首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anaerobic reoxidation of reduced products in paddy soils was investigated. Ferrous iron (Fe2+) and monosulfide ion (S2–) added to the soil chemically reduced MnO2 to Mn2+, and MnO2 and Fe(OH)3 to Mn2+ and Fe2+, respectively, where Fe2+ and S2– were considered to be oxidized to Fe3+ and S0. Elemental sulfur was oxidized to sulfate by anaerobic incubation with NO3 MnO2 and Fe(OH)3. A new conceptual model for the reduction processes in submerged paddy soil including the reoxidation processes of reduced products, in which soil heterogeneity in paddy fields was taken into consideration, was proposed based on the results. Received: 20 October 1996  相似文献   

2.
Abstract

When a soil is flooded, iron (Fe) reduction and methane (CH4) production occurred in sequence as predicted by thermodynamics. The dissolution and precipitation of Fe reflected both soil pH and soil redox potential (Eh). The objective of our experiment was to determine both CH4 production and Fe reduction as measured by Fe in solution in a flooded paddy soil over a wide range of closely controlled pH and Eh conditions. The greatest release of CH4 gas occurred at neutral soil pH in combination with low soil redox potential (‐250 mV). Production of CH4 decreased when soil pH was lowered in combination with an increase in the soil redox potential above ‐250 mV. Highest concentration of ferrous‐iron (Fe2+) under reducing conditions occurred when soil pH was lowered. Thus Fe reduction influenced CH4 formation in the flooded paddy soil. Results indicated that CH4 production was inhibited by the process of ferric‐iron (Fe3+) reduction.  相似文献   

3.
G. Brümmer 《Geoderma》1974,12(3):207-222
Results of laboratory experiments with soil material saturated with sea water indicate that, as predicted by thermodynamics, manganese (III, IV)-oxides are first reduced to Mn2+-ions (beginning at about +450 mV at pH 6.1.; E7 ≈ +400 mV), next amorphous iron (III)-oxides are reduced to Fe2+-ions (beginning at about +220 mV at pH 6.0; E7 ≈ +160 mV), and finally sulphates are reduced to sulphides (beginning at about +10 mV at pH 6.0; E7 ≈ -50 mV). Direct quantitative relations between redox potentials, pH-values and Mn2+- (or Fe2+-) contents of water-saturated soils and sediments and calculated redox reactions of known manganese and iron systems could not be established.The influence of organic redox systems produced by microbial fermentation processes on the measured potentials and on the reduction of manganese and iron oxides is discussed.A reduction of the oxides by microbially formed sulphides, which themselves are oxidized by this process, seems also to be possible. Therefore, sulphides do not occur as stable sulphur phase in higher amounts before all available Fe-oxides are reduced to Fe2+-ions. Then formation of iron monosulphides takes place by precipitation of Fe2+- ions by sulphides (H2S, HS). In a sulphide-stabilized environment redox reactions of sulphur — especially the reaction H2Saq = S0 + 2 H+ + 2 e? — may determined the measured potentials.The results show that the dynamics and morphology of hydromorphic soils and sediments are strongly dependent on microbial processes.  相似文献   

4.
以四川省30个典型紫色土剖面共计100个样品为研究对象,对其进行室内颜色测定和化学分析测试,获取Munsell HVC、CIE L*a*b*色度参数、各形态铁锰含量(全量Fet/Mnt,游离态Fed/Mnd,活性态Feo/Mno和络合态Fep/Mnp)及有机质含量数据.采用相关分析和逐步回归分析方法,研究紫色土色度参数...  相似文献   

5.

Purpose

Todorokite is one common manganese oxide in soils and sediments and is commonly formed from layered Na-buserite. Aging processes can alter the physicochemical properties of freshly formed Na-buserite in natural environments. However, it is not clear whether and how aging affects the formation of todorokites. In the present paper, Na-buserite with aging treatment was employed to prepare todorokite at atmospheric pressure to investigate the effects of aging treatment of Na-buserite on the formation of todorokite.

Materials and methods

Four aged Na-buserite samples, which are produced through oxidation of Mn2+ in concentrated NaOH medium by O2 with aging for 3, 6, 9, and 12 months, were employed to investigate the effects of aging processes on the transformation from Na-buserite to todorokite by Mg2+-templating reaction at atmospheric pressure. The manganese oxides were examined using X-ray diffraction (XRD), elemental analysis, determinations of the average manganese oxidation number, infrared spectroscopy (IR), and transmission electron microscopy (TEM).

Results and discussion

The XRD, IR, and elemental analyses indicate that aging treatment can alter the substructure of the freshly synthesized Na-buserite. During the aging process, some of the Mn(III) may migrate into the interlayer region or disproportionate to form Mn2+ and Mn4+ from the layer of Na-buserite and the concomitant formation of layer vacancies. The interlayer Mn3+ or Mn2+ occupied above or below the layer vacancy sites and become corner-sharing octahedral. XRD analyses and TEM clearly show that the transformation from Na-buserite to todorokite was promoted by aging treatments. The alterations of substructure of aged Na-buserites can promote the rearrangement of manganese to construct a tunnel structure during the transformation from layered manganese oxides to tunnel-structure todorokite at atmospheric pressure.

Conclusions

The transformation from Na-buserite to todorokite was promoted by aging treatments at atmospheric pressure, and it is more suitable to explore the origination of natural todorokite in Earth surface environments using aged layered manganese oxides.  相似文献   

6.
Rice is the staple food crop for about 50% of the world's population. It is grown mainly under two ecosystems, known as upland and lowland. Lowland rice contributes about 76% of the global rice production. The anaerobic soil environment created by flood irrigation of lowland rice brings several chemical changes in the rice rhizosphere that may influence growth and development and consequently yield. The main changes that occur in flooded or waterlogged rice soils are decreases in oxidation–reduction or redox potential and increases in iron (Fe2+) and manganese (Mn2+) concentrations because of the reductions of Fe3+ to Fe2+ and Mn4+ to Mn2+. The pH of acidic soils increased and alkaline soils decreased because of flooding. Other results are the reduction of nitrate (NO3 ?) and nitrogen dioxide (NO2 ?) to dinitrogen (N2) and nitrous oxide (N2O); reduction of sulfate (SO4 2?) to sulfide (S2?); reduction of carbon dioxide (CO2) to methane (CH4); improvement in the concentration and availability of phosphorus (P), calcium (Ca), magnesium (Mg), Fe, Mn, molybdenum (Mo), and silicon (Si); and decrease in concentration and availability of zinc (Zn), copper (Cu), and sulfur (S). Uptake of nitrogen (N) may increase if properly managed or applied in the reduced soil layer. The chemical changes occur because of physical reactions between the soil and water and also because of biological activities of anaerobic microorganisms. The magnitude of these chemical changes is determined by soil type, soil organic-matter content, soil fertility, cultivars, and microbial activities. The exclusion of oxygen (O2) from the flooded soils is accompanied by an increase of other gases (CO2, CH4, and H2), produced largely through processes of microbial respiration. The knowledge of the chemistry of lowland rice soils is important for fertility management and maximizing rice yield. This review discusses physical, biological, and chemical changes in flooded or lowland rice soils.  相似文献   

7.
The increased magnesium (Mg) concentration in vegetables may be reduced due to inter-ionic inhibition caused by the concentration of other water-soluble cations that are mainly associated to low molecular weight organic anions. However, it is not known whether the levels of these compounds in crop residues are modified by increasing the Mg soil application. This study aimed to assess the effects of the Mg application on the contents of water soluble cations [potassium (K+), calcium (Ca2+), magnesium (Mg2+), cooper (Cu2+), iron (Fe2+), manganese (Mn2+), and zinc (Zn2+)] on common bean plant residues. The experiment was conducted under greenhouse conditions with Ustoxix Quatzipsamment in completely randomized design in 4×5 factorial scheme, with three replicates. The treatments consisted of four rates of Mg [0, 50, 100 and 200 mg kg?1, source magnesium chloride (MgCl2)] and five varieties of common bean of the carioca group [BRS Estilo, BRS Ametista, IPR Campos Gerais (CG), IPR Tangará and IAPAR 81]. The Mg rates affected the contents of water soluble Ca2+, Mg2+, Cu2+, Fe2+ and Mn2+ in the extracts of bean residue. The soluble Mg2+ showed a significant correlation with foliar Mg content, indicating the need for further research on the method used to assess nutrient availability in vegetables. The bean varieties showed different responses regarding balance of ions in cation exchange capacity (CEC) and in the Ca/Mg, Ca/K and Mg/K ratios in the soil.  相似文献   

8.
Abstract

The effect of alternating waterlogged and drying conditions on phosphorus (P) availability and sorption was studied in three soils of contrasting chemical and physical properties. Soils were treated with two levels of P (0 and 50 mg kg‐1; P0 and P50), waterlogged for 21 days, then allowed to dry at room temperature for 14 days. The availability of P, iron (Fe), and manganese (Mn) over the waterlogged and drying periods was determined by shaking samples of each soil with 1M NaOAc (pH 3). Increasing concentrations of 1M NaOAc (pH 3) extractable P (Pac) over the waterlogged period was attributed to solubilization of Fe(OH)3 materials under reducing conditions with the release of sorbed and occluded P. The released P appeared to be resorbed by freshly precipitated amorphous Fe(OH)2 material since earlier studies showed that water soluble P concentrations in these soils were reduced to negligible levels under waterlogged conditions. The Fe(OH)2 material remained readily extractable with 1M NaOAc (pH 3) since Feac increased dramatically with waterlogging. Drying the waterlogged soils caused a rapid decrease in Pac, Feac and Mnac suggesting the Fe(OH)2 may have been transformed into more stable forms [e.g., Fe(OH)3]. Much of the changes in Pac appeared to be due to changes in Feac, with limited influence from Mnac. and mineralization of organic P. Phosphate sorption isotherms were determined using the standard batch technique for air‐dry, waterlogged (with and without ponded water), and waterlogged/dried conditions. Sorption isotherms were not affected by waterlogging and subsequent drying. Most soils sorbed all of the added phosphate irrespective of moisture treatment.  相似文献   

9.
Partial reduction of iron(III) oxides with hydrogen in the presence of a platinum catalyst leads to an equilibrium state after 4–20 h. From the measured Eh, pH, and Fe2+ concentration conditional standard potentials can be calculated using the formula Eo (volt) = Eh + 0.059 lg(Fe2+) + 0.18 pH which indicate the stability of Fe oxides against reduction. The reduceability decreases following the order ferrihydrite > lepidocrocite > hematite > goethite. The difference between hematite and goethite was more pronounced than that predicted from thermodynamic data.  相似文献   

10.

Purpose

Soil temperature is a fundamental parameter affecting not only microbial activity but also manganese (MnIII,IV) and iron (FeIII) oxide reduction rates. The relationship between MnIII,IV oxide removal from oxide-coated redox bars is missing at present. This study investigated the effect of variable soil temperatures on oxide removal by MnIII,IV and FeIII oxide-coated redox bars in water-saturated soil columns in the laboratory.

Materials and methods

The Mn coatings contained the mineral birnessite, whereas the Fe coatings contained a mixture of ferrihydrite and goethite. Additionally, platinum (Pt) electrodes designed to measure the redox potential (EH) were installed in the soil columns, which were filled with either a humic topsoil with an organic carbon (Corg) content of 85 g kg?1 (pH 5.8) or a subsoil containing 2 g Corg kg?1 (pH 7.5). Experiments were performed at 5, 15, and 25 °C.

Results and discussion

Although elevated soil temperatures accelerated the decrease in EH after water saturation in the topsoil, no EH decreases regardless of soil temperature occurred in the subsoil. Besides soil temperature, the importance of soil organic matter as an electron donor is highlighted in this case. Complete removal of the MnIII,IV oxide coating was observed after 28, 14, and 7 days in the soil columns filled with topsoil at 5, 15, and 25 °C, respectively. Along the Fe redox bars, FeIII reducing conditions first appeared at 15 °C and oxide removal was enhanced at 25 °C because of lower EH, with the preferential dissolution of ferrihydrite over goethite as revealed by visual differences in the FeIII oxide coating. Oxide removal along redox bars followed the thermodynamics of the applied minerals in the order birnessite > ferrihydrite > goethite.

Conclusions

In line with Van’t Hoff’s rule, turnover rates of MnIII,IV and FeIII oxide reduction increased as a result of increased soil temperatures. Taking into account the stability lines of the designated minerals, EH-pH conditions were in accordance with oxide removal. Soil temperature must therefore be considered a master variable when evaluating the oxide removal of redox bars employed for the monitoring of soil redox status.
  相似文献   

11.
In order to study the effects of salinity and drought stress on echophysiological parameters and micronutrients concentration of pomegranate leaves, a factorial experiment was conducted based on completely randomized design with 0, 30, and 60 mM of salinity levels of sodium chloride and calcium chloride (1:1) and three irrigation intervals (2, 4, and 6 days) with three replications on ‘Rabab’ and ‘Shishegap’ cultivars of pomegranate. The results analysis of shoot and root indicated that the water salinity and drought affected the concentration of iron (Fe2+), zinc (Zn2+), copper (Cu2+) and manganese (Mn2+) in pomegranate leaves and roots. Mineral concentration of zinc (Zn2+), copper (Cu2+) and manganese (Mn2+) in roots and manganese (Mn2+) in shoot was increased with increasing salinity. Drought treatments decreased the concentration of Zn2+ in the shoot and increased Zn2+ in roots. Both cultivars showed significant differences in the Fe2+ concentrations of shoot, however the most accumulation of Fe2+ was observed in ‘Shishegap’ cultivar.  相似文献   

12.
酸和氧化还原剂对二氧化锰溶解度的影响   总被引:1,自引:1,他引:1       下载免费PDF全文
涂仕华 《土壤学报》2004,41(4):530-535
由于土壤中锰的有效性随pH和Eh的变化而变化,利用土壤测试方法得到的锰素营养丰缺指标,通常难以代表田间锰素营养的实际状况.然而,在应用土壤pH和氧化锰溶解度的关系时,某些文献的不确切解释,引起一些误解.本实验研究了在浓HCl、HNO3和H2SO4及其稀溶液的不同浓度情况下对二氧化锰-水钠锰矿(MnO2)的溶解能力和机理,以及三种卤素还原剂(KCl、KBr和KI)在两种pH值条件下对MnO2的还原能力,从实验上和理论上进一步阐明了pH和Eh对MnO2溶解度的影响.实验结果表明,在浓HCl中,MnO2能被Cl-迅速还原而溶解.而在浓HNO3和H2SO4溶液中,MnO2不能被酸所直接溶解,只能被酸中的H2O缓慢还原,放置两年后反应仍未到达终点.在稀酸溶液中,当H+强度小于0.5 mol L-1(pH>1.0)时,三种强酸对MnO2都无明显的溶解能力;当H+强度>1.0 mol L-1时,HCl对MnO2的溶解能力显著地高于HNO3和H2SO4.三种卤盐溶液对MnO2的还原能力为KI>KBr>KCl,并随pH的降低和浓度的升高而增强.当pH>3时,KCl对MnO2的还原能力极弱;而无论pH高低(pH3或pH5),KI在很低浓度(0.001 mol L-1)时都能有效地还原MnO2.上述结果说明,如果二氧化锰不被还原,仅改变pH则很难被溶解.然而,在较高pH条件下,如有强还原剂存在,也有相当量的MnO2被还原.低Eh和pH条件下最有利于MnO2的还原.  相似文献   

13.
The capacity of three active Mn(IV)-reducing isolates to dissolve Mn in sterilized samples of two Egyptian soils and a pure sand enriched with MnO2 were studied. These isolates were identified as Penicillium variable (P. v.), Aspergillus niger (A. n.) and Streptomyces exfoliatus (S. e.). The data indicated that inoculation with the fungi and actinomycete mentioned increased the soil contents of water soluble + exchangeable manganese (Mnws+ex) but decreased the easily reducible form (Mner). The increase in Mn-mobility depended on soil type, organism used and time of incubation. The maximum level of Mnws+ex appeared after 14 days in the 3 soil samples. The release of Mn (II) ranged from 19.6 to 49.4 ppm in the sand samples, from 34.8 to 53.3 ppm in samples of a clay loam soil and from 9.9 to 19.8 ppm in samples of a calcareous sandy loam soil. The increase in Mnws+ex was at the expense of Mner but not in stochiometric amounts. The organisms tested can be ranked according to their capacity to reduce MnO2 in the following order (for all soils) Streptomyces exfoliatus > Aspergillus niger > Penicillium variable. Statistical analysis of the data revealed significant differences due to inoculation, soil type, incubation time and their interactions.  相似文献   

14.
The present research was done to study the ability of cyanobacterial species for removing heavy metals from sewage. As well, to estimate the growth and some metabolites of Beta vulgaris irrigated with sewage treated by cyanobacterial species. The best removal results were obtained by Anabaena oryzae compared to the other studied cyanobacteria. Whereas A. oryzae showed high removal efficiency for cadmium (Cd2+) followed by lead (Pb2+), zinc (Zn2+), iron (Fe2+), copper (Cu2+) and manganese (Mn2+) (88.5, 83.1, 68.8, 62.0, 55.2 and 42.4%, respectively). Irrigation of plants by untreated or treated sewage generally caused stimulation in the total proteins, proline, carbohydrates and ascorbic acid. B. vulgaris grown in soil irrigated with untreated sewage showed maximum catalase, peroxidase activity, hydrogen peroxide (H2O2) and lipid peroxidation compared to the other treatments. The heavy metals availability was relatively low in the plant irrigated with treated sewage by cyanobacterial species, so the antioxidants requirement was low and hence the induction of antioxidants was lower compared to the plant irrigated with untreated sewage.  相似文献   

15.
The present study aimed to assess the dynamics of oxyhydroxides via termite mounds in a tropical savannah of Central Nigeria, where the soils often contain oxyhydroxides as a major component of soil minerals. To this end, the quantities of oxyhydroxides stored in mounds built by Macrotermes bellicosus (Smeathman) were compared to those stored in surface (Ap1) soils, and their turnover rates were estimated. Both the mound wall and nest of M. bellicosus were enriched two- to 10-fold with acidified ammonium oxalate soluble iron (Feo) and aluminum (Alo) and dithionite-citrate-bicarbonate (DCB) soluble iron (Fed) and aluminum (Ald) relative to the adjacent surface soil horizon. These oxyhydroxide contents were positively correlated with the clay content (< 0.05), suggesting that M. bellicosus preferentially used silicate clay-associated oxyhydroxides for mound construction. The Fed, Ald and DCB-soluble manganese (Mnd) preserved in the M. bellicosus mounds ran up to 112 ± 25.6, 5.72 ± 1.41 and 2.17 ± 0.68 kg ha?1, accounting for 1.91 ± 0.23%, 1.00 ± 0.60% and 0.35 ± 0.09% of the total amount stored in the surface soil horizon, respectively. Furthermore, the estimated turnover rates of Fed, Ald and Mnd were 6.6, 0.33 and 0.14 kg ha?1 year?1, respectively. These findings suggest that the mound-building termites significantly impacted the dynamics of free oxyhydroxides in an African savannah soil.  相似文献   

16.
Laboratory experiments were conducted with sodic soils of varying exchangeable sodium percentage (ESP) (82, 65, 40, and 22) and a normal soil (ESP 4) to study the changes with time in soil pH, pCO2, Fe2+ and Mn2+ under submerged conditions with and without 1.0 per cent rice husk. In all the soils pCO2, Fe2+ and Mn2+ increased after flooding, reached the maximum value and then either maintained or declined slightly. The release of Fe2+ and Mn2+ was maximum in normal soil and decreased with increase of ESP in sodic soils. Addition of rice husk brought about a conspicuous increase in Fe2+ and Mn2+, the maximum increase being in lowest ESP soil. Flooding reduced the pH of all soils. The effect was more pronounced in the presence of rice husk. The kinetics of pCO2 indicated that accumulation of CO2 was higher in normal soil and least in highest ESP soil. The addition of rice husk showed an average increase of 0.0074 atm pCO2 in comparison to rice husk untreated soils.  相似文献   

17.
The distribution of iron‐cyanide complexes between ferrocyanide, [FeII(CN)6]4–, and ferricyanide, [FeIII(CN)6]3–, in soils on contaminated sites depends on the redox potential, EH. We carried out microcosm experiments in which ferrocyanide (20 mg l?1) was added to an uncontaminated moderately acidic subsoil (pH 5.2), and varied the EH of the soil suspension between 200 and 700 mV over up to 109 days. Ferrocyanide and ferricyanide were analysed by capillary isotachophoresis. At redox potentials ranging from 400 to 700 mV, small amounts of iron‐cyanide complexes were adsorbed, and ferrocyanide was almost completely oxidized to ferricyanide. Decreasing EH to 200 mV led to nearly complete removal of iron‐cyanide complexes from solution, and the complexes were not mobilized after subsequent aeration (EH > 350 mV). Under weakly to moderately reducing conditions (EH ≈ 200 mV), iron‐cyanide complexes were removed from solution by precipitation, which occurred, presumably in the form of e.g. Fe2[FeII(CN)6], Fe4[FeII(CN)6]3 or Mn2[FeII(CN)6], after reductive dissolution of Mn and Fe oxides. Four different sets of geochemical model calculations were carried out. The species distribution between ferrocyanide and ferricyanide in solution was predicted reliably under varying pH and redox conditions when iron‐cyanide complex concentrations and Fe concentrations, excluding Fe bound in iron‐cyanide complexes, were used in model calculations. In model calculations on the fate of iron‐cyanide complexes in soil, adsorption reactions must be considered, especially under oxidizing conditions. Otherwise, the calculated iron‐cyanide complex concentrations are larger than those actually measured.  相似文献   

18.
Greenhouse experiment was conducted to assess the iron (Fe) and zinc (Zn) fractionation patterns in soils of arbuscular mycorrhizal (AM) fungus-inoculated and uninoculated maize plants fertilized with varying levels of Fe and Zn. Soil samples were collected for Fe and Zn fractions and available Fe, Zn and phosphorus (P) contents besides organic and biomass carbon (BMC), soil enzymes and glomalin. Major portion of Fe and Zn fractionations was found to occur in the residual form. Mycorrhizal symbiosis increased the organically bound forms of Fe and Zn while reducing the crystalline oxide, residual Fe and Zn fractions, indicating the transformation of unavailable forms into available forms. Soil enzymes, viz. dehydrogenase and acid phosphatase activities in M+ soils, were significantly higher than M? soil consistently. Overall, the data suggest that mycorrhizal symbiosis enhanced the availability of Fe and Zn as a result of preferential fractionation and biochemical changes that may alleviate micronutrient deficiencies in calcareous soil.

Abbreviations: AM: arbuscular mycorrhiza; Fe: Iron; Zn: Zinc; P: Phosphorous; Amox-Zn: amorphous oxide bound zinc; Cryox-Zn: crystalline oxide bound zinc; DAS: days after sowing; DTPA: diethylene Triamine Penta Acetic Acid; MnO2-Zn: manganese oxide bound zinc; OC-Zn: organically bound zinc; WSEX: water soluble plus exchangeable zinc; MnO2 Fe: manganese oxide bound iron; OC-Fe: Organically bound iron; WSEX Fe: water soluble plus exchangeable iron.  相似文献   

19.
Abstract

The capacity of 36 Western Australian soils to adsorb phosphorus (P) was measured by three different methods: P retention index (PRI), P buffering capacity (PBC), and P adsorption (PA). The P adsorption values measured by all three methods varied markedly with soil type. When the P adsorption values were correlated with several soil properties, using simple and multiple linear regressions, PRI, PBC, or PA values were found to be significantly correlated with the aluminium oxide content of the soils. In addition, PBC and PRI was correlated with organic carbon content. The role of aluminium oxide (Al2O3) in the soil was apparently more important in determining the P adsorption capacity of the soils than that of iron (Fe), even though the iron oxide (Fe2O3)content of all the soils studied was consistently higher than the aluminium oxide content. The relationship between P adsorption and the selected soil properties, as determined by multiple linear regression, explained 45–59% of the variation: arabic PRI = ‐10.87 + 9.94 organic C (%) + 160.02 Al2O3 (%), r2 = 0.45.

arabic PBC = ‐0.004 + 1.532 organic C (%) + 22.26 Al2O3 (%), r2 = 0.57.

arabic PA = 3.52 + 248.75 Al2O3 (%), r2 = 0.59.

  相似文献   

20.
A study was made of the formation of anaerobiosis in a waterlogged soil. A dilute soil suspension containing NO?3, Fe3+, sodium citrate, a limited amount of O2, and trace elements was used as a model of waterlogged soil. Polarography was used to detect dissolved O2, Fe3+ and Fe2+. The fates of the NO?3 and Fe3+ during and after O2 consumption by the microorganisms were studied in a specially designed vessel. A close correspondence was obtained between the reduction of NO?3, NO?2 and Fe3+ and the growth of denitrifying bacteria in the closed system employed. From the experimental results we presume that microorganisms which respire NO?3 are also capable of utilising Fe3+ in their respiration. The mechanisms of reduction of these chemical species by the microorganisms are also discussed, emphasising the possibility of the participation of chemical reduction of NO?2 by Fe2+ in the over-all reduction process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号