首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Context

Conservation for the Indiana bat (Myotis sodalis), a federally endangered species in the United States of America, is typically focused on local maternity sites; however, the species is a regional migrant, interacting with the environment at multiple spatial scales. Hierarchical levels of management may be necessary, but we have limited knowledge of landscape-level ecology, distribution, and connectivity of suitable areas in complex landscapes.

Objectives

We sought to (1) identify factors influencing M. sodalis maternity colony distribution in a mosaic landscape, (2) map suitable maternity habitat, and (3) quantify connectivity importance of patches to direct conservation action.

Methods

Using 3 decades of occurrence data, we tested a priori, hypothesis-driven habitat suitability models. We mapped suitable areas and quantified connectivity importance of habitat patches with probabilistic habitat availability metrics.

Results

Factors improving landscape-scale suitability included limited agriculture, more forest cover, forest edge, proximity to medium-sized water bodies, lower elevations, and limited urban development. Areas closer to hibernacula and rivers were suitable. Binary maps showed that 30% of the study area was suitable for M. sodalis and 29% was important for connectivity. Most suitable patches were important for intra-patch connectivity and far fewer contributed to inter-patch connectivity.

Conclusions

While simple models may be effective for small, homogenous landscapes, complex models are needed to explain habitat suitability in large, mixed landscapes. Suitability modeling identified factors that made sites attractive as maternity areas. Connectivity analysis improved our understanding of important areas for bats and prioritized areas to target for restoration.

  相似文献   

2.
Context

Graph-theoretic evaluations of habitat connectivity often rely upon least-cost path analyses to evaluate connectedness of habitat patches, based on an underlying cost surface. We present two improvements upon these methods.

Objectives

As a case study to test these methods, we evaluated habitat connectivity for the endangered San Martin titi monkey (Plecturocebus oenanthe) in north-central Peru, to prioritize habitat patches for conservation.

Methods

First, rather than using a single least-cost path between habitat patches, we analyzed multigraphs made up of multiple low-cost paths. This allows us to differentiate between patches connected through a single narrow corridor, and patches connected by a wide swath of traversable land. We evaluate potential movement pathways by iteratively removing paths and recomputing connectivity metrics. Second, instead of performing a sensitivity analysis by varying costs uniformly across the landscape, we generated landscapes with spatially varying costs.

Results

This approach produced a more informative assessment of connectivity than standard graph analyses. Of the 4340 habitat patches considered across the landscape, we identified the most important 100, those frequently ranked highly through repeated network modifications, for multiple metrics and cost surfaces.

Conclusions

These methods represent a novel approach for assessing connectivity, better accounting for spatial configurations of habitat patches and uncertainty in cost surfaces. The ability to identify habitat patches with more possible routes to other patches is of interest for resiliency planning and prioritization in the face of continued habitat loss and climate change. These methods should be broadly applicable to conservation planning for other wildlife species.

  相似文献   

3.
Hard (high-contrast with pastures) and soft (low-contrast with old-fields) forest edges created by slash-and-burn agriculture have become common landscape features in regions dominated by neotropical montane forest. However, little is know about the impacts of such edge types on forest regeneration dynamics. The consequences of varying forest edge permeability for oak acorn dispersal were investigated in a forest mosaic in the Highlands of Chiapas, Mexico. Rates of acorn production and removal, as well as the abundance and composition of small mammal seed consumers, were monitored along these different edge types (hard vs. soft) at specific distances from forest edges into forest patches and adjacent grasslands during two consecutive years. Results show that acorn removal declined significantly only in grasslands of sites characterised by hard edges (Logistic regression, P < 0.05). Movements of metal-tagged acorns support the hypothesis that soft edges are more permeable to small mammals, with rodents moving acorns up to 15 m into grasslands of sites with soft edges. In sites with hard edges, higher rates of acorn dispersal were recorded from the forest edge towards the forest interior. Peromyscus spp. were the main acorn predators and/or dispersers of acorns present in our study sites. Rates of acorn removal during a non-masting year were greater than the subsequent mast-seeding year (85% removal within 138 days vs. 75% within 213 days), demonstrating that mast seeding may allow some seeds to escape predation. The implications of these results for oak dispersal and regeneration along edges in fragmented tropical forest landscapes are discussed.  相似文献   

4.
Context

Functional connectivity is vital for plant species dispersal, but little is known about how habitat loss and the presence of green infrastructure interact to affect both functional and structural connectivity, and the impacts of each on species groups.

Objectives

We investigate how changes in the spatial configuration of species-rich grasslands and related green infrastructure such as road verges, hedgerows and forest borders in three European countries have influenced landscape connectivity, and the effects on grassland plant biodiversity.

Methods

We mapped past and present land use for 36 landscapes in Belgium, Germany and Sweden, to estimate connectivity based on simple habitat spatial configuration (structural connectivity) and accounting for effective dispersal and establishment (functional connectivity) around focal grasslands. We used the resulting measures of landscape change to interpret patterns in plant communities.

Results

Increased presence of landscape connecting elements could not compensate for large scale losses of grassland area resulting in substantial declines in structural and functional connectivity. Generalist species were negatively affected by connectivity, and responded most strongly to structural connectivity, while functional connectivity determined the occurrence of grassland specialists in focal grasslands. Restored patches had more generalist species, and a lower density of grassland specialist species than ancient patches.

Conclusions

Protecting both species rich grasslands and dispersal pathways within landscapes is essential for maintaining grassland biodiversity. Our results show that increases in green infrastructure have not been sufficient to offset loss of semi-natural habitat, and that landscape links must be functionally effective in order to contribute to grassland diversity.

  相似文献   

5.
Context

Climate and land-use change have led to disturbance regimes in many ecosystems without a historical analog, leading to uncertainty about how species adapted to past conditions will respond to novel post-disturbance landscapes.

Objectives

We examined habitat selection by spotted owls in a post-fire landscape. We tested whether selection or avoidance of severely burned areas could be explained by patch size or configuration, and whether variation in selection among individuals could be explained by differences in habitat availability.

Methods

We applied mixed-effects models to GPS data from 20 spotted owls in the Sierra Nevada, California, USA, with individual owls occupying home ranges spanning a broad range of post-fire conditions after the 2014 King Fire.

Results

Individual spotted owls whose home ranges experienced less severe fire (<?5% of home range severely burned) tended to select severely burned forest, but owls avoided severely burned forest when more of their home range was affected (~ 5–40%). Owls also tended to select severe fire patches that were smaller in size and more complex in shape, and rarely traveled?>?100-m into severe fire patches. Spotted owls avoided areas that had experienced post-fire salvage logging but the interpretation of this effect was nuanced. Owls also avoided areas that were classified as open and/or young forest prior to the fire.

Conclusions

Our results support the hypothesis that spotted owls are adapted to historical fire regimes characterized by small severe fire patches in this region. Shifts in disturbance regimes that produce novel landscape patterns characterized by large, homogeneous patches of high-severity fire may negatively affect this species.

  相似文献   

6.
Context

Modifications in natural landcover generally result in a loss of habitat availability for wildlife and it’s persistence will depend largely on their spatial configuration and functional connections. Argenteohyla siemersi is a threatened and endemic amphibian whose habitat is composed of forest patches near rivers and water bodies edges.

Objectives

This study aimed to analyse the accessible habitat for this species and identify key elements to maintain its ecological network in two different types of land uses: an anthropized area with extensive cattle raising and a protected area.

Methods

The structural and functional characteristics of both landscapes were analyzed. The connectivity at landscape level and the contribution of each habitat patch were evaluated through simulation models with different dispersion distances in the context of the graph theory.

Results

In both landscapes, nine types of landcover were identified with different compositions. Remarkable differences were found in habitat connectivity for this amphibian species between both landscapes. As the percentage of dispersion distance increases, reachable habitat increases as well, although with higher percentages in the protected area. Two corridors were identified in the protected landscape and one in the rangeland one; patches and key links constituted all of them.

Conclusions

The present work provides spatially explicit results with a quantitative basis. It could be useful as a tool for the development of management plans aimed at guaranteeing the functionality of the ecological network for this endangered species and, therefore, contribute to its long-term conservation.

  相似文献   

7.
The size, shape, and isolation of habitat patches can affect organism behavior and population dynamics, but little is known about the relative role of shape and connectivity in affecting ecological communities at large spatial scales. Using six sampling sessions from July 2001 until August 2002, we collected 33,685 arthropods throughout seven 12-ha experimental landscapes consisting of clear-cut patches surrounded by a matrix of mature pine forest. Patches were explicitly designed to manipulate connectivity (via habitat corridors) independently of area and edge effects. We found that patch shape, rather than connectivity, affected ground-dwelling arthropod richness and beta diversity (i.e. turnover of genera among patches). Arthropod communities contained fewer genera and exhibited less turnover in high-edge connected and high-edge unconnected patches relative to low-edge unconnected patches of similar area. Connectivity, rather than patch shape, affected the evenness of ground-dwelling arthropod communities; regardless of patch shape, high-edge connected patches had lower evenness than low- or high-edge unconnected patches. Among the most abundant arthropod orders, increased richness in low-edge unconnected patches was largely due to increased richness of Coleoptera, whereas Hymenoptera played an important role in the lower evenness in connected patches and patterns of turnover. These findings suggest that anthropogenic habitat alteration can have distinct effects on ground-dwelling arthropod communities that arise due to changes in shape and connectivity. Moreover, this work suggests that corridors, which are common conservation tools that change both patch shape and connectivity, can have multiple effects on arthropod communities via different mechanisms, and each effect may alter components of community structure.  相似文献   

8.
A large-scale experimental landscape study was conducted to examine the use of corridors and the forest matrix habitat by the hispid cotton rat (Sigmodon hispidus). The role of micro- habitat selection by S. hispidus in influencing routes of movement was also investigated. The experimental landscape consisted of ten 1.64-ha patches (each 128×128 m) established in a loblolly (Pinus teada) forest. Four of the patches were isolated while the other six were connected in pairs by a 32-m wide corridor. Cotton rats (N=96) were simultaneously released into both an isolated and connected patch, and monitored by radiotelemetry for 10 days. We found that the forest matrix was not a barrier to movements of cotton rats. Fifty percent of the cotton rats moved through the matrix. Corridors had no significant effect on the number of animals leaving connected patches (60%) compared to isolated patches (50%). However, corridors were the preferred route to leave a connected patch. Colonization success for cotton rats leaving connected and isolated patches did not significantly differ. Cotton rats exhibited micro-habitat preferences and these preferences differed within patch/corridor and matrix habitats. In patch/corridor habitats, cotton rats selected sites with tall (>1 m) shrubs and high percent cover. In the forest matrix, cotton rats selected sites with abundant cover by vines and low tree canopy cover. Movement patterns of Sigmodon hispidus are not strongly influenced by large-scale landscape spatial structures. Micro-habitat selection, however, does influence movement patterns. These findings have important implications regarding habitat connectivity for small mammals.  相似文献   

9.
Koen  Erin L.  Ellington  E. Hance  Bowman  Jeff 《Landscape Ecology》2019,34(10):2421-2433
Context

Mapping landscape connectivity across large spatial extents is an important component of ecological reserve network designs and species recovery plans. It can, however, be limited by computational power. One way to overcome this problem is to split the study area into smaller tiles, map landscape connectivity within each of those tiles, and then merge tiles back together to form composite connectivity maps.

Objectives

We tested the effects of landscape structure on the accuracy of composite landscape connectivity maps created from tiles and tested two methods to increase this accuracy.

Methods

We correlated replicate, composite current density maps with untiled maps. We tested whether our findings depended on the composition of the landscape by testing maps with corridors, barriers, different mixtures of high- and low-cost habitat, and road networks.

Results

We found that composite current density maps underestimated large-scale connectivity and overestimated the contribution of small habitat patches to overall connectivity. These biases became more pronounced as the tiles became relatively smaller. Landscapes with corridors or barriers were particularly sensitive. We increased the accuracy of tiled maps by increasing pixel size or by averaging several maps created using a “moving window” approach.

Conclusions

There is a trade-off between tile size and pixel size when modelling connectivity across large spatial extents. We suggest using the largest tile size possible when tiling is necessary, in conjunction with increased pixel size and a moving window method to increase accuracy of the composite current density maps.

  相似文献   

10.
With return times between 20 and 100 years, ice storms are a primary disturbance type for temperate forests of eastern North America. Many studies have been conducted at the forest patch and plot scales to examine relations between damage and variables describing site, composition and structure. This paper presents results from a landscape scale study of fragmentation relations with damage in eastern Ontario forests. Data previously collected for two independent and spatially non-overlapping patch level damage studies were used. A Generalized Linear Model (GLM) was used to analyse relations between damage and fragmentation metrics representing patch isolation, edge density, and the relative size and distribution of patches in the landscape. The metrics were applied using spatial extents of 1 × 1 km and 4 × 4 km, following analyses of the variability of numbers of patches and of the lacunarity of forest patterns over a range of extents. The results showed that patch isolation, as measured by the mean Euclidean distance between patches (ENN) was significantly related to damage.  相似文献   

11.
Land-use change is forcing many animal populations to inhabit forest patches in which different processes can threaten their survival. Some threatening processes are mainly related to forest patch characteristics, but others depend principally on the landscape spatial context. Thus, the impact of both patch and landscape spatial attributes needs to be assessed to have a better understanding of the habitat spatial attributes that constraint the maintenance of populations in fragmented landscapes. Here, we evaluated the relative effect of three patch-scale (i.e., patch size, shape, and isolation) and five landscape-scale metrics (i.e., forest cover, fragmentation, edge density, mean inter-patch isolation distance, and matrix permeability) on population composition and structure of black howler monkeys (Alouatta pigra) in the Lacandona rainforest, Mexico. We measured the landscape-scale metrics at two spatial scales: within 100 and 500 ha landscapes. Our findings revealed that howler monkeys were more strongly affected by local-scale metrics. Smaller and more isolated forest patches showed a lower number of individuals but at higher densities. Population density also tended to be positively associated to matrices with higher proportion of secondary forests and arboreal crops (i.e. with greater permeability), most probably because these matrices can offer supplementary foods. The immature-to-female ratio also increased with matrix permeability, shape complexity, and edge density; habitat characteristics that can increase landscape connectivity and sources availability. The prevention of habitat loss and isolation, and the increment of matrix permeability are therefore needed for the conservation of this endangered Neotropical mammal.  相似文献   

12.
Disentangling the confounded effects of edge and area in fragmented landscapes is a recurrent challenge for landscape ecologists, requiring the use of appropriate study designs. Here, we examined the effects of forest fragment area and plot location at forest edges versus interiors on native and exotic bird assemblages on Banks Peninsula (South Island, New Zealand). We also experimentally measured with plasticine models how forest fragment area and edge versus interior location influenced the intensity of avian insectivory. Bird assemblages were sampled by conducting 15?min point-counts at paired edge and interior plots in 13 forest fragments of increasing size (0.5?C141?ha). Avian insectivory was measured as the rate of insectivorous bird attacks on plasticine models mimicking larvae of a native polyphagous moth. We found significant effects of edge, but not of forest patch area, on species richness, abundance and composition of bird assemblages. Exotic birds were more abundant at forest edges, while neither edge nor area effects were noticeable for native bird richness and abundance. Model predation rates increased with forest fragmentation, both because of higher insectivory in smaller forest patches and at forest edges. Avian predation significantly increased with insectivorous bird richness and foraging bird abundance. We suggest that the coexistence of native and exotic birds in New Zealand mosaic landscapes enhances functional diversity and trait complementation within predatory bird assemblages. This coexistence results in increased avian insectivory in small forest fragments through additive edge and area effects.  相似文献   

13.
Improved knowledge of the environmental factors that affect woody composition is urgently required for species conservation in riparian zones of urbanizing landscapes. We investigated the environmental factors influencing tree abundance and regeneration in diverse forest types growing in the riparian area of an urbanizing landscape along the Chao Phraya River. We established 252 0.1-ha circular plots in remnant forest patches along 372 km of the river. Cluster analysis was applied to classify the forest types. The relationships between environmental variables and tree abundance were assessed with ordination analysis, and generalized linear models were used to assess seedling/sapling abundance. The cluster analysis revealed five forest types, including floodplain forest with three sub-forest types, swamp forest, and mangrove forest. The ordination indicated that tree abundance in the floodplain forest was positively affected by distance to the ocean and the proportion of forested area. Swamp forest was positively influenced by the proportion of urbanized area and mean rainfall. Mangrove forest was negatively related to distance to the river. Seedling/sapling abundance of the dominant species in the floodplain forests was positively affected by lowland plain topography and negatively affected by the proportion of urbanized area, whereas swamp and mangrove forest species were positively influenced by the proportion of urbanized area and estuarine topography. Mature tree density influenced seedling/sapling abundance of all forest types. Tree abundance and regeneration of the riparian landscape was prevented by the urbanized area, floodplain, estuarine topography, and mature tree densities in remnant forests. These results suggest that remnant forest patches of conserved riparian forests along the urbanized landscape of the Chao Phraya River must be protected and the factors determining their colonization must be considered to enhance restoration practices.  相似文献   

14.
Context

Urbanization is a substantial force shaping the genetic and demographic structure of natural populations. Urban development and major highways can limit animal movements, and thus gene flow, even in highly mobile species. Characterizing varying species responses to human activity and fragmentation is important for maintaining genetic continuity in wild animals and for preserving biodiversity. As one of the only common and wide-ranging large wild herbivores in much of urban North America, deer play an important ecological role in urban ecosystems, yet the genetic impacts of development on deer are not well known.

Objectives

We assessed genetic connectivity for mule deer to understand their genetic response to habitat fragmentation, due to development and highway barriers, in an increasingly urbanized landscape.

Methods

Using non-invasive sampling across a broad region of southern California, we investigated genetic structure among several natural areas that were separated by major highways and applied least-cost path modelling to determine if landscape context and highway attributes influence genetic distance for mule deer.

Results

We observed significant yet variable differentiation between subregions. We show that genetic structure corresponds with highway boundaries in certain habitat patches, and that particular landscape configurations more greatly limit gene flow between patches.

Conclusions

As a large and highly mobile species generally considered to be well adapted to human activity, mule deer nonetheless showed genetic impacts of intensive urbanization. Because of this potential vulnerability, mule deer and other ungulates may require further consideration for effective habitat management and maintenance of landscape connectivity in human-dominated landscapes.

  相似文献   

15.

Context

Intensification and specialisation of agriculture and forest use has led to profound structural and compositional changes in European landscapes. In particular, sharp, narrow edges adjacent to relatively homogenous vegetation types progressively replace transitional habitats, crucial for a plethora of species and ecological processes. Quercus robur and Q. petraea regeneration niches make them best adapted to such transitional habitats. However, contemporary oaks’ importance, including their regeneration, is usually considered within limits of forest habitats.

Objective

Defining habitats, landscape patterns and processes fostering oak regeneration and ‘oakscape’ development.

Methods

We assessed the state-of-the art of the topical literature with respect to various aspects of oak regeneration based on a refined list of 234 titles from the Web of Science database.

Results

The review confirmed that the vast majority of studies focus on forest habitats, disregarding the fact that substantial part of acorns are being carried away and seeded by birds in non-forest habitats.

Conclusions

The common acceptance of the simplistic landscape mosaic model, based on segregated homogenous vegetation categories and clear-cut lines separating patches, impedes proper assessment of landscape changes, referring to ‘untypical’, transitional habitats—the true oaks’ domain. Hence, restoring and sustaining European ‘oakscape’ should result from the overall landscape management, based on a better adapted gradient approach to landscape studies. Applying such an approach, we identified a set of habitats fostering successful oak regeneration and recruitment without direct human support, contributing to the contemporary ‘oakscape’, represented mostly by non-forest, either natural or anthropogenic habitats.
  相似文献   

16.
Grof-Tisza  Patrick  Pepi  Adam  Holyoak  Marcel  Karban  Richard 《Landscape Ecology》2019,34(5):1131-1143
Context

Patch-based population models predominately focus on factors that affect regional processes namely, patch size and connectivity, as the primary drivers explaining patch occupancy. This trend persists despite the recognition that patch quality can strongly influence population demography at the local scale. The quality of patches is often temporally variable and influenced by abiotic conditions. However, few studies have explicitly investigated how climatic variables influence the spatial and temporal dynamics of spatially-structured populations either directly or indirectly through changes in patch quality.

Objectives

Using a 10-year census of a spatially-structured population of an outbreaking caterpillar, we determined the relative importance of patch quality (determined demographically), connectivity, precipitation, and their interactive effects on patch abundance, occupancy, colonization, and extinction.

Methods

We generated a series of statistical models and performed comparisons using Akaike’s information criterion. We subsequently used likelihood ratio tests to determine the influence of each parameter on model fit.

Results

Patch quality and precipitation were the strongest predictors of the observed dynamics. We found that the dynamics of the spatially-structured population of Arctia virginalis were strongly influenced by precipitation: all patches had a higher probability of occupancy, contained higher abundances of caterpillars, and experienced fewer extinctions following wet winters compared to years following droughts.

Conclusion

These findings suggest that precipitation may act to influence the strength of heterogeneity of patch quality. This work demonstrates that patch-based models that do not include local and climatic factors may produce poor predictions under future climatic regimes.

  相似文献   

17.
Bu  Hongliang  McShea  William J.  Wang  Dajun  Wang  Fang  Chen  Youping  Gu  Xiaodong  Yu  Lin  Jiang  Shiwei  Zhang  Fahui  Li  Sheng 《Landscape Ecology》2021,36(9):2549-2564
Context

The downlisting of giant panda (Ailuropoda melanoleuca) from Endangered to Vulnerable in IUCN Red List confirms the effectiveness of current conservation practices. However, future survival of giant panda is still in jeopardy due to habitat fragmentation and climate change. Maintaining movement corridors between habitat patches in the newly established Giant Panda National Park (GPNP) is the key for the long-term sustainability of the species.

Objectives

We evaluated the impacts of conversion from natural forest to plantation on giant panda habitat connectivity, which is permitted within collective forests and encouraged by the policies for the economic benefits of local communities. We modeled distribution of giant panda habitat in Minshan Mountains which harbors its largest population, and delineated movement corridors between core habitat patches under management scenarios of different forest conversion proportions.

Methods

We applied an integrated species distribution model based on inhomogeneous Poisson point process to combine presence-only data and site occupancy data, and least-cost models to identify potential movement corridors between core habitat patches.

Results

We found that current distribution of plantation has not damaged connectivity between core habitat patches of giant panda. However, it could be severely degraded if mass conversion occurred. Since the GPNP incorporates all the core habitats identified from our model, controlling natural forest conversion inside GPNP would maintain the movement corridors for giant panda.

Conclusions

We recommend no expansion of plantations inside the GPNP, and improving collective forest management for expansion of ecological forest in adjoining habitat patches.

  相似文献   

18.
Modeling vegetation pattern using digital terrain data   总被引:10,自引:0,他引:10  
Using a geographic information system (GIS), digital maps of environmental variables including geology, topography and calculated clear-sky solar radiation, were weighted and overlaid to predict the distribution of coast live oak (Ouercus agrifolia) forest in a 72 km2 region near Lompoc, California. The predicted distribution of oak forest was overlaid on a map of actual oak forest distribution produced from remotely sensed data, and residuals were analyzed to distinguish prediction errors due to alteration of the vegetation cover from those due to defects of the statistical predictive model and due to cartographic errors. Vegetation pattern in the study area was associated most strongly with geologic substrate. Vegetation pattern was also significantly associated with slope, exposure and calculated monthlysolar radiation. The proportion of observed oak forest occurring on predicted oak forest sites was 40% overall, but varied substantially between substrates and also depended strongly on forest patch size, with a much higher rate of success for larger forest patches. Only 21% of predicted oak forest sites supported oak forest, and proportions of observed vegetation on predicted oak forest sites varied significantly between substrates. The non-random patterns of disagreement between maps of predicted and observed forest indicated additional variables that could be included to improve the predictive model, as well as the possible magnitude of forest loss due to disturbances in different parts of the landscape.  相似文献   

19.

Context

Strategic placement of fuel treatments across large landscapes is an important step to mitigate the collective effects of fires interacting over broad spatial and temporal extents. On landscapes where highly invasive cheatgrass (Bromus tectorum) is increasing fire activity, such an approach could help maintain landscape resilience.

Objectives

Our objectives are to 1) model and map fire connectivity on a cheatgrass-invaded landscape, as well as the centrality of large cheatgrass patches, in order to inform a landscape fuel treatment (i.e., a network of greenstrips); and 2) evaluate the modeled greenstrip network based on changes to cheatgrass patch centrality.

Methods

Our analysis covers 485-km2 on the Kaibab National Forest in Northern Arizona. We apply a circuit-theoretic model of fire connectivity between all pairs of large cheatgrass patches. Based on these results, we calculate a measure of centrality for each patch to inform fuel treatment placement. We evaluate the modeled greenstrip network by comparing the pre- and post-treatment centrality of each patch.

Results

After modeling fire connectivity across the landscape, we identify 25 of 68 large cheatgrass patches with relatively high centrality. When we simulate greenstrips around these focal patches, model results suggest that they are effective in reducing the centrality for at least 19 of the 25 patches.

Conclusions

Fire connectivity models provide robust network centrality measures, which can help generate multiple, landscape fuel treatment alternatives and facilitate on-the-ground decisions. The extension of these methods is well suited for landscape fuels management in other vegetation communities and ecosystems.
  相似文献   

20.
Wickham  J.  Riitters  K. H. 《Landscape Ecology》2019,34(9):2169-2182
Context

Remote sensing has been a foundation of landscape ecology. The spatial resolution (pixel size) of remotely sensed land cover products has improved since the introduction of landscape ecology in the United States. Because patterns depend on spatial resolution, emerging improvements in the spatial resolution of land cover may lead to new insights about the scaling of landscape patterns.

Objective

We compared forest fragmentation measures derived from very high resolution (1 m2) data with the same measures derived from the commonly used (30 m?×??30 m; 900 m2) Landsat-based data.

Methods

We applied area-density scaling to binary (forest; non-forest) maps for both sources to derive source-specific estimates of dominant (density ≥?60%), interior (≥?90%), and intact (100%) forest.

Results

Switching from low- to high-resolution data produced statistical and geographic shifts in forest spatial patterns. Forest and non-forest features that were “invisible” at low resolution but identifiable at high resolution resulted in higher estimates of dominant and interior forest but lower estimates of intact forest from the high-resolution source. Overall, the high-resolution data detected more forest that was more contagiously distributed even at larger spatial scales.

Conclusion

We anticipate that improvements in the spatial resolution of remotely sensed land cover products will advance landscape ecology through re-interpretations of patterns and scaling, by fostering new landscape pattern measurements, and by testing new spatial pattern-ecological process hypotheses.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号