首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this work was to explore leaf characteristics underlining the difference in the sensitivity of pea cultivars (cv. Kelvedon, Douce and Lincoln) to Fe deficiency. Plants were grown in a greenhouse under controlled conditions in continuously aerated solution. Three treatments were used: 30 μM Fe (+Fe), 0 μM Fe (−Fe); direct deficiency and 30 μM Fe + 10 mM NaHCO3 (+Fe+Bic); indirect deficiency for 12 days. Growth parameters, iron status, potassium content, chlorophyll fluorescence and photosynthetic capacity were studied. Our results showed that Fe deficiency led to a significant decrease of chlorophyll index (SPAD readings) and bivalent iron content in all Pisum sativum cultivars. The lower reduction was observed in Fe-deficient plants of Kelvedon and Douce. In addition, shoot length and whole plant dry weight were not affected by Fe deficiency in the latter cultivars. Both tolerant cultivars showed higher accumulation of potassium content in their leaves compared with the sensitive one. Moreover, both chlorophyll fluorescence ratios (Fv/Fm and Fv/F0) were significantly decreased in all cultivars under both Fe deficiency treatments. The photosynthetic electron transport activity was reduced in the sensitive cultivar, especially in the absence of iron. The adverse effect of bicarbonate-induced Fe deficiency on the above mentioned parameters were more pronounced than that of the direct one. The capacity of both tolerant cultivars to preserve adequate chlorophyll synthesis, photosynthetic capacity and plant growth under iron-limiting conditions is related to the suitable nutrition of their leaves in ferrous iron, due to (at least partially) their higher potassium content.  相似文献   

2.
There has been limited research on measuring potential differences in leaf gas exchange of Arracacha (Peruvian parsnip, Arracacia xanthorriza Bancroft) cultivars, as affected by different environments, as well as its relation to storage root-yield. The present paper reports field measurements of leaf CO2 assimilation rates (A) for five contrasting cultivars grown at two different high-altitude locations. Using a design of plots chosen at random with three repetitions, commercial root production was determined in the two locations at different altitude (1580 and 1930 m). Daily leaf gas exchange was repeatedly monitored with a portable open-mode infrared gas analyzer at different times in both locations during the growth cycle. Root-yield, leaf area and dry weight were measured. Significant differences in leaf photosynthetic rate and in specific leaf area (SLA) were observed among cultivars. Cultivars with high SLA, had high CO2 assimilation. Mean (An) and total (Atot) of CO2 assimilation and SLA were significantly correlated with storage root-yield across cultivars and locations. The three cultivars with the greatest commercial root production also had the highest maximum values for A and the highest specific leaf area, indicating that these two parameters can be used to select for highly productive cultivars of A. xanthorriza.  相似文献   

3.
The effect of some pesticides (sodium arsenite, thiabendazole and ziram) and the natural phytoalexin (resveratrol) on mycelial growth of Phaeomoniella chlamydospora and Phaeoacremonium angustius was studied. Several strains of these species were grown on malt extract agar (MEA) plates containing different concentrations of inhibitory compounds and colony diameters were measured. While sodium arsenite and ziram had little effect on the growth of both species, thiabendazole inhibited colony growth, at minimum concentrations of 6 μM for Ph. chlamydospora and 15 μM for P. angustius. Resveratrol at concentrations equal to or grater than 867 μM also inhibited colony growth of both species. To assay the effect of these substances on plant response to infection, in vitro grapevines were inoculated with Ph. chlamydospora or P. angustius spores and were grown in the presence of sodium arsenite (0–30 μM), thiabendazole (0–30 μM) or resveratrol (0–876 μM). Infected untreated plants and sodium arsenite-treated plants developed symptoms of senescence (reduced growth, increased membrane lipid peroxidation, and decreased chlorophyll content and fluorescence). In contrast, infected plants treated with thiabendazole (30 μM) or with resveratrol (876 μM) showed similar characteristics of fresh weight, malondialdehyde accumulation and chlorophyll fluorescence to those of uninfected plants. These results are promising with respect to the use of thiabendazole-containing pesticides as alternatives to currently used pesticides for control of esca in vines. Results also suggest that the presence of resveratrol in grapevines may be useful to induce resistance to these fungi.  相似文献   

4.
To investigate the responses of leaf photosynthesis and plant growth to a moving lighting system, potted gerberas (Gerbera jamesonii H. Bolus ex J.D. Hook “Festival”) were grown under supplemental lighting in a greenhouse with either a stationary or a moving lighting system positioned above the benches. The stationary system consisted of a fixed high pressure sodium (HPS) lighting system, while the moving lighting system consisted of a moving HPS fixture attached to a cable system to move the light fixture back and forth over the crop. In both cases, the supplemental lighting was applied from 6:00 to 24:00 h with the same supplemental daily light integral (4.9 mol m−2 day−1). Moving lamps significantly increased leaf photosynthetic capacity as represented by light saturated net CO2 exchange rate (NCER) (Asat), light- and CO2-saturated rate of NCER (Amax), maximum rate of Rubisco carboxylation (Vcmax), maximum rate of electron transport (Jmax) and rate of triose phosphate utilization. However, in situ leaf NCER and stomatal conductance, leaf chlorophyll content index, leaf area, leaf thickness, fresh weight of plants were significantly lower under moving lighting than under stationary lighting. It is suggested that the reduced growth of plants under moving lighting might be due to (1) the overall lower light use efficiency of leaves under moving lighting than those under stationary lighting; (2) the slower response time of the photosynthetic system compared to the rate of change in light intensity under moving lighting.  相似文献   

5.
This study examined the vegetative and reproductive growth responses of the crassulacean acid metabolism (CAM) vine-cactus fruit crop species Hylocereus undatus and Selenicereus megalanthus to CO2 enrichment (1000 μmol mol−1 vs. control of 380 μmol mol−1). H. undatus plants enriched with CO2 demonstrated 52%, 22%, 18%, and 175% increases, relative to plants measured in ambient CO2, in total daily net CO2 uptake, shoot elongation, shoot dry mass, and number of reproductive buds, respectively. The responses of S. megalanthus plants exposed to elevated CO2 were greater than those of H. undatus under the same conditions. Compared to plant responses in ambient CO2, under conditions of CO2 enrichment, S. megalanthus showed 129%, 73%, 68%, and 233% increases in total daily net CO2 uptake, shoot elongation, shoot dry mass, and number of reproductive buds, respectively. Moreover, for H. undatus, there was no significant change in fruit fresh mass although it showed a slight (7%) upward trend. On the other hand, fruit fresh mass of S. megalanthus significantly increased by 63% in response to elevated CO2. These results indicate the high potential of CAM plants to respond to CO2 enrichment. It is thus apparent that S. megalanthus grown under CO2 enrichment may benefit from elevated CO2 to a greater extent than H. undatus grown under sub-optimal growth conditions.  相似文献   

6.
Root restriction often depresses photosynthetic capacity and the mechanism for this reduction, however, remains unclear. To identify the mechanism by which root restriction affects the photosynthetic characteristics, tomato (Lycopersicon esculentum Mill.) seedlings were subjected to root restriction stress with or without supplemental aeration to the nutrient solution. With the development of the root restriction stress, CO2 assimilation rate was decreased only in confined plants without supplemental aeration. There were also significant decreases in leaf water potential, stomatal conductance (gs), intercellular CO2 concentration (Ci), and increases in the stomatal limitation (l) and the xylem sap ABA concentration. Meanwhile, the maximum carboxylation rate of Rubisco (Vcmax) and the capacity for ribulose-1,5-bisphosphate regeneration (Jmax) also decreased, followed by substantial reductions in the quantum yield of PSII electron transport (ΦPSII). Additionally, root restriction resulted in accumulation of carbohydrates in various plant tissues irrespective of aeration conditions. It is likely that root restriction-induced depression of photosynthesis was mimicked by water stress.  相似文献   

7.
Callistemon is an Australian species used as ornamental plant in Mediterranean regions. The objective of this research was to analyse the ability of Callistemon to overcome water deficit in terms of adjusting its physiology and morphology. Potted Callistemon laevis Anon plants were grown in controlled environment and subjected to drought stress by reducing irrigation water by 40% compared to the control (irrigated to container capacity). The drought stress produced the smallest plants throughout the experiment. After three months of drought, the leaf area, number of leaves and root volume decreased, while root/shoot ratio and root density increased. The higher root hydraulic resistance in stressed plants caused decreases in leaf and stem water potentials resulting in lower stomatal conductance and indicating that water flow through the roots is a factor that strongly influences shoot water relations. The water stress affected transpiration (63% reduction compared with the control). The consistent decrease in gs suggested an adaptative efficient stomatal control of transpiration by this species, resulting in a higher intrinsic water use efficiency (Pn/gs) in drought conditions, increasing as the experimental time progressed. This was accompanied by an improvement in water use efficiency of production to maintain the leaf water status. In addition, water stress induced an active osmotic adjustment and led to decreases in leaf tissue elasticity in order to maintain turgor. Therefore, the water deficit produced changes in plant water relations, gas exchange and growth in an adaptation process which could promote the faster establishment of this species in gardens or landscaping projects in Mediterranean conditions.  相似文献   

8.
To study the response of tomato (Solanum lycopersicum cv. Rio Grande) to salinity, the effect on plant growth, water relations, stomatal conductance and Chlorophyll fluorescence was investigated. Tomato plants were grown in peat culture under controlled conditions and submitted during 28 days to saline stress ranging from 0 to 25, 50, 100, 150 and 200 mM of NaCl. At the end of the experiment period, plant growth was significantly decreased with increasing salinity.  相似文献   

9.
A greenhouse study was conducted to evaluate the ameliorative effects of zinc (0, 5, 10 and 20 mg Zn kg−1 soil) under saline (800, 1600, 2400 and 3200 mg NaCl kg−1 soil) conditions on pistachio (Pistacia vera L. cv. Badami) seedlings’ photosynthetic parameters, carbonic anhydrase activity, protein and chlorophyll contents, and water relations. Zn deficiency resulted in a reduction of net photosynthetic rate and stomatal conductance. The quantum yield of photosystem II was reduced at zinc deficiency and salt stress. Zinc improved plant growth under salt-affected soil conditions. Increasing salinity in soil under Zn-deficient conditions, generally decreased carbonic anhydrase activity, protein, chlorophyll a and b contents. However, these adverse effects of salinity alleviated by increasing Zn levels up to 10 mg kg−1 soil. Under increasing salinity, chlorophyll a/b ratio significantly increased. Zinc treatment influenced the relationship between relative water content and stomatal conductance, and between leaf water potential and stomatal conductance. It concluded that Zn may act as a scavenger of ROS for mitigating the injury on biomembranes under salt stress. Adequate Zn also prevents uptake and accumulation of Na in shoot, by increasing membrane integrity of root cells.  相似文献   

10.
Pot culture experiments were conducted to assess the extent of growth, photosynthetic capacity, sennoside concentration and yield attributes of Senna plant under the individual as well as combined influence of NaCl and CaCl2. Six treatments, i.e. NaCl (80 and 160 mM), CaCl2 (5 and 10 mM) alone and a combination of NaCl + CaCl2 (80 + 10 and 160 + 10 mM) were given to the growing Senna plants at pre-flowering (45 DAS), flowering (75 DAS) and post-flowering (90 DAS) stages. Significant reductions were observed in pod biomass, leaf area, stomatal conductance, photosynthetic rate and sennoside concentration and yield, with each NaCl treatment. On the contrary, individual CaCl2 treatments had a favourable effect. Under the effect of combination treatments, although these parameters were reduced, the extent of reduction was much less than one caused by NaCl treatments. The combined treatments thus mitigated the adverse effects caused by NaCl.  相似文献   

11.
The effect of brassinosteroid (BR) on relative water content (RWC), stomatal conductance (gs), net photosynthetic rate (PN), intercellular CO2 concentration (Ci), lipid peroxidation level, activities of antioxidant enzymes and abscisic acid concentration (ABA) in tomato (Lycopersicon esculentum) seedlings under water stress was investigated. Two tomato genotypes, Mill. cv. Ailsa Craig (AC) and its ABA-deficient mutant notabilis (not), were used. Water stress was achieved by withholding water and both the AC and not plants were treated with 1 μM 24-epibrassinolide (EBR) or distilled water as a control. The RWC, gs, Ci and PN were significantly decreased under water stress. However, EBR treatment significantly alleviated water stress and increased the RWC and PN. EBR application also markedly increased the activities of antioxidant enzymes (catalase, ascorbate peroxidase and superoxide dismutase) while it decreased gs, Ci and the contents of H2O2 and malondialdehyde (MDA). Interestingly, ABA concentration in AC and not plants was markedly elevated after EBR treatment although the increasing rate and amplitude of ABA in not plants treated by EBR was significantly lower than those in AC plants. Our study suggested that amelioration of the drought stress of tomato seedlings may be caused by EBR-induced elevation of endogenous ABA concentration and/or the activities of antioxidant enzymes.  相似文献   

12.
The present investigation was undertaken to develop PRSV (Papaya ringspot virus) resistant hybrids through intergeneric hybridization. Intergeneric hybridization was done involving nine Carica papaya cultivars as female and Vasconcellea cauliflora as male. To break the intergeneric hybridization barrier, various nutrient combinations were used. Among the combinations used, sucrose 5%, sucrose 5% + boron 0.5% and sucrose 5% + CaCl2 0.5% improved the fruit set and seed set percentage. A total number of 1197 flowers were pollinated and 308 fruits were obtained. On extraction, 721 seeds were obtained from CO 7, Pusa Nanha and CP 50. Out of 721 F0 seeds (crossed seeds) sown, 419 seeds germinated and artificial screening for PRSV was carried out 27 days after sap inoculation. Out of 29 F1 hybrid plants from CO 7 x V. cauliflora cross, only six plants namely CO 7V1 to CO 7V6 were found free from PRSV symptoms. Similarly, out of 55 F1 hybrids from cross involving Pusa Nanha x V. cauliflora only 23 plants namely PNV1 to PNV23 were found free from the symptoms and 70 plants namely CPV1 to CPV70 out of 335 plants of CP50 x V. cauliflora cross were found free from PRSV symptoms. Among the crosses, Pusa Nanha x V. cauliflora had higher yield under PRSV infected conditions, however, total soluble solids and total sugars were found lesser than the CO 7 x V. cauliflora cross. The hybridity of the progenies were confirmed by using ISSR (Inter Simple Sequence Repeats) primers by the amplification of DNA from progenies and their parents. ISSR primers UBC 856, UBC807 and ISSR primer combinations UBC 856-817, UBC 810-817, UBC 861-817, UBC 856-810, UBC 861-810 and UBC 856-817 clearly amplified specific bands of the male parent, which were present in F1 progenies, but it was absent in female parents.  相似文献   

13.
Treatment of potato (Solanum tuberosum L.) with chlorocholine chloride (CCC) applied twice as a foliar spray 25 and 30 days after planting has shown to decrease shoot and stolon growth but increase tuber yield. However, the regulatory role of CCC on translocation of recently fixed photoassimilates into different parts of potato plants has not been fully illustrated. In this study, 14C-isotope labelling technique was used to estimate the photosynthetic capacity and photoassimilate partitioning among leaves, stems, roots + stolons, and tubers of potted potatoes treated with 1.5 g l−1 CCC. CCC treatment significantly increased tuber dry mass but reduced leaf dry mass. CCC-treated leaves had significantly higher chlorophyll and carotenoid contents and assimilated 22.0% more 14CO2 per leaf dry mass than the controls. Compared with the control, CCC treatment reduced the translocation of 14C-photoassimilates into leaves, stems and roots + stolons but increased that into tubers. CCC-treated leaves exported 14.6% more 14C-photoassimilates into other parts of the plants. In addition, CCC treatment reduced 14C-soluble sugar and 14C-starch accumulation in leaves and stems but enhanced them in tubers and roots + stolons. Collectively, the results indicate that CCC treatment significantly improves the photosynthetic capacity of potato leaves and promotes photoassimilates partitioning into tubers thereby enhancing tuber growth.  相似文献   

14.
The Andean seed crop quinoa (Chenopodium quinoa Willd.) is traditionally grown under drought and other adverse conditions that constrain crop production in the Andes, and it is regarded as having considerable tolerance to soil drying. The objective of this research was to study how chemical and hydraulic signalling from the root system controlled gas exchange in a drying soil in quinoa. It was observed that during soil drying, relative gs and photosynthesis Amax (drought stressed/fully watered plants) equalled 1, until the fraction of transpirable soil water (FTSW) decreased to 0.82 ± 0.152 and 0.33 ± 0.061, respectively, at bud formation, indicating that photosynthesis was maintained after stomata closure. The relationship between relative gs and relative Amax at bud formation was represented by a logarithmic function (r2 = 0.79), which resulted in a photosynthetic water use efficiency WUEAmax/gsWUEAmax/gs of 1 when FTSW > 0.8, and increased by 50% with soil drying to FTSW 0.7–0.4. Mild soil drying slightly increased ABA in the xylem. It is concluded that during soil drying, quinoa plants have a sensitive stomatal closure, by which the plants are able to maintain leaf water potential (ψl) and Amax, resulting in an increase of WUE. Root originated ABA plays a role in stomata performance during soil drying. ABA regulation seems to be one of the mechanisms utilised by quinoa when facing drought inducing decrease of turgor of stomata guard cells.  相似文献   

15.
Three ornamental bromeliads, i.e. Aechmea ‘Maya’ (CAM), Aechmea fasciata ‘Primera’ (CAM) and Guzmania ‘Hilda’ (C3) were grown under greenhouse conditions at ambient (380 ppm) and elevated (750 ppm) CO2. The effects of long-term exposure (34 weeks) to elevated CO2 on growth and morphological traits constituting the ornamental value were assessed.  相似文献   

16.
The effects of silicon (Si) application on plant growth, pigments, photosynthetic parameters, chlorophyll a (Chl a) fluorescence parameters and nitrogen metabolism were studied in Cucumis sativus L. under cadmium (Cd) toxicity. Compared with the control, 100 μM CdCl2 treatment caused dramatic accumulation of Cd in cucumber leaves, greatly induced chlorosis, and the transmission electron microscope (TEM) analysis indicated that Cd treatment cucumber chloroplast showed obvious swollen, thylakoids and chloroplast membrane were seriously damaged, and could not be observed clearly. Application of Si reversed the chlorosis, protected the chloroplast from disorganization, and significantly increased the pigments contents, which might be mainly responsible for the higher photosynthetic rate and accumulation of biomass under Cd stress. Further investigation of chlorophyll a fluorescence indicated that Cd treatment decreasing photosynthesis was not due to stomatal restriction, while was closely related integrity damage or function lost of the photosynthetic machinery which can be concluded from the higher intercellular CO2 concentration (Ci) and lower Fv/Fm and ΦPSII. Application of Si alleviated the inhibited level of photosynthesis and Fv/Fm and ΦPSII by Cd, which might imply that Si plays important roles in protecting photosynthetic machinery from damaging. The Cd treatment also greatly inhibited the enzymes of nitrogen metabolism including nitrogen reductase (NR), glutamine synthetase (GS), glutamate synthase (GOGAT) and glutamate dehydrogenase (GDH), and Si supply decreased the inhibiting effects of Cd.  相似文献   

17.
Clumps of statice (Limonium latifolium) plantlets grown photomixotrophically were used as explants and cultured for 25 days on a sugar-free modified Murashige and Skoog (MS) medium in Magenta-type vessels with the number of air exchanges of the vessel (NAE) being 3.8 h−1, at a photosynthetic photon flux (PPF) of 100 μmol m−2 s−1 and a CO2 concentration of 1500 μmol mol−1 in the culture room. A factorial experiment was conducted with three levels of 6-benzylaminopurine (BA) concentration, namely 0, 0.25 and 0.5 mg L−1, and two types of supporting material, agar and Florialite (a porous material). The control treatment was a photomixotrophic culture using a sugar- and BA (0.25 mg L−1) containing agar medium in the vessel with NAE of 0.2 h−1, at a PPF of 50 μmol m−2 s−1 and a CO2 concentration of 400 μmol mol−1 in the culture room. Leaf area, chlorophyll concentration and net photosynthetic rate were greater in the sugar-free medium treatment with a BA concentration of 0.25 mg L−1 and Florialite than those in the control treatment. The number of shoots and dry weight per clump in the sugar-free medium treatment were comparable to those in the control treatment. Among the sugar-free medium treatments, the number of shoots increased with increasing BA concentration, however, the leaf area, dry weight, chlorophyll concentration and net photosynthetic rate decreased with increasing BA concentration. The use of Florialite significantly enhanced the growth and root induction as well as net photosynthetic rate, compared with the treatments that use agar. These results indicated that sugar-free medium micropropagation could be commercially applied to the multiplication of statice plantlets.  相似文献   

18.
The in-vitro acclimatization of Phalaenopsis plantlets under photoautotrophic conditions, with 0 (control), 3.43, 6.86 and 13.72 μM uniconazole (UCZ) treatments for 30 days was investigated before the plantlets were transferred to ex-vitro environments for 14 days. The physiological and growth characters of in-vitro acclimatized, and ex-vitro adapted plantlets were measured. Chlorophyll a (Chla), chlorophyll b (Chlb), total chlorophyll (TC) and total carotenoid (Cx+c) content in plantlets treated with 6.86 μM UCZ were maintained at higher levels than those in plantlets of the control, by 1.82, 1.85, 1.83 and 1.93 times, respectively, leading to enrichment of the pigments in ex-vitro conditions. The maximum quantum yield of PSII (Fv/Fm), photon yield of PSII (ΦPSII), photochemical quenching (qP) and non-photochemical quenching (NPQ) in UCZ treated plantlets and in ex-vitro adaptation were not significantly different. Proline was accumulated in the control plantlets in both in-vitro acclimatization and ex-vitro conditions, while proline in those plantlets with UCZ treatments was maintained at a low level, which was defined by unstressed conditions. Net photosynthetic rate (Pn) in 6.86 μM UNZ treated plantlets peaked at a higher level than that of the control plantlets, both in-vitro and ex-vitro, by 3.27 and 2.93 times, respectively. In addition, proline content and Pn were inversely related in both in-vitro acclimatization and ex-vitro adaptation. The Pn in UCZ acclimatized plantlets was negatively correlated with plant dry-weight. In-vitro photoautotrophic Phalaenopsis plantlets were successfully acclimatized using a 6.86 μM UCZ treatment which caused them to adapt quickly to ex-vitro environments.  相似文献   

19.
In the daytime, a CO2 depletion of 10–15% and air circulation of less than 0.5 m s−1 often occur in a naturally ventilated greenhouse during a sunny day with high wind speed (3–5 m s−1). We, therefore, investigated the effects of moderate increase of the CO2 concentration above the atmospheric level (500–600 μmol mol−1) and air circulation up to 1.0 m s−1 in a growth chamber on the net photosynthetic and transpiration rates of tomato seedlings as the first step. The average net photosynthetic rates were 2.1, 1.8, and 1.6 times higher in the growth chambers with increased CO2 concentration (500–600 μmol mol−1) and air circulation (1.0 m s−1), increased CO2 concentration, and increased air circulation, respectively, compared with those in the control (no increase in CO2 concentration (200–300 μmol mol−1) or air circulation (0.3 m s−1). The transpiration rate increased with increased air circulation, while it decreased with increased CO2 concentration regardless of air circulation. From the results, we consider that increasing the CO2 concentration and/or air circulation in ventilated greenhouses up to the outside concentration (350–450 μmol mol−1) and 1.0 m s−1, respectively, can significantly increase the net photosynthetic rate of greenhouse plants.  相似文献   

20.
There is little available information on the effects of temperature and CO2 enrichment on stomata anatomical characteristics of plants. Effect of these two microclimates was studied on five rose (Rosa spp.) cultivars, viz. ‘First Red’ (used as check), ‘Arjun’, ‘Raktima’, ‘Raktagandha’ and ‘Pusa Pitamber’. Budded, single-stemmed rose cultivars having five lateral buds were grown in controlled environment growth cabinets under enriched CO2 (1000 μmol mol−1) and optimum (28/18 °C, T0) or high (35/25 °C, T1) temperature for 50 days. All observations were made on the abaxial leaf surface. Significant increases in stomatal density (68.7%), index (29.6%) and epidermal cell density (37.3%) were recorded in plants grown at high temperature over control with CO2 enrichment. The cultivars responded differently in terms of length and width of guard cell and stoma (pore) under high temperature, however, the values averaged over treatments showed a significant reduction in these parameters. Further, number of stomata per leaf was higher (28.3%) in plants grown at high temperature, except First Red. A reduction in mean leaf area (26.7%) and dry mass (32.0%) was recorded at high rather than optimum temperature. The specific leaf area was maximum in Arjun (87%) while in First Red, a 14% reduction was noted at high temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号