首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potentialities of direct somatic embryogenesis and plant regeneration from leaf explants of Limoniumsinensis var. Golden Diamond invitro were investigated. Young whole leaf and cut leaf explants when cultured on MS basal medium supplemented with each of the growth regulators N6-benzyladenine (BA) (0.44–2.2 μM) or thidiazuron (TDZ) (4.54 μM) alone or in combination with a fixed concentration of α-naphthalene acetic acid (NAA) (1.07 μM) produced somatic embryos directly. More than 90% of the leaf explants produced white, globular somatic embryos on BA (2.2 μM) and NAA (1.07 μM) supplemented MS basal medium within 1 week of inoculation. Most of the embryos matured further and converted after 8 weeks of culture on the same medium. Histological observation showed that the somatic embryos originated from single cells of epidermal layer of leaf. Histological evidence of formation of shoot and root poles during conversion of the embryos confirmed that these structures were true somatic embryos. After conversion the plantlets were further placed on MS medium containing 0.44 μM BA and 4.5 μM IBA for better shoot and root growth. About 90% of the plantlets transferred to the mixture of soil:perlite:vermiculite (1:1:1) in small plastic pots acclimatized successfully. Of these 85.5% plants survived after transferring into earthen pots containing a mixture of soil, coarse sand and cattle manure (1:1:1) under greenhouse or shady open condition.  相似文献   

2.
An efficient plant propagation system through somatic embryogenesis was established in Cymbopogon pendulus, an aromatic grass followed by analysis of genetic status of regenerants using ISSR markers. Optimum embryogenic callus induction was observed on MS basal medium supplemented with 13.57 μM 2,4-dicholorophenoxyacetic acid (2,4-D) with 8.88 μM N6-benzyladenine (BA). Subsequent culturing of embryogenic calli on MS medium containing 4.52 μM 2,4-D and 8.88–13.32 μM BA gave maximum number of somatic embryos. Addition of coconut water (CW) promoted induction, growth and differentiation of callus and somatic embryogenesis. Further development of embryos into plantlets was achieved on MS medium supplemented with lower concentration of biotin and calcium pantothenate (CaP) along with BA (4.44–13.32 μM) and kinetin (2.32–4.65 μM). The root meristems were established on half strength MS medium containing 2% sucrose and 2.46–9.84 μM Indole3-butyric acid (IBA) and successfully established in soil with 77.8% survival rate in field condition. Thirteen randomly selected regenerated clones were screened using six ISSR primers. Nine clones produced similar monomorphic amplification profiles while remaining clones showed minor variation with absence of certain parental bands and appearance of unique band. Majority of the regenerants maintained genetic fidelity with the generation of few variants as evidenced from similarity matrix estimates using Nei Li's coefficient of similarity data.  相似文献   

3.
《Scientia Horticulturae》2005,105(1):117-126
The objectives of the present work were to study the embryogenic competence of floral tissues of Feijoa sellowiana and to investigate the influence of plant growth regulators on somatic embryo induction and development in order to establish a somatic embryogenesis protocol starting from somatic tissues. Petals, stamens and ovaries of floral buds were cultivated onto LPm basal medium supplemented with different levels of 2,4-D, Picloram, 2-iP, Kin and BAP. The highest embryogenic callus induction was obtained with Picloram (10 μM) and Kin (1 μM). Rates of embryogenic calluses induction in stamens and petals were significantly affected by PGRs. Embryogenic calluses were transferred to the same medium, supplemented with gradually reduced levels of PGRs-free medium. After 60 days in suspension cultures with 2,4-D (1 μM) and 2-iP (1 μM) calluses were transferred to PGR-free medium. After 30 days it was observed the development of globular somatic embryos on the surface of 18% of friable calluses previously induced with Picloram (10 μM) and Kin (1 μM). Only embryogenic calluses derived from stamens gave rise to this morphogenetic pattern.Torpedo and cotyledonary somatic embryos transferred to PGR-free culture medium were converted to complete plantlets. This is the first report of somatic embryogenesis in this species starting from somatic tissues.  相似文献   

4.
Micropropagation studies on Zamioculcas zamiifolia Engl. (ZZ) as to the position and orientation of leaflet explants and plant growth regulators were carried out. Explants consisted of leaflet lamina from the basal or apical part of the leaflet with or without petiolule or midrib that were placed vertically into the medium except for the explants with midrib from the basal part of the leaflet that were placed horizontally as well. The explants were cultured on solid Murashige and Skoog medium (MS) with 30 g l−1 sucrose, supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) at 2 or 4 mg l−1 and 6-benzyladenine (BA) at 0 or 4.44 μM in all (four) possible combinations, or with 1-naphteleneacetic acid (NAA) at 0 or 5.38 μM and BA at 0 or 4.44 μM in all (four) possible combinations (establishment medium). The morphogenic response was direct from all types of leaflet explants and varied only with respect to different plant growth regulators of the medium: 2,4-D combined or not with BA formed somatic embryo-like structures; NAA alone produced tubers and roots; BA alone resulted mainly in leaves; NAA combined with BA produced mainly roots. The intensity of the response varied accordingly to the explant type and orientation. Explants with petiolule or midrib from the basal part of the leaflet showed the highest morphogenic response compared to explants without petiolule or midrib or to explants from the apical part of the leaflet, in all the plant growth regulator combinations used. Explants with midrib from the basal part of the leaflet placed vertically into the media showed higher morphogenic response compared to those placed horizontally on the medium surface. With the objective to regenerate plantlets, explants were subcultured on MS with NAA and BA at various concentrations based on the explant response in the establishment medium, taking into consideration the initial explant type. The initial explant type did not affect the response in the subculture. Most plantlets (a tuber with roots and one leaf with one pair of leaflets) were produced by explants with embryo-like structures induced in a medium with only 2,4-D. Explants with tubers induced in a medium with NAA gave plantlets at 65–85% when subcultured in a medium with 4.44 μM BA alone or in combination with 2.69 μM NAA. Explants with leaves induced in a medium with BA and explants with roots induced in a medium with NAA and BA gave plantlets at low percentages (20–40%). The best response was produced by explants with embryo like structures induced in a medium with only 2,4-D which gave plantlets at 100% when subcultured in the medium with 2.69 μM NAA and 2.22 μM BA. Plantlets raised in different treatments were transplanted ex vitro after 22 weeks and exhibited 80–100% survival.  相似文献   

5.
A protocol for clonal propagation of Rosa clinophylla, a rare and endangered species but very important for breeding purposes had been standardized through in vitro axillary bud culture. Although cytokinins alone were able to induce shoot buds, but their proper growth and number could be increased only when they were used in combination with GA3. However, there was shoot tip necrosis and leaf fall in the proliferated shoots. AgNO3 at 58.85 μM proved effective to avoid shoot necrosis and yellowing of leaves. Activated charcoal (AC) at 250 mg l−1 was found necessary at all the stages of shoot multiplication as well as rooting. Ninety percent rooting could be achieved in 1/2 MS medium supplemented with 4.92 μM IBA and 250 mg l−1 AC. Rooted plantlets were hardened and transferred to the field successfully with 80% survival rate.  相似文献   

6.
An in vitro plant regeneration protocol for pansy (Viola wittrockiana) cultivar ‘Caidie’ from petioles was established as following: callus induction on a half-strength MS medium supplemented with 0.45 μmol l−1 2,4-d plus 8.9 μmol l−1 BA, callus subculture on medium F (1/2MS with 4.5 μmol l−1 2,4-d, 2.7 μmol l−1 NAA and 0.44 μmol l−1 BA) and then on medium T (1/2MS with 4.5 μmol l−1 2,4-d, 2.7 μmol l−1 NAA and 2.2 μmol l−1 BA), shoot regeneration on medium D3 (MS media supplemented with 2.9 μmol l−1GA3, 23.6 μmol l−1 AgNO3, 0.02% active charcoal and 4.5 μmol l−1 TDZ), shoot multiplication on medium M (half-strength MS medium containing NAA 1.1 μmol l−1, TDZ 9.1 μmol l−1 and GA3 8.7 μmol l−1), and then shoot elongation and rooting on medium R (MS medium supplemented with 1.1 μmol l−1 NAA and 1.1 μmol l−1 BA). Subculture on appropriate medium was found to be important for successful shoot regeneration.  相似文献   

7.
Organogenic callus induction and high frequency shoot regeneration were achieved from cotyledon explants of cucumber. About 86.2% of cotyledon explants derived from 5-day-old in vitro raised seedlings produced green, compact nodular organogenic callus in MS medium containing NAA (2.69 μM) and BA (4.44 μM) after two successive transfers at 20 days interval. Adventitious shoots were produced from the organogenic callus when it was transferred to MS medium supplemented with NAA (1.34 μM), BA (8.88 μM), zeatin (0.91 μM) and l-glutamine (136.85 μM) with shoot induction frequency of 75.6%. Shoot proliferation occurred when callus with emerging shoots was transferred in the same medium at an interval of 20 days. Shoots (1.0 cm length) were excised from callus and were elongated in MS medium fortified with GA3 (1.44 μM) and BA (4.44 μM). The elongated shoots were rooted in MS medium supplemented with IBA (3.42 μM) and BA (4.44 μM). Rooted plants were acclimatized in green-house and subsequently established in soil with a survival rate of 80%. This protocol yielded an average of 35 shoots per cotyledon explant in a culture duration of 120–140 days.  相似文献   

8.
9.
This study describes a successful method of somatic embryogenesis and genetic transformation using immature cotyledons of Prunus mume. Immature cotyledons from four different developmental stages of eight different P. mume cultivars were used for the experiments to optimize somatic embryogenesis and genetic transformation protocols. Somatic embryogenesis was induced when the explants were cultured on somatic embryo inducing medium consisting of MS basic medium supplemented with 1 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 1 μM 6-benzyladenine (BA). They were cultured for 30 days and then transferred to somatic embryo propagation medium containing 0.1 μM α-naphthaleneacetic acid (NAA) and 5 μM BA. It appeared that the developmental stage of the immature cotyledons used as explants was the most important factor for somatic embryogenesis; higher frequencies of somatic embryogenesis were observed when the immature cotyledons were less than 5 mm in length regardless of cultivars. For genetic transformation, the immature cotyledons were inoculated with Agrobacterium tumefaciens EHA101 harbouring a binary plasmid vector with neomycin phosphotransferase II and an intron-interrupted β-glucuronidase gene under the control of cauliflower mosaic virus 35S promoter, and three transgenic plant lines were obtained from inoculated “Sirakaga” immature cotyledons. Transgenic somatic embryos and shoots were selected using 25 mg l−1 kanamycin. Integration of transgenes in the genome of GUS-positive putative transgenic shoots was confirmed by PCR and Southern blot analyses.  相似文献   

10.
An efficient plant regeneration protocol via somatic embyogenesis by leaf base culture of in vitro grown Iris pumila shoots was developed. Induction of embryogenic calli was achieved on MS media supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D), kinetin (4.5 μM, each) and some additives (L-proline, casein hydrolysate, adenine sulphate and tyrosine). Further differentiation of embryogenic calli was achieved on MS hormone-free media, and on media supplemented with either BAP (4.5 μM) or BAP + zeatin (4.5 and 0.2 μM, respectively), which allowed somatic embryos, as well as shoot-like structures to form. Fully developed somatic embryos germinated on an MS hormone-free medium. An anatomical study confirmed that shoot-like structures represented early germinating stages of somatic embryos. Acclimatization of plants derived from somatic embryos was 64% after 1 year and no morphological variation was observed.  相似文献   

11.
Protocols are outlined for the regeneration of Curcuma soloensis, an attractive tropical ornamental plant, from young vegetative bud explants. We used both direct and callus-mediated regeneration techniques to produce material suitable for mass propagation and the development of transgenic plants. During direct plantlet propagation, the presence of thidiazuron (TDZ) in the growing medium induced more than three times as many shoots as 6-benzylaminopurine (BA), with a mean of 18.7 shoots per explant on MS medium containing 2.5 μM TDZ compared to 5.0 shoots with 40 μM BA. Subsequently, the shoots rooted readily on MS basal medium that was free of plant growth regulators. During indirect plantlet regeneration, TDZ combined with BA and 2,4-dichlorophenoxyacetic acid (2,4-D) had significant effects on embryogenic callus induction and multiplication. The frequency of callus formation was 91.1% for explants cultured on MS basal medium supplemented with 2.5 μM TDZ, 2.0 μM BA and 1.2 μM 2,4-D. On average 7.1 shoots were produced per callus mass cultured on MS medium supplemented with 2.5 μM TDZ, 9.0 μM BA and 1.2 μM naphthaleneacetic acid (NAA). Regenerated shoots were transferred to MS medium supplemented with 2.5 μM TDZ, to produce multiple shoots. In vitro cultured plantlets readily acclimatized to greenhouse conditions, showing 100% survival rates in a sphagnum, perlite and sand (1:1:1) medium. These plants were transplanted into pots or planted in the field. The ex vitro acclimated plants grew vigorously and produced showy inflorescences 5–6 months after planting. The high-frequency of shoot multiplication and rapid flowering of tissue-cultured plants indicate that C. soloensis has great potential in the floricultural market.  相似文献   

12.
Shoots regenerated adventitiously on epicotyl segments from in vitro seedlings of Emblica officinalis var. ‘Kanchan’. Epicotyls derived from 2-week-old aseptic seedlings were most responsive and produced a maximum number of 303 shoots per explant in Murashige and Skoog (1962) medium (MS) augmented with 8.8 μM N6-benzyladenine (BA) + 1.425 μM indole-3-acetic acid (IAA). Shoots readily elongated in MS lacking growth regulators and rooted in half-salt-strength MS (1/2 MS) supplemented with indole-3-butyric acid (IBA) or α-naphthalene acetic acid (NAA). The highest rooting response was recorded in 1/2 MS containing 14.7 μM IBA. Plantlets were acclimatized inside the green house and 80% of the plantlets survived on transfer to garden soil.  相似文献   

13.
An efficient method of repetitive somatic embryogenesis and plant regeneration was established in Coriandrum sativum L. Embryogenic callus was induced from cotyledon and hypocotyl segments on Murashige and Skoog (MS) medium with 4.52 μM 2,4-dichlorophenoxy acetic acid (2,4-D), upon subculturing on medium having same level of 2,4-D at an interval of 3 weeks developed somatic embryos, which progressed to cotyledonary stage through early developmental stages of somatic embryogenesis. The transfer of somatic embryos at an early cotyledonary and cotyledonary stage in clumps in succession to fresh 4.52 μM 2,4-D supplemented medium developed embryos in a cyclic manner. Upon transferal to embryogenic clumps (cotyledonary embryos) to modified MS medium (4 g l−1 KNO3, 0.29 g l−1 NH4NO3, 3 mg l−1 thiamine HCl, 0.5 mg l−1 pyridoxine HCl, and 5 mg l−1 nicotinic acid), the embryos irrespective of the cycles underwent maturation and germination. Germinating embryos transferred to half-strength MS medium favored healthy growth of plantlets. The system of recurrent somatic embryogenesis in coriander offers a system for genes transfer and also scale-up production of modified plants.  相似文献   

14.
An indirect organogenesis regeneration protocol for Opuntia ficus-indica (L.) Mill var “Blanco sin Espinas” is described. One centimeter square cladode explants sections from previously micropropagated prickly pear plants were cultured in Murashige and Skoog (MS) basal medium supplemented with 20 different combinations of 2,4-dichlorophenoxy acetic acid (2,4-D) and benzyladenine (BA). The best calli induction and regeneration response were observed when 2.26 μM 2,4-D and 2.21 μM BA combination was applied to the nopal explants. Regenerating calli was capable of forming new buds when transferred to MS basal medium supplemented with 0.5 μM BA (proliferation medium). Shoot elongation and rooting were achieved on MS medium without plant growth regulators. Excellent acclimatization to greenhouse conditions was observed for all transferred plantlets. By this procedure no morphological differences were observed between the regenerated and mother plants. This protocol may be also utilized to carry out plant regeneration after genetic transformation, in order to develop transformed plants without the presence of chimeric zones.  相似文献   

15.
Apical and axillary buds from a high yielding, early fruiting elite tree (more than 20 years old) were cultured in woody plant medium (WPM) supplemented with 0.9 μM N6-benzyl adenine (BA). Multiple shoots were obtained on WPM basal medium containing 8.9 μM BA and 0.5 μM thidiazuron (TDZ). Elongation of axillary shoots was obtained in half-strength WPM medium supplemented with 0.4 μM BA. For root initiation, the elongated shoots were transferred to half strength WPM basal medium containing 2.5–245 μM indole-3-butyric acid (IBA) or 2.7–268.5 μM α-naphthaleneacetic acid (NAA) or the shoots were subjected to 2.5–53.9 mM IBA, 2.7–59.1 mM NAA dip for (30 s–30 min) and then transferred to half strength WPM basal medium. However, rooting was never achieved even after 2 months of culture.  相似文献   

16.
The application of modern biotechnology for conservation of any endangered species requires an efficient in vitro regeneration protocol. In this study a reliable protocol was developed for in vitro seed germination, protocorm multiplication and subsequent plantlet regeneration of Vanda coerulea, an endangered orchid species. Among the four basal media evaluated for asymbiotic seed germination, Phytamax was found to be the best followed by Murashige and Skoog (MS). Phytamax was also found good for protocorm development. For protocorm like body (PLB) regeneration, protocorms were then further cultured on Phytamax media fortified with different phytohormones either individually or in combinations. The frequency of protocorm like body (PLB) regeneration significantly relied on kinds and concentrations of plant growth regulators used. A combination of 1-naphthaleneacetic acid (NAA) (5.36 μM) and 6-benzyle amino purine (BAP) (3.80 μM) was found to be suitable for maximum PLB regeneration. Healthy plantlets were induced from PLBs when cultured on same basal medium supplemented with activated charcoal (AC – 3.0 g/l). Plantlets with well developed leaves and roots were transplanted to pots filled with a mixture of charcoal, brick pieces and sphagnum moss and transferred to the greenhouse. This protocol will enable mass propagation and conservation of this exquisite orchid.  相似文献   

17.
An innovative in vitro hydroponic culture system used in potato (Solanum tuberosum L.) microtuber production is described in this paper. In vitro potato plantlets, 6–8 cm in height, derived from meristems of potato tubers cultured on 1/2 Murashige and Skoog (MS) nutrient medium after 30 days culture were cut into 1.5 cm stem node segments and used as explants. These stem nodes were cultured in a novel system called in vitro hydroponic culture system containing 1/2 MS medium supplemented with 0.5 μM naphthaleneacetic acid (NAA), 0.3 μM gibberellic acid (GA3), 3.7 μM adenine sulfate, 10% coconut water, 0.5 g/l activated charcoal, 80 g/l sucrose with or without 8 g l−1 agar. Liquid medium was distributed to the carrier substrates in each storey of the system with the aid of capillary robes. In the present paper, the effects of porous material used as substrate carrier and the number of storeys involved in the culture system on microtuber formation and their morphological characteristics are reported. Cotton layer substrate is more stable for organogenesis of potato microtubers. Microtubers, 3.19 mm in diameter and 49.82 mg in weight, could be harvested from a one-storey in vitro hydroponic culture system containing filter paper as substrate. However, microtubers cropped from three-storey in vitro hydroponic culture system with cotton layer were bigger and weightier than those from three-storey system containing filter paper. The above results of the in vitro hydroponic system examined in this study might open up a new approach in producing potato and other hygrophilous microtuber.  相似文献   

18.
《Scientia Horticulturae》2005,105(3):411-420
Callus induction and somatic embryogenesis of lotus (Nelumbo nucifera Gaertn.) cv. Satabankacha were studied. Callus was initiated by culturing bud, cotyledon, and young leaf explants on Murashige and Skoog (MS) (1962) medium containing a combination of 0, 4, 8 and 10 μM 2,4-dichlorophenoxy acetic acid (2,4-D) and 0, 1, 2 and 3 μM 6-furfuryl amino purine (kinetin) or substituting 0, 0.5 and 1 μM benzyladenine (BA) for kinetin. Bud explants cultured on medium containing 4 μM 2,4-D and 1 μM BA gave the best callus growth. For somatic embryogenesis, the calli initiated on MS medium containing a combination of 4, 6, 8 and 10 μM 2,4-D and 1 μM BA and subsequently transferred to media containing 2–4 μM 2,4-D and 0 or 0.5 μM BA produced the most somatic embryos. When cultures were 12-week-old, callus produced on medium with 6 μM 2,4-D and 1 μM BA showed the best growth for somatic embryo regeneration. When transferred to a medium with 2 μM 2,4-D and 0.5 μM BA somatic embryos were produced from 33% of the calli. Embryos developed to the stage proembryo within 4 weeks and formed globular, heart, torpedo and mature embryos within 16 weeks.  相似文献   

19.
The purpose of this work was to acquire more information on the capacity of in vitro grown quince (Cydonia oblonga Mill.) leaves to simultaneously regenerate somatic embryos, adventitious roots and shoots, and to evaluate the variations induced on regeneration response by treatments of different length with growth regulators. After 2 days of liquid treatment with 2,4-dichlorophenoxyacetic acid, the leaves were cultured for 0, 3, 6, 9, 12, 15, 18 and 21 days on gelled growth medium containing the basal components of Murashige and Skoog and kinetin (Kin) 4.5 μM + naphthaleneacetic acid (NAA) 0.5 μM. At the end of each treatment period, the leaves were cultured on a transfer medium in the absence or in the presence of a growth regulator combination represented by N6-benzylaminopurine (BA) 2.66 μM + gibberellic acid 0.58 μM + indole-3-butyric acid 0.3 μM. The culture period for all the treatments was fixed to 52 days.  相似文献   

20.
The present study was carried out to assess the effect of explant preparation and sizing for in vitro micropropagation of Aloe vera L. The stem nodal explants and shoot tips were cultured on modified Murashige and Skoog's medium (1962) supplemented with different concentrations of 6-benzylaminopurine (BA), kinetin (KIN), indole-3-acetic acid (IAA), indole-3-butyric acid (IBA) and α-naphthaleneacetic acid (NAA) either singly or in combination. The best media composition was found to be MS medium supplemented with IAA (11.42 μM), IBA (9.8 μM) and BA (8.88 μM). The explants were divided into 2 sets, with and without ensheathing leaf base. Explant sizing, pruning and retention of mother tissue was highly significant in induction of multiple shoots and roots. The stem nodal explants with leaf base performed much better than those without such covering. A very high number of shoots and roots grew from these explants. The rooted plantlets were successfully acclimatized and transferred to the green house conditions and finally to field conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号