantly increased healthy stand of white spruce seedlings inoculated with Fusariumand Pythiumin a conifer nursery, and increased the survival of bare-root white spruce seedlings planted on a reforestation site by 19-23%. Both strains also significantly increased new root and total plant dry weights. Strain RAL3 in commercial formulation maintained a viable population of about log 8-9 cfu/ml for over a year when stored at 5°C. Strain survival on seed varied with conifer species. No decreases in bacterial populations were observed on seeds of jack pine or Douglas fir after 37 to 44 days storage at 5°C, but decreases were observed on seeds of white spruce and Scots pine. This study has provided candidate beneficial microbial inocu-lants which offer promise for development of commercial inoculants for the forestry industry.  相似文献   

6.
In boreal forests of western Canada, lodgepole pine (Pinus contorta Dougl. ex. Loud.) and white spruce (Picea glauca (Moench) Voss) often grow together with numerous tall shrubs such as green alder (Alnus crispa (Ait.) Pursh) and little-tree willow (Salix spp.). In an area south of Grande Prairie, Alberta, Canada, we examined the effects of shrubs, herbs and other trees on nutrient and light availability and growth of white spruce and lodgepole pine. For white spruce the best competition measure (tested against volume increments of the past 3 years) was visually estimated % ground cover times the height of the competitor (VCHT) with light (DIFN) ranking in third place. For lodgepole pine, DIFN was the best competition measure for predicting volume increment and the best competition index was again VCHT. Taller conifers had a stronger competitive effect than tall shrubs, with their effect on white spruce being larger than that on lodgepole pine.  相似文献   

7.
Tree diversity is an important component of biodiversity. Management intensification is hypothesized to affect tree diversity. However, evidence to support the relationship between management intensity and tree diversity in northern forests is lacking. This study examined the effects of fertilization, site preparation, and brush control on tree species diversity, shade tolerance diversity and size diversity of jack pine (Pinus banksiana Lamb.), black spruce (Picea mariana [Mill.] B.S.P.), white pine (Pinus strobus L.) and white spruce (Picea glauca [Moench] Voss) plantations, 15 years after planting in Ontario, Canada. Species diversity and shade tolerance diversity were highly correlated, so were diameter size diversity and height size diversity. Fertilization did not affect the tree diversity indices of any plantations. Species diversity and shade tolerance diversity was interactively influenced by site preparation and brush control in the black spruce, white pine, and white spruce plantations, showing that the highest diversity occurred on sites with intensive site preparation without brush control, whereas on sites with brush control, diversity was higher with least intensity of site preparation. However, in the jack pine plantation, neither species diversity nor shade tolerance diversity differed with management intensification, and is attributed to the fast capture of site resources by the planted crop trees of jack pine which minimized establishment of non-crop species. Tree size diversity increased with site preparation intensity in the jack pine and black spruce plantations, while it decreased with brush control in the white pine and white spruce plantations. We concluded that (1) the effects of management intensification on diversity of northern plantations differ with growth habit of planted crop tree species and (2) species diversity and tree size diversity tend to be highest at intermediate levels of silvicultural intensification during the stand establishment phase, supporting the intermediate disturbance hypothesis.  相似文献   

8.
Eastern white pine (Pinus strobus L.) is a moderately shade-tolerant species that co-occurs with hardwood tree species in many forests of the eastern United States, as well as in pure stands. The species is valued for its timber, as well as for wildlife and recreation. Regeneration of this species is somewhat unpredictable and often occurs in patches of similarly-aged cohorts. We described the regeneration patterns of this species and examined their relation to environmental variables within hardwood forests of southwestern Virginia, USA. An average of 5.3 white pine patches per ha were observed in this study. The majority of patches consisted of saplings (85%), with 9% of patches in pole size classes, and 6% in seedling size classes. The average density of patches was 43.5 stems with an average age of 20 years. The size of patches averaged 80.6 m2. The total density of seedlings and the number of regeneration patches of all sizes of regeneration (seedlings, saplings, and poles) in plots was related to the surrounding density of large white pine trees (potential seed trees). The density of seedlings or patches was not significantly related to current vegetation cover or soil surface cover variables, but more than half of regeneration patches were located in or adjacent to old canopy gaps, most of which were old logging gaps. While seedling regeneration may occur within the understory of these forests near seed trees, advancement to the sapling and pole stage appears to be associated with canopy gap formation.  相似文献   

9.
Tolerance of bareroot and container-grown seedlings of black spruce (Picea mariana (Mill.) B.S.P.), jack pine (Pinus banksiana Lamb.), and eastern white pine (Pinus strobus L.) to competition from herbaceous vegetation was examined in the first five years after planting on a site in the Great Lakes/St. Lawrence forest of Ontario, Canada. Shoot and root morphological characteristics of various stocktypes were measured before planting and correlated with 5-year survival and growth following control and no control of herbaceous vegetation. For black spruce and jack pine, medium-sized bareroot stocktypes had greater relative 5-year stem volume growth in the presence of herbaceous vegetation than did container stock of either species or large bareroot stock of spruce. Relative volume growth was measured as the ratio of the cumulative stem volume increment in the presence of vegetation (Veg) to that in the absence of vegetation (NoVeg), i.e., the Veg:NoVeg ratio. In white pine, the Veg:NoVeg ratio of volume increment of medium container and large bareroot stocktypes exceeded that of small container and medium bareroot stocktypes. In jack pine, root collar diameter at planting and number of first-order lateral roots were positively correlated with 5-year Veg:NoVeg ratio of volume increment. In white pine, the Veg:NoVeg ratio was also positively correlated with root collar diameter at planting and with root volume. In black spruce, the ratio was not related to pre-plant morphology. Thus, for white pine and jack pine, certain pre-plant morphological features may be useful in forecasting the relative ability of different stocktypes to grow under herbaceous competition conditions in the field.  相似文献   

10.
Shrub communities established on former pasture land are currently under-used and their forestry potential is of interest to land owners wishing to increase valuable hardwood regeneration on their properties. The comparative effects of strip clearing and total clearing, both treatments applied with or without herbicide, on competing vegetation cover, light availability, and survival and growth of planted white ash (Fraxinus americana L.) were examined in two different shrub dominated sites for 3 years in southwestern Québec, Canada. Survival was high in all treatments. At the site with the richest soil and in comparison to total clearing, strip clearing produced the lowest light level in the third year, which induced lower total herbaceous weed cover. These combined effects produced the same growth results for white ash seedlings in all treatments. At the second site, with the highest woody vegetation regrowth, strip clearing has promoted seedling height growth and produced the highest height: diameter ratio for white ash. This ratio was also superior at this site in the absence of herbicide. Treatment effects were soil/site dependant. Because partial clearing in strips has never reduced tree growth in comparison to total clearing, it represents a promising method for the establishment of valuable hardwoods in shrubby vegetation, with lower management intensity and lower landscape impact than total clearing.  相似文献   

11.
Water relations of bare-root jack pine (Pinus banksiana Lamb.) and white spruce (Picea glauca (Moench) Voss) planted in a greenhouse and on a boreal cut-over site were examined during the first growing season. In field-planted trees, maximum stomatal conductances (g(wv)) were initially low (< 0.10 cm s(-1)). Base and minimum xylem pressure potentials (Psi(x(base)) and Psi(x(min))) were less than -1.5 and -1.7 MPa for jack pine and -2.0 and -2.6 MPa for white spruce, respectively. During the growing season, maximum g(wv) increased in both species to around 0.2 cm s(-1). Base and minimum xylem pressure potentials also increased in both species to around -0.5 and -1.0 MPa in jack pine and -1.0 and -1.5 MPa in white spruce, respectively. Minimum xylem pressure potentials in white spruce fell below the turgor loss point during the first half of the growing season. Osmotic potential at the turgor loss point Psi(pi(TLP)) decreased after field planting to around -2.7 and -2.3 MPa in jack pine and white spruce, respectively. In the greenhouse, minimum values of Psi(pi(TLP)) were -2.2 and -2.3 MPa in jack pine and white spruce, respectively. Maximum bulk modulus of elasticity was greater in white spruce and underwent greater seasonal change than in jack pine. Relative water content (RWC) at turgor loss ranged between 71 and 74% in jack pine and 80 and 87% in white spruce. Available turgor (T(avail)), defined as the integral of turgor over the range of RWC between Psi(x(base)) and xylem pressure potential at the turgor loss point, was similar in jack pine and white spruce just after field planting. For the rest of the growing season, however, T(avail) in jack pine was two to three times that in white spruce. Diurnal turgor (T(diurnal)), defined as the integral of turgor over the range of RWC between Psi(x(base)) and Psi(x(min)), as a percent of T(avail) was higher in field-planted white spruce than jack pine until the end of the season. Dynamics of tissue water potential components are discussed in relation to plantation establishment.  相似文献   

12.
Prévost  Marcel  Charette  Lise 《New Forests》2019,50(4):677-698

Vast areas of hardwood and mixedwood forests of eastern North America have been high-graded in the past and need silvicultural treatments to increase their value and productivity. To rehabilitate a high-graded temperate mixedwood stand, in Quebec, Canada, we used a split–split-split plot design with three replicates to assess different seed-tree and strip cutting systems, in combination with scarification and planting. The experiment consisted of three regeneration cuts in main plots: 10 seed-trees/ha, 40 seed-trees/ha and a 40-m wide strip clearcut (0 seed-tree/ha) with 60 seed-trees/ha in leave strips, thereby resulting in four levels of tree retention, and all included understory brushing. We applied two types of scarification (patch scarification or disk-trenching) to subplots, two regeneration modes (natural regeneration or planting with white spruce [Picea glauca]) to sub-subplots and two mechanical release treatments (softwood or mixedwood production) to planted sub–sub-subplots. Density of seed-trees did not affect the natural regeneration dynamics after 5 years, but disk-trenching was more efficient for the establishment of yellow birch (Betula alleghaniensis) and sugar maple (Acer saccharum). Few seed-trees of desirable white spruce were present and most died standing, confirming the importance of supplemental planting. Height growth of planted seedlings was 15% higher in the 0 and 10 (26–27 cm/year) than in the 40 and 60 (23 cm/year) seed-trees/ha treatments, and release doubled mean height growth (33.1 vs. 16.6 cm/year). Despite intensive site preparation, pre-established beaked hazel (Corylus cornuta) and mountain maple (Acer spicatum) were present at high densities in the regeneration stratum. Controlling this recalcitrant layer might be the greatest challenge for rehabilitating degraded stands of the mixedwood forest, especially since the use of herbicides is prohibited on Quebec’s public lands.

  相似文献   

13.
Bareroot jack pine (Pinus banksiana Lamb.) and white spruce (Picea glauca (Moench) Voss) were planted near Elliot Lake, Ontario, on a boreal reforestation site. Site preparation treatments were mixed, mineral and undisturbed (i.e., control) soil. Seedling water relations and growth were examined during the first field season. During the first 28 days after planting, jack pine base (i.e., predawn) and minimum xylem water potential readings were more negative in the control site preparation treatment. White spruce, during the first 10 days, in all site preparation treatments had base and minimum xylem water potential readings more negative than –1.7 MPa. By day 28 base xylem water potentials of white spruce had increased to approximately –1.0 MPa in all site preparation treatments. As the growing season progressed, white spruce minimum xylem water potential readings ceased exceeding the measured turgor loss point first in the mixed followed by the mineral and then control site preparation treatment. Jack pine minimum xylem water potential readings, in all site preparation treatments, almost never exceeded the measured turgor loss point. Water stress and stomatal optimization integrals, day 28 and 125, for both species showed least water stress and greater stomatal optimization in the mixed, mineral and control site preparation treatments, respectively. Both species had less new root growth in the field during the first 28 days after planting compared to seedlings grown for 28 days in a greenhouse for root growth capacity testing. Root growth at 28 days and both shoot and root development at the end of the growing season, were greatest to least in mixed, mineral, and control site preparation treatments, respectively.  相似文献   

14.

Harvesting costs have a significant influence on the application and potential use of the shelterwood system. These costs are strongly related to the time needed for the logging operations. In this study, which was carried out in Norway spruce [Picea abies (L.) Karst.] stands in northern Sweden, the effective time (E 0) of a single-grip harvester in shelterwood cutting, thinning of shelterwoods and clearcutting was measured. Based on these data the costs of shelterwood harvestings and clearcutting were calculated and compared. It was found that (1) the time per tree in shelterwood cutting and thinning of shelterwoods was greater than in clearcutting, (2) the time per cubic metre was higher in sparse shelterwoods than in dense shelterwoods, (3) most of this increase was due to longer driving time because fewer trees were harvested, and (4) the longer time and higher logging costs in the shelterwood system (compared with the clearcutting system) were mostly related to the establishment of the shelterwood. It was concluded that the shelterwood alternative is especially competitive when it is desirable to maximize the share of saw logs at the expense of pulpwood.  相似文献   

15.
There is an increasing need to restore natural hardwood forests in landscapes dominated by monocultural conifer plantations. A convenient restoration approach is to exploit natural regeneration processes. Natural regeneration, however, is affected by diverse interacting factors, for which better understanding is required, in order to optimize restoration programs. To identify optimal management practices for improving natural regeneration of hardwood trees in coniferous plantations, we examined the effects of multiple factors on the abundance of seedlings, small saplings and large saplings (height <0.3, 0.3-1.3 and ?1.3 m, respectively) of hardwood tree and shrub species in both line thinned (LT) and unthinned (UT) plantations of sugi (Cryptomeria japonica) and hardwood forests (HF) in central Japan. The effects of management practices (number of the times of weeding and cleaning, thinning method, years after thinning and forest age), environment (slope position, slope angle and canopy openness), and landscape conditions (distance from nearest hardwood forest, altitude and landuse before planting) on the number of hardwood individuals were examined by using the data obtained from the LT plantations. We also compared hardwood density between LT and UT plantations to examine the effect of line thinning. Finally, we examined species composition of LT plantations and HF to identify hardwood forest components in the thinned plantations. The effects on hardwood regeneration of environmental conditions, landscape factors and management practices applied in the plantations varied, depending on the size class and life form of the regenerating species. The abundance of large saplings of tall tree species was affected by several management factors, especially number of the times of weeding. Landscape conditions (distance from the nearest hardwood forest and altitude) affected the abundance of small saplings and seedlings of tall tree species, but not the other classes. Seedlings and small saplings of many tall tree species that contribute to hardwood forest canopies were less abundant in the LT plantations. The results show that numerous factors affect the establishment and abundance of naturally regenerating hardwood tree species, and suggest that successful establishment during early plantation stages can have long-lasting effects on natural regeneration of tall tree species.  相似文献   

16.
From 1989 to 2003, a widespread outbreak of spruce beetles (Dendroctonus rufipennis) in the Copper River Basin, Alaska, infested over 275,000 ha of forests in the region. During 1997 and 1998, we measured forest vegetation structure and composition on one hundred and thirty-six 20-m × 20-m plots to assess both the immediate stand and landscape level effects of the spruce beetle infestation. A photo-interpreted vegetation and infestation map was produced using color-infrared aerial photography at a scale of 1:40,000. We used linear regression to quantify the effects of the outbreak on forest structure and composition. White spruce (Picea glauca) canopy cover and basal area of medium-to-large trees [≥15 cm diameter-at-breast height (1.3 m, dbh)] were reduced linearly as the number of trees attacked by spruce beetles increased. Black spruce (Picea mariana) and small diameter white spruce (<15 cm dbh) were infrequently attacked and killed by spruce beetles. This selective attack of mature white spruce reduced structural complexity of stands to earlier stages of succession and caused mixed tree species stands to lose their white spruce and become more homogeneous in overstory composition. Using the resulting regressions, we developed a transition matrix to describe changes in vegetation types under varying levels of spruce beetle infestations, and applied the model to the vegetation map. Prior to the outbreak, our study area was composed primarily of stands of mixed white and black spruce (29% of area) and pure white spruce (25%). However, the selective attack on white spruce caused many of these stands to transition to black spruce dominated stands (73% increase in area) or shrublands (26% increase in area). The post-infestation landscape was thereby composed of more even distributions of shrubland and white, black, and mixed spruce communities (17–22% of study area). Changes in the cover and composition of understory vegetation were less evident in this study. However, stands with the highest mortality due to spruce beetles had the lowest densities of white spruce seedlings suggesting a longer forest regeneration time without an increase in seedling germination, growth, or survival.  相似文献   

17.
The study was focused on severe forest regeneration problems that are typical for highly productive peatlands. The aim of the study was to give recommendations for practical forestry on how to renew the forests. Experiments with different forest regeneration methods on highly productive peatlands were set up in nine mature Norway spruce (Picea abies (L.) Karst.) forests in northern, central and southern Sweden. The treatments in the study were natural regeneration in shelterwoods (at densities of 140 and 200 stems ha‐1), planting of bare‐root spruce seedlings after site preparation (mounding) in the shelterwoods and on clearcuts, and planting without site preparation on clearcuts.

Judging from the extent of windthrow in the denser shelterwoods and the stocking of natural regeneration under remaining shelter trees 4–5 years after final cut, shelterwood regeneration is a promising method. On clearcuts, planting without site preparation resulted in poor seedling survival, large extent of damage to the seedlings and small height increment. Planting in mounds on the clearcuts was much more successful. The best survival of planted seedlings was observed in the shelterwoods. Both the denser and the sparse shelterwoods seemed to give satisfactory protection to the seedlings.

Final recommendations on the most suitable forest renewal method(s) will be made in about five years after the removal of the shelter trees.  相似文献   

18.
The effect of Himalayan balsam (Impatiens glandulifera) on survival and growth of naturally regenerated silver birch (Betula pendula) and planted Norway spruce (Picea abies) and silver fir (Abies alba) seedlings was studied in a weeding experiment over 3 years. Three different treatments were applied: control, mowing, and hand weeding by pulling out the entire plant. There were no consistent treatment effects on height and diameter of the tree seedlings. The coverage of Rubus fruticosus had a negative impact on diameter increment of Norway spruce and silver fir. As opposed to growth, treatment effects on seedling survival could be found for planted Norway spruce and silver fir. However, it is very likely that these effects, namely higher seedling survival after mowing, have to be attributed to the control of bramble (Rubus fruticosus) rather than to that of Himalayan balsam. It is concluded that Himalayan balsam is not able to seriously affect the growth of already established seedlings.  相似文献   

19.
In single‐tree selection, trees removed by harvest or lost through mortality are replaced by ingrowth from the seedling/sapling bank. Because the level of ingrowth is governed not only by the recruitment rate of new seedlings, but also by mortality and growth rates within the seedling/sapling stratum, knowledge of how these processes are related to the tree stratum is important for successful application of single‐tree selection. Therefore, Norway spruce (Picea abies (L.) Karst.) regeneration (0.1 m ≤ height ≤ 2.0 m) was measured on seventy 100 m2 circular subplots at each of two sites in central and northern Sweden. Both sites had previously been selectively logged, but the time elapsed since the last harvest was at least 30 yrs. Basal area of trees of at least 2 m height within three different radii from the subplot centres was measured. Measurements on regeneration included height and leader length. Influence of local stand basal area on density and growth of regeneration was analysed by ordinary least‐squares linear regression for each of four height intervals. Regeneration was significantly aggregated at both sites, but number of Norway spruce seedlings and saplings per circular subplot was not correlated to local stand basal area. Out of 36 regressions, only eight showed a significantly (p < 0.05) negative correlation between seedling and sapling height growth and local stand basal area. In five of these cases, removal of one point (subplot) made p > 0.05. The results suggest that density and growth of Norway spruce regeneration in selectively logged uneven‐aged Norway spruce stands is affected more by ground conditions than by local stand basal area.  相似文献   

20.
We studied late-entry commercial thinning effects on growth, yield, and regeneration in a 48-year-old jack pine(Pinus banksiana Lamb.) stand. Applied thinning intensities were 27, 32, and 47% of merchantable basal area(BA) excluding skidding trails. After 15 years, mean diameter at breast height of surviving trees in the 47% BA removal increased by 4.9 cm(25%) compared to the unthinned control. The 47% BA removal also increased gross merchantable volume(GMV) tree-1by 46% compared to the control. The 27% BA removal had twice as much GMV ha-1compared to the 47% BA removal after15 years. Moreover, cumulative GMV ha-1was much higher in the 27% BA removal than in the unthinned control. The highest thinning intensity produced larger trees on average, while the lowest thinning intensity maximized volume production per hectare. Maintenance of acceptable growing stock throughout the 15-year period in the 27% BA removal could provide other ecosystem functions such as biodiversity enhancement or wildlife habitat by delaying senescence. Regeneration data showed that a shift in species composition occurred in the understory. After 15 years, the understory was dominated by black spruce(Picea mariana(Mill.) B.S.P.), white birch(Betula papyrifera Marsh.), and trembling aspen(Populus tremuloides Michx.). If regenerating jack pine is an objective after final overstory removal, additional efforts will be needed to re-establish this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号