首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nitrogen-fixing plant species may respond more positively to elevated atmospheric carbon dioxide concentrations ([CO2]) than other species because of their ability to maintain a high internal nutrient supply. A key factor in the growth response of trees to elevated [CO2] is the availability of nitrogen, although how elevated [CO2] influences the rate of N2-fixation of nodulated trees growing under field conditions is unclear. To elucidate this relationship, we measured total biomass, relative growth rate, net assimilation rate (NAR), leaf area and net photosynthetic rate of N2-fixing Alnus glutinosa (L.) Gaertn. (common alder) trees grown for 3 years in open-top chambers in the presence of either ambient or elevated atmospheric [CO2] and two soil N regimes: full nutrient solution or no fertilizer. Nitrogen fixation by Frankia spp. in the root nodules of unfertilized trees was assessed by the acetylene reduction method. We hypothesized that unfertilized trees would show similar positive growth and physiological responses to elevated [CO2] as the fertilized trees. Growth in elevated [CO2] stimulated (relative) net photosynthesis and (absolute) total biomass accumulation. Relative total biomass increased, and leaf nitrogen remained stable, only during the first year of the experiment. Toward the end of the experiment, signs of photosynthetic acclimation occurred, i.e., down-regulation of the photosynthetic apparatus. Relative growth rate was not significantly affected by elevated [CO2] because although NAR was increased, the effect on relative growth rate was negated by a reduction in leaf area ratio. Neither leaf area nor leaf P concentration was affected by growth in elevated [CO2]. Nodule mass increased on roots of unfertilized trees exposed to elevated [CO2] compared with fertilized trees exposed to ambient [CO2]. There was also a biologically significant, although not statistically significant, stimulation of nitrogenase activity in nodules exposed to elevated [CO2]. Root nodules of trees exposed to elevated [CO2] were smaller and more evenly spaced than root nodules of trees exposed to ambient [CO2]. The lack of an interaction between nutrient and [CO2] effects on growth, biomass and photosynthesis indicates that the unfertilized trees maintained similar CO2-induced growth and photosynthetic enhancements as the fertilized trees. This implies that alder trees growing in natural conditions, which are often limited by soil N availability, should nevertheless benefit from increasing atmospheric [CO2].  相似文献   

2.
We studied the effects of elevated concentrations of carbon dioxide ([CO2]) and ozone ([O3]) on growth, biomass allocation and leaf area of field-grown O3-tolerant (Clone 4) and O3-sensitive clones (Clone 80) of European silver birch (Betula pendula Roth) trees during 1999-2001. Seven-year-old trees of Clones 4 and 80 growing outside in open-top chambers were exposed for 3 years to the following treatments: outside control (OC); chamber control (CC); 2 x ambient [CO2] (EC); 2 x ambient [O3] (EO); and 2 x ambient [CO2] + 2 x ambient [O3] (EC+EO). When the results for the two clones were analyzed together, elevated [CO2] increased tree growth and biomass, but had no effect on biomass allocation. Total leaf area increased and leaf abscission was delayed in response to elevated [CO2]. Elevated [O3] decreased dry mass of roots and branches and mean leaf size and induced earlier leaf abscission in the autumn; otherwise, the effects of elevated [O3] were small across the clones. However, there were significant interactions between elevated [CO2] and elevated [O3]. When results for the clones were analyzed separately, stem diameter, volume growth and total biomass of Clone 80 were increased by elevated [CO2] and the stimulatory effects of elevated [CO2] on stem volume growth and total leaf area increased during the 3-year study. Clone 80 was unaffected by elevated [O3]. In Clone 4, elevated [O3] decreased root and branch biomass by 38 and 29%, respectively, whereas this clone showed few responses to elevated [CO2]. Elevated [CO2] significantly increased total leaf area in Clone 80 only, which may partly explain the smaller growth responses to elevated [CO2] of Clone 4 compared with Clone 80. Although we observed responses to elevated [O3], the responses to the EC+EO and EC treatments were similar, indicating that the trees only responded to elevated [O3] under ambient [CO2] conditions, perhaps reflecting a greater quantity of carbohydrates available for detoxification and repair in elevated [CO2].  相似文献   

3.
We exposed Populus tremuloides Michx. and Acer saccharum Marsh. to a factorial combination of ambient and elevated atmospheric CO2 concentrations ([CO2]) and high-nitrogen (N) and low-N soil treatments in open-top chambers for 3 years. Our objective was to compare photosynthetic acclimation to elevated [CO2] between species of contrasting shade tolerance, and to determine if soil N or shading modify the acclimation response. Sun and shade leaf responses to elevated [CO2] and soil N were compared between upper and lower canopy leaves of P. tremuloides and between A. saccharum seedlings grown with and without shading by P. tremuloides. Both species had higher leaf N concentrations and photosynthetic rates in high-N soil than in low-N soil, and these characteristics were higher for P. tremuloides than for A. saccharum. Electron transport capacity (Jmax) and carboxylation capacity (Vcmax) generally decreased with atmospheric CO2 enrichment in all 3 years of the experiment, but there was no evidence that elevated [CO2] altered the relationship between them. On a leaf area basis, both Jmax and Vcmax acclimated to elevated [CO2] more strongly in shade leaves than in sun leaves of P. tremuloides. However, the apparent [CO2] x shade interaction was largely driven by differences in specific leaf area (m2 g-1) between sun and shade leaves. In A. saccharum, photosynthesis acclimated more strongly to elevated [CO2] in sun leaves than in shade leaves on both leaf area and mass bases. We conclude that trees rooted freely in the ground can exhibit photosynthetic acclimation to elevated [CO2], and the response may be modified by light environment. The hypothesis that photosynthesis acclimates more completely to elevated [CO2] in shade-tolerant species than in shade-intolerant species was not supported.  相似文献   

4.
To study the responses of Scots pine (Pinus sylvestris L.), a commercially important tree species in Europe, to future increases in atmospheric CO2 concentration ([CO2]), we grew saplings for 4 years in the ground in open-top chambers in ambient or ambient + 400 micromol mol(-1) CO2, without supplemental addition of nutrients and water. Carbon (C) budgets were developed for trees in both CO2 treatments based on productivity and biomass data obtained from destructive harvests at the end of the third and fourth years of treatment, and simulations of annual gross photosynthesis (P(tot)) and maintenance respiration by the model MAESTRA. Simulated P(tot) was enhanced by elevated [CO2], despite significant down-regulation of photosynthetic capacity. The subsequent increase in C uptake was allocated primarily to tissues with limited longevity (needles and fine roots), which explains why the measured annual increment in woody biomass did not differ between CO2 treatments. Thus, our results suggest that accelerated stem growth only occurs in the first 2 years in the presence of elevated [CO2] and that forest rotations will not be shortened significantly in response to increasing [CO2]. In elevated [CO2], a higher proportion of available C was allocated below ground, resulting in altered biomass distribution patterns. In trees of equal size, measured ratios of fine root/needle biomass and belowground/aboveground biomass were almost twice as large in the elevated [CO2] treatment. Although there are uncertainties in scaling from saplings to mature canopies, the data indicate that, in nutrient-limited Scots pine forests, elevated [CO2] is unlikely to accelerate tree growth significantly, but is likely to increase C inputs to soil.  相似文献   

5.
We compared radiation-use efficiency of growth (epsilon;), defined as rate of biomass accumulation per unit of absorbed photosynthetically active radiation, of forest plots exposed to ambient (approximately 360 micro l l-1) or elevated (approximately 560 micro l l-1) atmospheric CO2 concentration ([CO2]). Large plots (30-m diameter) in a loblolly pine (Pinus taeda L.) plantation, which contained several hardwood species in the understory, were fumigated with a free-air CO2 enrichment system. Biomass accumulation of the dominant loblolly pines was calculated from monthly measurements of tree growth and site-specific allometric equations. Depending on the species, leaf area index (L*) was estimated by three methods: optical, allometric and litterfall. Based on the relationship between tree height and diameter during the first 3 years of exposure, we conclude that elevated [CO2] did not alter the pattern of aboveground biomass allocation in loblolly pine. There was considerable variation in L* estimates by the different methods; total L* was 18-42% lower when estimated by the optical method compared with estimates from allometric calculations, and this discrepancy was reduced when optical measurements were corrected for the non-random distribution of loblolly pine foliage. The allometric + litterfall approach revealed a seasonal maximum total L* of 6.2-7.1 with about 1/3 of the total from hardwood foliage. Elevated [CO2] had only a slight effect on L* in the first 3 years of this study. Mean epsilon; (+/- SD), calculated for loblolly pine only, was 0.49 +/- 0.05 and 0.62 +/- 0.04 g MJ-1 for trees in the ambient and elevated [CO2] plots, respectively. The 27% increase in epsilon; in response to CO2 enrichment was caused primarily by the stimulation of biomass increment, as there was only a small effect of elevated [CO2] on L* during the initial years of fumigation. Long-term increases in atmospheric [CO2] can increase epsilon; in closed-canopy forests but the absolute magnitude and duration of this increase remain uncertain.  相似文献   

6.
Young individuals of a single black cottonwood (Populus trichocarpa Torr. & Gray) clone were raised for three growing seasons in whole-tree chambers and exposed to either ambient or elevated atmospheric carbon dioxide concentration ([CO2]), with either a high or a low mineral nutrient supply, in a factorial experimental design. Nutrient availability had a larger effect on growth and dry matter partitioning than did [CO2]. Total biomass did not differ significantly with CO2 treatment when nutrient availability was low. However, elevated [CO2] increased whole-plant biomass by 47% in the high nutrient availability treatment. Carbon dioxide enrichment reduced leaf area ratio and specific leaf area significantly, but had no significant effect on mean leaf size or leaf mass ratio. Root mass ratio was significantly increased by elevated [CO2] at low, but not at high nutrient availability. A modified "demographic harvesting approach" made possible the retrospective estimation of stem and branch dry masses for different years. The relative growth rates of stem and branch were significantly enhanced by elevated [CO2] with high, but not with low nutrient availability. Canopy productivity index (CPI), i.e., the amount of stem and branch wood produced annually per unit leaf area, was raised 12% by elevated [CO2] when nutrient availability was high, but was reduced when nutrient availability was low, because of increased below ground allocation.  相似文献   

7.
Elevated concentrations of atmospheric carbon dioxide ([CO2]) and tropospheric ozone ([O3]) have the potential to affect tree physiology and structure and hence forest water use, which has implications for climate feedbacks. We investigated how a 40% increase above ambient values in [CO2] and [O3], alone and in combination, affect tree water use of pure aspen and mixed aspen-birch forests in the free air CO2-O3 enrichment experiment near Rhinelander, Wisconsin (Aspen FACE). Measurements of sap flux and canopy leaf area index (L) were made during two growing seasons, when steady-state L had been reached after more than 6 years of exposure to elevated [CO2] and [O3]. Maximum stand-level sap flux was not significantly affected by elevated [O3], but was increased by 18% by elevated [CO2] averaged across years, communities and O(3) regimes. Treatment effects were similar in pure aspen and mixed aspen-birch communities. Increased tree water use in response to elevated [CO2] was related to positive CO2 treatment effects on tree size and L (+40%). Tree water use was not reduced by elevated [O3] despite strong negative O3 treatment effects on tree size and L (-22%). Elevated [O3] predisposed pure aspen stands to drought-induced sap flux reductions, whereas increased tree water use in response to elevated [CO2] did not result in lower soil water content in the upper soil or decreasing sap flux relative to control values during dry periods. Maintenance of soil water content in the upper soil in the elevated [CO2] treatment was at least partly a function of enhanced soil water-holding capacity, probably a result of increased organic matter content from increased litter inputs. Our findings that larger trees growing in elevated [CO2] used more water and that tree size, but not maximal water use, was negatively affected by elevated [O3] suggest that the long-term cumulative effects on stand structure may be more important than the expected primary stomatal closure responses to elevated [CO2] and [O3] in determining stand-level water use under possible future atmospheric conditions.  相似文献   

8.
Rising atmospheric carbon dioxide (CO2) concentration ([CO2]) could alter terrestrial carbon (C) cycling by affecting plant growth, litter chemistry and decomposition. How the concurrent increase in tropospheric ozone (O3) concentration ([O3]) will interact with rising atmospheric [CO2] to affect C cycling is unknown. A major component of carbon cycling in forests is fine root production, mortality and decomposition. To better understand the effects of elevated [CO2] and [O3] on the dynamics of fine root C, we conducted a combined field and laboratory incubation experiment to monitor decomposition dynamics and changes in fine root litter chemistry. Free-air CO2 enrichment (FACE) technology at the FACTS-II Aspen FACE project in Rhinelander, Wisconsin, elevated [CO2] (535 microl 1-1) and [O3] (53 nl 1-1) in intact stands of pure trembling aspen (Populus tremuloides Michx.) and in mixed stands of trembling aspen plus paper birch (Betula papyrifera Marsh.) and trembling aspen plus sugar maple (Acer saccharum Marsh.). We hypothesized that the trees would react to increased C availability (elevated [CO2]) by increasing allocation to C-based secondary compounds (CBSCs), thereby decreasing rates of decomposition. Because of its lower growth potential, we reasoned this effect would be greatest in the aspen-maple community relative to the aspen and aspen-birch communities. As a result of decreased C availability, we expected elevated [O3] to counteract shifts in C allocation induced by elevated [CO2]. Concentrations of CBSCs were rarely significantly affected by the CO2 and O3 treatments in decomposing fine roots. Rates of microbial respiration and mass loss from fine roots were unaffected by the treatments, although the production of dissolved organic C differed among communities. We conclude that elevated [CO2] and [O3] induce only small changes in fine root chemistry that are insufficient to significantly influence fine root decomposition. If changes in soil C cycling occur in the future, they will most likely be brought about by changes in litter production.  相似文献   

9.
This paper investigates the possible contribution of Short Rotation Cultures (SRC) to carbon sequestration in both current and elevated atmospheric CO2 concentrations ([CO2]). A dense poplar plantation (1 x 1 m) was exposed to a [CO2] of 550 ppm in Central Italy using the free-air CO2 enrichment (FACE) technique. Three species of Populus were examined, namely P. alba L., P. nigra L. and P. x euramericana Dode (Guinier). Aboveground woody biomass of trees exposed to elevated [CO2] for three growing seasons increased by 15 to 27%, depending on species. As a result, light-use efficiency increased. Aboveground biomass allocation was unaffected, and belowground biomass also increased under elevated [CO2] conditions, by 22 to 38%. Populus nigra, with total biomass equal to 62.02 and 72.03 Mg ha-1 in ambient and elevated [CO2], respectively, was the most productive species, although its productivity was stimulated least by atmospheric CO2 enrichment. There was greater depletion of inorganic nitrogen from the soil after three growing seasons in elevated [CO2], but no effect of [CO2] on stem wood density, which differed significantly only among species.  相似文献   

10.
We examined the effects of elevated carbon dioxide concentration ([CO2]) on the relationship between light-saturated net photosynthesis (A(sat)) and area-based foliar nitrogen (N) concentration (N(a)) in the canopy of the Duke Forest FACE experiment. Measurements of A(sat) and N(a) were made on two tree species growing in the forest overstory and four tree species growing in the forest understory, in ambient and elevated [CO2] FACE rings, during early and late summer of 1999, 2001 and 2002, corresponding to years three, five and six of CO2 treatment. When measured at the growth [CO2], net photosynthetic rates of each species examined in the forest overstory and understory were stimulated by elevated [CO2] at each measurement date. We found no effect of elevated [CO2] on N(a) in any of the species. The slope of the A(sat)-N relationship was 81% greater in elevated [CO2] than in ambient [CO2] when averaged across all sample dates, reflecting a differential CO2 effect on photosynthesis at the top and bottom of the canopy. We compared A(sat)-N relationships in trees grown in ambient and elevated [CO2] at two common CO2 concentrations, during late summer 2001 and both early and late 2002, to determine if the stimulatory effect of elevated [CO2] on photosynthesis diminishes over time. At all three sample times, neither the slopes nor the y-intercepts of the A(sat)-N relationships of trees grown in ambient or elevated [CO2] differed when measured at common CO2 concentrations, indicating that the responses of photosynthesis to long-term elevated [CO2] did not differ from the responses to a short-term increase in [CO2]. This finding, together with the observation that N(a) was unaffected by growth in elevated [CO2], indicates that these overstory and understory trees growing at the Duke Forest FACE experiment continue to show a strong stimulation of photosynthesis by elevated [CO2].  相似文献   

11.
We examined the interactive effects of elevated CO2 concentration ([CO2]) and water stress on growth and physiology of 1-year-old peach (Prunus persica L.) seedlings grown in 10-dm3 pots in open-top chambers with ambient (350 micromol mol-1) or elevated (700 micromol mol-1) [CO2]. Seedlings were supplied weekly with a non-limiting nutrient solution. Water was withheld from half of the plants in each treatment for a 4-week drying cycle, to simulate a sudden and severe water stress during the phase of rapid plant growth. Throughout the growing season, seedlings in elevated [CO2] had higher assimilation rates, measured at the growth [CO2], than seedlings in ambient [CO2], and this caused an increase in total dry mass of about 33%. Stomatal conductance, total water uptake, leaf area and leaf number were unaffected by elevated [CO2]. Because seedlings in the two CO2 treatments had similar transpiration despite large differences in total dry mass, water-use efficiency (WUE) of well-watered and water-stressed seedlings grown in elevated [CO2] was an average of 51 and 63% higher, respectively, than WUE of comparable seedlings grown in ambient [CO2]. Elevated [CO2] enhanced total biomass of water-stressed seedlings by 31%, and thus ameliorated the effects of water limitation. However, the percentage increases in total dry mass between well-watered and water-stressed seedlings were similar in ambient (53%) and elevated (58%) [CO2], demonstrating that there was no interaction between elevated [CO2] and water stress. This finding should be considered when predicting responses of trees to global climate change in hot and dry environments, where predicted temperature increases will raise evaporative demands and exacerbate the effects of drought on tree growth.  相似文献   

12.
We investigated growth, leaf monoterpene emission, gas exchange, leaf structure and leaf chemical composition of 1-year-old Quercus ilex L. seedlings grown in ambient (350 microl l(-1)) and elevated (700 microl l(-1)) CO2 concentrations ([CO2]). Monoterpene emission and gas exchange were determined at constant temperature and irradiance (25 degrees C and 1000 micromol m(-2) s(-1) of photosynthetically active radiation) at an assay [CO2] of 350 or 700 microl l(-1). Measurements were made on intact shoots after the end of the growing season between mid-October and mid-February. On average, plants grown in elevated [CO2] had significantly increased foliage biomass (about 50%). Leaves in the elevated [CO2] treatment were significantly thicker and had significantly higher concentrations of cellulose and lignin and significantly lower concentrations of nitrogen and minerals than leaves in the ambient [CO2] treatment. Leaf dry matter density and leaf concentrations of starch, soluble sugars, lipids and hemi-cellulose were not significantly affected by growth in elevated [CO2]. Monoterpene emissions of seedlings were significantly increased by elevated [CO2] but were insensitive to short-term changes in assay [CO2]. On average, plants grown in elevated [CO2] had 1.8-fold higher monoterpene emissions irrespective of the assay [CO2]. Conversely, assay [CO2] rapidly affected photosynthetic rate, but there was no apparent long-term acclimation of photosynthesis to growth in elevated [CO2]. Regardless of growth [CO2], photosynthetic rates of all plants almost doubled when the assay [CO2] was switched from 350 to 700 microl l(-1). At the same assay [CO2], mean photosynthetic rates of seedlings in the two growth CO2 treatments were similar. The percentage of assimilated carbon lost as monoterpenes was not significantly altered by CO2 enrichment. Leaf emission rates were correlated with leaf thickness, leaf concentrations of cellulose, lignin and nitrogen, and total plant leaf area. In all plants, monoterpene emissions strongly declined during the winter independently of CO2 treatment. The results are discussed in the context of the acquisition and allocation of resources by Q. ilex seedlings and evaluated in terms of emission predictions.  相似文献   

13.
We examined the effects of elevated CO2 concentration ([CO2]) on leaf demography, late-season photosynthesis and leaf N resorption of overstory sweetgum (Liquidambar styraciflua L.) trees in the Duke Forest Free Air CO2 Enrichment (FACE) experiment. Sun and shade leaves were subdivided into early leaves (formed in the overwintering bud) and late leaves (formed during the growing season). Overall, we found that leaf-level net photosynthetic rates were enhanced by atmospheric CO2 enrichment throughout the season until early November; however, sun leaves showed a greater response to atmospheric CO2 enrichment than shade leaves. Elevated [CO2] did not affect leaf longevity, emergence date or abscission date of sun leaves or shade leaves. Leaf number and leaf area per shoot were unaffected by CO2 treatment. A simple shoot photosynthesis model indicated that elevated [CO2] stimulated photosynthesis by 60% in sun shoots, but by only 3% in shade shoots. Whole-shoot photosynthetic rate was more than 12 times greater in sun shoots than in shade shoots. In senescent leaves, elevated [CO2] did not affect residual leaf nitrogen, and nitrogen resorption was largely unaffected by atmospheric CO2 enrichment, except for a small decrease in shade leaves. Overall, elevated [CO2] had little effect on the number of leaves per shoot at any time during the season and, therefore, did not change seasonal carbon gain by extending or shortening the growing season. Stimulation of carbon gain by atmospheric CO2 enrichment in sweetgum trees growing in the Duke Forest FACE experiment was the result of a strong stimulation of photosynthesis throughout the growing season.  相似文献   

14.
If an increase in temperature will limit the growth of a species, it will be in the warmest portion of the species distribution. Therefore, in this study we examined the effects of elevated temperature on net carbon assimilation and biomass production of northern red oak (Quercus rubra L.) seedlings grown near the southern limit of the species distribution. Seedlings were grown in chambers in elevated CO(2) (700 μmol mol(-1)) at three temperature conditions, ambient (tracking diurnal and seasonal variation in outdoor temperature), ambient +3 °C and ambient +6 °C, which produced mean growing season temperatures of 23, 26 and 29 °C, respectively. A group of seedlings was also grown in ambient [CO(2)] and ambient temperature as a check of the growth response to elevated [CO(2)]. Net photosynthesis and leaf respiration, photosynthetic capacity (V(cmax), J(max) and triose phosphate utilization (TPU)) and chlorophyll fluorescence, as well as seedling height, diameter and biomass, were measured during one growing season. Higher growth temperatures reduced net photosynthesis, increased respiration and reduced height, diameter and biomass production. Maximum net photosynthesis at saturating [CO(2)] and maximum rate of electron transport (J(max)) were lowest throughout the growing season in seedlings grown in the highest temperature regime. These parameters were also lower in June, but not in July or September, in seedlings grown at +3 °C above ambient, compared with those grown in ambient temperature, indicating no impairment of photosynthetic capacity with a moderate increase in air temperature. An unusual and potentially important observation was that foliar respiration did not acclimate to growth temperature, resulting in substantially higher leaf respiration at the higher growth temperatures. Lower net carbon assimilation was correlated with lower growth at higher temperatures. Total biomass at the end of the growing season decreased in direct proportion to the increase in growth temperature, declining by 6% per 1 °C increase in mean growing season temperature. Our observations suggest that increases in air temperature above current ambient conditions will be detrimental to Q. rubra seedlings growing near the southern limit of the species range.  相似文献   

15.
We studied assimilation, stomatal conductance and growth of Mangifera indica L. saplings during long-term exposure to a CO(2)-enriched atmosphere in the seasonally wet-dry tropics of northern Australia. Grafted saplings of M. indica were planted in the ground in four air-conditioned, sunlit, plastic-covered chambers and exposed to CO(2) at the ambient or an elevated (700 micro mol mol(-1)) concentration for 28 months. Light-saturating assimilation (A(max)), stomatal conductance (g(s)), apparent quantum yield (phi), biomass and leaf area were measured periodically. After 28 months, the CO(2) treatments were changed in all four chambers from ambient to the elevated concentration or vice versa, and A(max) and g(s) were remeasured during a two-week exposure to the new regime. Throughout the 28-month period of exposure, A(max) and apparent quantum yield of leaves in the elevated CO(2) treatment were enhanced, whereas stomatal conductance and stomatal density of leaves were reduced. The relative impacts of atmospheric CO(2) enrichment on assimilation and stomatal conductance were significantly larger in the dry season than in the wet season. Total tree biomass was substantially increased in response to atmospheric CO(2) enrichment throughout the experimental period, but total canopy area did not differ between CO(2) treatments at either the first or the last harvest. During the two-week period following the change in CO(2) concentration, A(max) of plants grown in ambient air but measured in CO(2)-enriched air was significantly larger than that of trees grown and measured in CO(2)-enriched air. There was no difference in A(max) between trees grown and measured in ambient air compared to trees grown in CO(2)-enriched air but measured in ambient air. No evidence of down-regulation of assimilation in response to atmospheric CO(2) enrichment was observed when rates of assimilation were compared at a common intercellular CO(2) concentration. Reduced stomatal conductance in response to atmospheric CO(2) enrichment was attributed to a decline in both stomatal aperture and stomatal density.  相似文献   

16.
Wang X  Curtis PS  Pregitzer KS  Zak DR 《Tree physiology》2000,20(15):1019-1028
Physiological and biomass responses of six genotypes of Populus tremuloides Michx., grown in ambient t (357 micromol mol(-1)) or twice ambient (707 micromol mol(-1)) CO2 concentration ([CO2]) and in low-N or high-N soils, were studied in 1995 and 1996 in northern Lower Michigan, USA. There was a significant CO2 x genotype interaction in photosynthetic responses. Net CO2 assimilation (A) was significantly enhanced by elevated [CO2] for five genotypes in high-N soil and for four genotypes in low-N soil. Enhancement of A by elevated [CO2] ranged from 14 to 68%. Genotypes also differed in their biomass responses to elevated [CO2], but biomass responses were poorly correlated with A responses. There was a correlation between magnitude of A enhancement by elevated [CO2] and stomatal sensitivity to CO2. Genotypes with low stomatal sensitivity to CO2 had a significantly higher A at elevated [CO2] than at ambient [CO2], but elevated [CO2] did not affect the ratio of intercellular [CO2] to leaf surface [CO2]. Stomatal conductance and A of different genotypes responded differentially to recovery from drought stress. Photosynthetic quantum yield and light compensation point were unaffected by elevated [CO2]. We conclude that P. tremuloides genotypes will respond differentially to rising atmospheric [CO2], with the degree of response dependent on other abiotic factors, such as soil N and water availability. The observed genotypic variation in growth could result in altered genotypic representation within natural populations and could affect the composition and structure of plant communities in a higher [CO2] environment in the future.  相似文献   

17.
Biochemical models of photosynthesis suggest that rising temperatures will increase rates of net carbon dioxide assimilation and enhance plant responses to increasing atmospheric concentrations of CO(2). We tested this hypothesis by evaluating acclimation and ontogenetic drift in net photosynthesis in seedlings of five boreal tree species grown at 370 and 580 &mgr;mol mol(-1) CO(2) in combination with day/night temperatures of 18/12, 21/15, 24/18, 27/21, and 30/24 degrees C. Leaf-area-based rates of net photosynthesis increased between 13 and 36% among species in plants grown and measured in elevated CO(2) compared to ambient CO(2). These CO(2)-induced increases in net photosynthesis were greater for slower-growing Picea mariana (Mill.) B.S.P., Pinus banksiana Lamb., and Larix laricina (Du Roi) K. Koch than for faster-growing Populus tremuloides Michx. and Betula papyrifera Marsh., paralleling longer-term growth differences between CO(2) treatments. Measures at common CO(2) concentrations revealed that net photosynthesis was down-regulated in plants grown at elevated CO(2). In situ leaf gas exchange rates varied minimally across temperature treatments and, contrary to predictions, increasing growth temperatures did not enhance the response of net photosynthesis to elevated CO(2) in four of the five species. Overall, the species exhibited declines in specific leaf area and leaf nitrogen concentration, and increases in total nonstructural carbohydrates in response to CO(2) enrichment. Consequently, the elevated CO(2) treatment enhanced rates of net photosynthesis much more when expressed on a leaf area basis (25%) than when expressed on a leaf mass basis (10%). In all species, rates of leaf net CO(2) exchange exhibited modest declines with increasing plant size through ontogeny. Among the conifers, enhancements of photosynthetic rates in elevated CO(2) were sustained through time across a wide range of plant sizes. In contrast, for Populus tremuloides and B. papyrifera, mass-based photosynthetic rates did not differ between CO(2) treatments. Overall, net photosynthetic rates were highly correlated with relative growth rate as it varied among species and treatment combinations through time. We conclude that interspecific variation may be a more important determinant of photosynthetic response to CO(2) than temperature.  相似文献   

18.
Various human-induced changes to the atmosphere have caused carbon dioxide (CO?), nitrogen dioxide (NO?) and nitrate deposition (NO??) to increase in many regions of the world. The goal of this study was to examine the simultaneous influence of these three factors on tree seedlings. We used open-top chambers to fumigate sugar maple (Acer saccharum) and eastern hemlock (Tsuga canadensis) with ambient or elevated CO? and NO? (elevated concentrations were 760 ppm and 40 ppb, respectively). In addition, we applied an artificial wet deposition of 30 kg ha?1 year?1 NO?? to half of the open-top chambers. After two growing seasons, hemlocks showed a stimulation of growth under elevated CO?, but the addition of elevated NO? or NO?? eliminated this effect. In contrast, sugar maple seedlings showed no growth enhancement under elevated CO? alone and decreased growth in the presence of NO? or NO??, and the combined treatments of elevated CO? with increased NO? or NO?? were similar to control plants. Elevated CO? induced changes in the leaf characteristics of both species, including decreased specific leaf area, decreased %N and increased C:N. The effects of elevated CO?, NO? and NO?? on growth were not additive and treatments that singly had no effect often modified the effects of other treatments. The growth of both maple and hemlock seedlings under the full combination of treatments (CO??+?NO??+?NO??) was similar to that of seedlings grown under control conditions, suggesting that models predicting increased seedling growth under future atmospheric conditions may be overestimating the growth and carbon storage potential of young trees.  相似文献   

19.
Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) seedlings were grown for 50 days in growth chambers in an ambient or twice ambient carbon dioxide concentration ([CO2]) at a day/night temperature of 19/12 degrees C or 23/16 degrees C. Although elevated [CO2] (EC) had only slight effects on the growth parameters measured, elevated temperature (ET) increased above ground dry mass of both species. Among treatments, biomass accumulation of both species was greatest in the combined EC + ET treatment. The EC treatment induced thylakoid swelling and increased numbers of plastoglobuli observed in Scots pine needles. Although EC had little effect on Rubisco protein or N concentration of needles, ET had a large effect on N-containing compounds and enhanced N allocation from 1-year-old needles. Terpenoids were more responsive to EC and ET than total phenolics. Generally, terpene concentrations were reduced by EC and increased by ET. Increased terpenoid concentrations in response to ET might be associated with thermotolerance of photosynthesis. In Norway spruce, EC decreased total phenolic concentrations in needles, probably as a result of increased growth. We conclude that, in seedlings of these boreal species, the effects of elevated [CO2] on the studied parameters were small compared with the effects of elevated temperature.  相似文献   

20.
Acclimation of photosynthesis to increasing atmospheric carbon dioxide concentration ([CO2]; 350 to 2,000 micromol mol-1) was followed in silver birch (Betula pendula Roth.) and Scots pine (Pinus sylvestris L.) seedlings for two years. Chlorophyll fluorescence and concentrations of Rubisco, chlorophyll, total soluble protein and nitrogen were monitored together with steady-state gas exchange at three CO2 concentrations (ambient [CO2] (345 +/- 20 micromol mol-1), the growth [CO2] and 1950 +/- 55 micromol mol-1). Rubisco and chlorophyll concentrations decreased in birch and Scots pine with increasing growth [CO2]. A nonlinear response was recorded for Rubisco and chlorophyll concentrations in birch, which was correlated with a significant decrease in specific leaf area. Nitrogen concentration decreased in birch leaves, but was unchanged in Scots pine needles. The species differed substantially in their steady-state CO2 exchange response to increasing growth [CO2]. The principal effect in birch was a significant nonlinear decrease in the steady-state gas exchange rate at the ambient [CO2], whereas in Scots pine the main effect was a significant increase in the steady-state gas exchange rate at the growth [CO2].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号