首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
棉花不同GbU6启动子截短克隆及功能鉴定   总被引:1,自引:0,他引:1  
U6启动子是CRISPR/Cas9基因组编辑载体系统中驱动sgRNA转录的重要元件, 而使用较短序列的启动子也是构建CRISPR/Cas9基因组编辑载体的基本要求之一。将已经克隆的海岛棉GbU6-5P启动子(长度为1166bp), 采用Transfer PCR方法成功地截出6个长度不同的U6启动子, 其长度分别为672、468、358、280、202和105bp, 并分别构建了6个启动子驱动的GUS融合植物表达载体。将构建好的6个GbU6-5Ps::GUS-pCAMBIA1300与初始克隆的GbU6-5P::GUS-pCAMBIA1300植物表达载体一起利用农杆菌真空渗透转化法分别转染棉花花粉。GUS组织化学染色显示, 克隆到的7个不同截短大小的GbU6-5Ps启动子均能驱动GUS基因在棉花花粉中转录, 棉花花粉被染成蓝色但颜色深浅存在显著差异。结果显示启动子长度越短, 其转录活性越高。而且另外两种棉花U6启动子GbU6-1P和GbU6-7P也表现出类似的结果。本研究克隆了3个短小的、在棉花花粉细胞中具有转录功能的GbU6启动子。结果显示更短的U6启动子具有更高的转录活性, 而且这一特点在不同U6启动子上具有共性。这预示着使用更短U6启动子不仅符合构建CRISPR/Cas9基因组编辑载体的要求, 而且会提高sgRNA的转录水平, 进而可能提高基因组编辑效率。  相似文献   

2.
不同截短U3启动子在棉花中的功能分析   总被引:1,自引:1,他引:0  
从海岛棉中克隆了2种GbU3-2P、GbU3-3P启动子,对它们进行2种长度截短,长度分别为436、245 bp和384、233 bp,同时构建了4个相应启动子驱动GUS的融合植物表达载体。利用农杆菌真空渗透转化法将4个GbU3Ps∷GUS-sg RNA-P1300植物表达载体分别转染棉花胚性愈伤组织。经GUS组织化学染色显示:克隆得到的2种截短大小的GbU3-2P和GbU3-3P启动子均能驱动GUS基因在棉花愈伤组织中表达,棉花愈伤组织被染成蓝色,但颜色深浅没有显著差异。本研究表明,同一GbU3启动子截短后,较短的启动子和较长的启动子具有相同的转录活性。这为构建棉花CRISPR/Cas9基因组编辑载体系统提供了更多理想的启动子。  相似文献   

3.
利用hi Tail-PCR从紫心甘薯‘A5’基因组DNA中扩增得到查尔酮合成酶IbCHS基因5'端上游2470 bp的一段序列,用PlantCARE软件序列分析表明,该序列含有启动子基本元件CAAT-box和TATA-box,还有赤霉素应答元件、光应答元件、MYB和bHLH转录因子结合元件,初步推测其为IbCHS基因的启动子,命名为PIbCHS基因启动子。将PIbCHS启动子从5'端进行截短克隆,得到了4个长度不同的启动子5'缺失片段,由长到短分别命名为PS1、PS2、PS3和PS4。分别构建了PIbCHS、PS1、PS2、PS3和PS4驱动GUS基因的真核超表达载体,瞬时转化烟草叶片发现,PIbCHS、PS1、PS2、PS3均有启动子活性,但是PS4不能驱动GUS基因的表达,说明PIbCHS启动子的驱动核心区域主要位于PS3和PS4之间的部位。稳定转化拟南芥表明,PIbCHS能够启动GUS基因的表达。  相似文献   

4.
克隆获得柽柳GRAS 转录因子基因启动子序列,并对其表达模式进行分析,从而初步探究GRAS转录因子基因的表达特征和功能。CTAB法提取刚毛柽柳基因组DNA,按照Genome Walking Kit 说明克隆GRAS 转录因子基因启动子序列,将克隆获得的GRAS 转录因子基因启动子序列定向替换pCAMB1301 载体上的35S启动子序列,构建融合表达载体,以驱动GUS 基因表达,瞬时侵染拟南芥后进行GUS 基因的染色。成功克隆获得刚毛柽柳936 bp 的GRAS 转录因子基因启动子序列。PLACE 和PlantCARE 数据库分析结果表明该启动子不仅包含启动子区的核心元件CAAT-box 和TATA-box,还含有多个与逆境应答有关的顺式调控元件。成功将GRAS 基因启动子序列定向置换pCAMBIA1301 的35S 启动子,构建重组载体PGRAS::GUS。瞬时转化拟南芥后GUS 染色,结果显示转基因拟南芥叶片被染色而根部着色较浅。初步表明克隆获得的GRAS 基因启动子具有启动子表达活性,其可能参与了柽柳的抗逆应答,为进一步分析该基因的抗逆功能和抗逆机制奠定了基础。  相似文献   

5.
为了解文心兰生物钟基因OnELF3的转录调控,本研究采用TAIL-PCR技术从文心兰基因组中克隆到OnELF3基因起始密码子上游2 204 bp的启动子序列。使用BDGP、PlantCARE和PLACE在线软件对OnELF3基因启动子的转录起始位点与顺式作用元件进行预测。结果表明启动子序列除包含TATA-box和CAAT-box等启动子基本元件外,还包含组织特异性元件、光调控元件、植物激素响应元件、胁迫反应响应元件和昼夜节律调控元件等。为探究OnELF3启动子的表达活性,构建pCAMBIA1301-p OnELF3p:GUS载体,利用农杆菌介导法,转化烟草与拟南芥。烟草叶片瞬时转化表明克隆的OnELF3启动子序列具有启动子活性。转化拟南芥结果表明,OnELF3启动子能够驱动下游的GUS基因在T2代拟南芥中稳定表达,GUS组织染色显示该启动子呈现发育与组织特异性表达。这些结果为进一步研究文心兰OnELF3基因的转录表达调控与相关功能分析提供基础。  相似文献   

6.
为克隆陆地棉来源的种子特异性启动子,根据雷蒙德氏棉测序结果,设计针对GhαGLOA、GhβGLOA和GhβGLOB基因编码区上游约1.5 kb序列的引物,分别以陆地棉总DNA为模板克隆了3条序列。构建了含有编码区上游序列驱动GUS的表达载体,经农杆菌介导转化野生型拟南芥。转基因拟南芥种子的GUS活性荧光检测结果表明,所克隆序列具有启动子功能,其中GhαGLOA启动子的转录活性极显著高于其他2个启动子。在转基因拟南芥成体植株的多个器官中,仅可检出痕量的GUS活性,认为所克隆启动子为种子特异性启动子。  相似文献   

7.
为了利用PCR技术得到甘蓝型油菜A7-FT基因启动子序列,根据甘蓝型油菜全基因组序列,利用启动子在线预测软件预测其功能与结构,根据其预测的顺式元件的分布,从5′端开始缺失的方式获得5个不同片段长度的启动子序列。构建含不同片段长度启动子的GUS基因表达载体,利用农杆菌介导拟南芥,得到T_2幼苗,经过GUS染色与脱色,探讨A7-FT基因启动子的功能,为研究甘蓝型油菜开花调控机制提供理论基础。通过PCR技术从甘蓝型油菜湘油15号基因DNA中获得A7-FT基因启动子序列。利用PLACE和PlantCARE在线工具对该段序列进行预测,发现A7-FT基因启动子除了存在启动子核心元件CAATbox和TATAbox,还有光应答元件、激素应答元件、胚乳表达应答元件、抗逆性应答元件、生理控制相关的顺式作用元件。基于预测的顺式作用元件的分布情况,设计特异性引物,克隆不同片段长度启动子,与pCAMBIA1303载体构建5′端缺失载体,分别命名为M1、M2、M3、M4、M5。通过农杆菌介导拟南芥,GUS染色与脱色结果显示,在-1 549~-238可能存在一些负调控元件的结合位点,而-238~+1区域是该启动子的核心区段。  相似文献   

8.
本研究是以油棕叶片基因组DNA为模板,通过数据库预测的油棕脱饱和酶基因ω3的启动子序列设计特异性引物,利用PCR技术扩增及TA克隆的方法得到了长度为1 144 bp油棕脱饱和酶基因ω3启动子序列。通过Plant CARE软件分析该序列的顺式作用元件,发现该启动子不仅含有转录必备的CAAT-box和TATA box,还有大量相关的光反应元件和激素响应元件。通过构建含gus的植物表达载体,农杆菌介导转化转基因拟南芥,对转基因拟南芥进行活性表达分析。结果表明:克隆获得的启动子序列和下游gus基因已经稳定的整合到获得的转基因拟南芥基因组当中;同时,gus基因在拟南芥不同组织中体现出明显的组织特异性,其中,茎干处表达量最高,在叶片的叶脉处表达次之。说明ω3启动子具有活性,可以启动目的基因的转录,本研究为进一步研究启动子的功能及基因表达调控奠定了基础。  相似文献   

9.
为探究VcMYB启动子在转录过程中如何发挥调控作用,利用FPNI-PCR法从蓝莓中克隆到调控原花青素合成相关的转录因子VcMYB的768 bp启动子序列。用PLACE和Plant CARE在线启动子预测工具分析了该启动子,结果表明其序列中存在启动子的基本元件CAAT-box和TATA-box,还包含一系列的响应元件,如光响应元件、低温响应元件、防御与胁迫响应元件和茉莉酸甲酯响应元件等。为进一步分析该启动子的功能,构建了该基因启动子与GUS基因融合的植物表达载体VcMYBpro::GUS,并用农杆菌转化拟南芥。对转基因拟南芥进行GUS组织化学染色分析,结果表明该VcMYB启动子能驱动GUS基因在转基因拟南芥中表达,并且经脱落酸(ABA)、4℃低温、LED光照和持续光照处理后,转基因拟南芥中GUS的表达活性增强,推测该基因受ABA、低温和光的调控。  相似文献   

10.
LMI1基因是叶片锯齿状结构发育调控的关键基因。为了研究棉花鸡脚叶发育的机理,通过PCR扩增技术从A基因组棉花亚洲棉石溪亚1号中克隆出GaLMI1-like基因及其启动子序列,大小分别为681,1 439 bp。结构域分析发现,GaLMI1-like蛋白含有与陆地棉中同源基因一样的homeobox结构域,进一步构建了GaLMI1-like基因过表达载体p6MYC-GaLMI1-like,转化拟南芥后验证了GaLMI1-like基因具有调控叶片缺刻表型发育的功能。对启动子序列进行顺式作用元件分析,发现其除了具有CACA-box和TATA-box等基本作用元件外,还具有光响应及根、茎和叶肉特异性表达相关元件。构建了GaLMI1-like启动子的GUS融合表达载体并转化拟南芥,GUS染色结果显示,该启动子能够驱动GUS基因在根中柱、茎和叶片中表达,其中在叶片中染色较深。上述结果表明,GaLMI1-like基因具有调控缺刻叶形成的功能,且此调控棉花叶形发育的功能是通过GaLMI1-like启动子调控其在叶片中强表达实现的。  相似文献   

11.
为了进一步了解启动子在甘蓝型油菜FIL基因(BnaFIL)表达调控中的作用,根据甘蓝型油菜基因组数据,以甘蓝型油菜叶片提取的DNA为模板,对甘蓝型油菜BnaFIL基因的启动子序列pBnaFIL进行克隆,长度为1 326 bp。采用PlantCARE在线分析软件对该启动子序列进行生物信息学序列分析,结果表明,该序列含有参与光反应的部分保守DNA模块以及CAAT-box和TATA-box等核心启动子必备元件,与分生组织表达有关的顺式作用的调控元件CAT-box以及光敏反应元件。通过该启动子序列替换pBI121植物表达载体上的CaMV35S启动子,使该启动子与GUS基因融合获得pBnaFIL-GUS表达载体,将载体通过农杆菌花序浸染的方法转入拟南芥中,获得了早花启动子重组质粒阳性转基因株系和晚花启动子重组质粒阳性转基因株系。之后对转基因拟南芥植株进行GUS染色分析,对启动子的表达效果进行了检测,最终在不同的转基因拟南芥植株中均发现了GUS基因的表达。结果表明,早花材料与晚花材料中启动子表达强弱存在差异,早花材料启动子的驱动基因表达效果比晚花材料启动子的驱动效果要好,由此推断,启动子的驱动效果...  相似文献   

12.
采用巢式PCR技术从番茄基因组DNA克隆到长度1.3kp的果实特异性2A11启动子基因。序列分析表明,克隆到的基因序列2A11启动子转录起始位点上游的621bp处缺失了已报道的番茄2A11启动子基因(GenBank ID M87659,1993)序列中的“tatattgttaacttcttgttgaattaaagcaat”片段,其同源性为61%,登入GenBank,ID号为DQ453963;构建植物表达载体pCAMBIA2A11,用农杆菌介导侵染番茄果实,GUS基因瞬间表达结果表明,该2A11启动子基因具有驱动GUS基因在番茄果实中特异性表达的功能。研究结果表明成功地获得2A11果实特异性启动子基因,为下一步转基因番茄口服疫苗的研制奠定了一定的基础。  相似文献   

13.
大豆紫色酸性磷酸酶基因GmPAP14受低磷诱导表达,其超表达显著提高植物有机磷利用效率,为进一步探究其调控机制,本研究以GmPAP14cDNA序列检索大豆参考基因组,获取基因上游启动子序列,设计引物克隆了中黄15 GmPAP14启动子序列。利用PLACE与PlantCARE预测启动子调控元件发现,该序列中含有增强子调控元件、组织特异表达元件,根特异表达元件、转录因子PHR1结合的PIBS元件等。构建了GmPAP14启动子3个5’端缺失片段融合GUS的植物表达载体PGmPAP14-2568-GUS、PGmPAP14-2238-GUS、PGmPAP14-1635-GUS,并通过Floraldip法获得转基因拟南芥。利用GUS染色和活性测定分析GmPAP14启动子不同片段表达活性发现,正常磷条件下各片段转基因拟南芥均在根尖表达,低磷条件下GUS染色可扩展到成熟区和根毛,另外转PGmPAP14-2238-GUS植株的GUS活性最高。这些结果为后续的基因调控研究奠定重要基础。  相似文献   

14.
【目的】对已克隆的海岛棉U3和U6启动子进行功能鉴定,为构建棉花CRISPR/Cas9多位点基因编辑技术体系提供更多可用的U3和U6启动子。【方法】分别构建以GbU3-2P和GbU6-7P为启动子驱动sg RNA,以抗旱负调控基因GGB为靶序列的CRISPR/Cas9基因编辑载体,然后在新海16的棉花叶片原生质体中进行功能鉴定。通过Polymerase chain reaction方法富集构建好的CRISPR/Cas9基因编辑载体的核心片段,并利用PEG瞬时转化法将核心片段转入原生质体中。提取转化后的原生质体基因组DNA,采用酶切/Polymerase chain reaction法分析棉花GGB基因的突变情况并测序验证。最后绘制靶基因突变的频率分布图来计算该CRISPR/Cas9系统的编辑效率和确认突变的真实性。【结果】靶基因测序结果显示靶标位点序列突变的类型全部为碱基替换。【结论】以GbU3-2P和GbU6-7P为启动子的CRISPR/Cas9基因编辑体系可以成功地定点编辑棉花GGB基因的序列,引起基因突变。  相似文献   

15.
植物溶血磷脂酸酰基转移酶(lysophospholipid acid acyltansferase,LPAT)是在植物不同组织中调控溶血磷脂酸生成各种磷脂酸的代谢流的关键酶。本研究采用同源克隆的方法,从甘蓝型油菜湘油15中克隆BnLPAT4基因翻译起始位点上游的调控序列,长度为1 326 bp。Plantcare在线分析表明:该序列含有CAAT-box和TATA-box等核心启动子原件,同时还有多个光响应元件、逆境胁迫响应元件、激素应答元件等。将该启动子与GUS基因融合,构建pBnLPAT4:GUS植物表达载体,通过农杆菌介导法获得拟南芥T3代转基因株系。GUS组织化学染色显示,幼苗期的转基因拟南芥在叶和根部均具有GUS活性,成熟期在莲座叶、花瓣、花萼、花托及果荚中表达,而花药及种子中未检测到GUS活性。  相似文献   

16.
TGA转录因子通过与NPR1基因协同作用参与植物对病害的防御作用。从水稻突变体HX-3基因组中分离到一个TGA转录因子rTGA4的5’非翻译区1 995 bp的序列(pTGA),该序列与日本晴基因组序列仅有94%的相似性。经PLACE和PlantCARE序列分析表明:该片段含有典型的TATA-box、CAAT-box等基本转录元件,以及脱落酸、乙烯、茉莉酸甲酯、赤霉素以及病原菌响应元件等。将得到的pTGA利用T/A克隆法连接到植物表达载体pCXGUS-T/A上,通过花序浸染法转化拟南芥,并对转基因拟南芥进行分子检测及GUS组织化学染色。结果表明,在苗期时GUS主要在幼苗根尖表达,在其他部位均没有表达;而在成熟期GUS在多处均有表达,特异性并不明显,表明该启动子是受生长发育阶段调控的组织特异性启动子。通过对rTGA4启动子的特征研究,为进一步克隆HX-3中的抗性基因以及利用奠定基础。  相似文献   

17.
植物细胞壁蔗糖转化酶(cell wall invertase,CWIN)是源、库组织蔗糖代谢及胁迫应答的关键酶。本研究利用基因步移法克隆马铃薯StCWIN1启动子片段,应用PlantCARE在线软件对启动子区域的作用元件进行分析,将融合StCWIN1启动子与GUS报告基因的表达载体转化拟南芥野生型,并利用组织化学染色和GUS实时定量PCR技术探究启动子表达活性、组织表达特性和响应干旱胁迫的表达规律。结果表明,克隆获得StCWIN1基因上游1956 bp启动子序列,其中包含核心调控、植物激素、防御及胁迫、光响应等关键元件;StCWIN1启动子在根、柱头和果荚组织中的表达活性高于其他组织;转StCWIN1启动子拟南芥株系叶片中GUS表达量高于野生型,且干旱胁迫显著抑制了GUS相对表达量。本研究克隆得到具有活性的StCWIN1启动子,基于研究结果推测目的基因可能参与根、花和果实等器官发育,对干旱胁迫也发挥应答调节作用。  相似文献   

18.
二酰甘油酰基转移酶(DGAT)是催化三酰甘油生物合成的关键酶,在三酰甘油的合成和积累过程中具有重要调控作用。为了研究大豆DGAT基因表达调控的分子机制,以大豆品种科丰1号为材料,通过PCR方法对GmDGAT1A的启动子(promoter-GmDGAT1A,pGmDGATIA)进行克隆,并通过转化拟南芥和GUS组织定位研究其功能。结果表明:以大豆叶片DNA为模板,成功克隆到GmDGAT1A基因ATG上游2 192 bp启动子序列。序列分析表明,pGmDGAT1A除具有启动子所必需的TATA-box和CAAT-box等基本顺式作用元件外,还含有多个响应于光、赤霉素和脱落酸等顺式作用元件。以GUS为报告基因,成功构建了植物表达载体pCAMBIA1381Z-pGmDGAT1A,并转化野生型拟南芥获得转基因植株。对转基因拟南芥植株进行PCR检测,能扩增到2 192 bp目标条带,表明已获得含有pGmDGAT1A的转基因拟南芥阳性植株。GUS组织化学染色结果显示,转基因拟南芥幼苗的叶脉和根染色较深,但是主根和侧根的根尖部分未染色;成熟期转基因拟南芥植株的根、叶脉以及角果内的隔膜和珠柄染色较深,茎和发育的种子未染色,表明pGmDGAT1A驱动的GUS主要在转基因拟南芥的根、叶脉以及角果内的隔膜和珠柄中表达。综上,克隆的大豆GmDGAT1A启动子具有活性,能够驱动下游目标基因的表达,有望应用于转基因育种。  相似文献   

19.
CRISPR/Cas9基因组编辑技术是基因功能研究的一种强有力的工具, 目前已在许多生物体中成功实现内源靶向基因的突变。利用已克隆的海岛棉新海16的2个U6启动子, 分别构建带有新海16内源基因(GbGGBGbERA1)靶位点DNA片段的CRISPR/Cas9基因编辑载体。以新海16的胚性愈伤组织为供试材料, 制备海岛棉的原生质体。通过PCR方法大量富集构建好的CRISPR/Cas9基因编辑载体的核心片段(包括GbU6::sgRNA和CAMV35S::Cas9两部分), 并利用PEG法转化海岛棉的原生质体。对原生质体基因组DNA进行酶切后PCR, 成功检测到内源靶基因的突变现象。对PCR产物进行克隆测序, 结果显示序列突变的类型主要以碱基替换为主, 少数为碱基缺失。结果表明基于海岛棉U6启动子的CRISPR/Cas9基因编辑系统能在海岛棉中实现靶向基因编辑的功能, 为棉花功能基因组学研究提供了重要的技术基础。  相似文献   

20.
花生Δ~9-硬脂酰-ACP脱氢酶基因启动子的克隆及功能分析   总被引:1,自引:0,他引:1  
Δ~9-硬脂酰-ACP脱氢酶(SAD)是决定植物体内饱和脂肪酸与不饱和脂肪酸比值的关键酶。以花生品种豫花9326基因组DNA为模板,通过基因组步移技术,克隆到花生Δ~9-硬脂酰-ACP脱氢酶基因(Ah SAD)起始密码子ATG上游720 bp片段,利用5'RACE方法获得了该基因的5'UTR序列,通过序列比对确定720 bp片段为Ah SAD启动子区域。PLACE在线启动子预测分析表明,该序列具有真核生物启动子必需的核心元件TATA-box和CAAT-box,含有多个与光诱导和激素响应相关顺式序列元件。将Ah SAD启动子片段替换pBI121质粒中的CaMV35S启动子驱动下游GUS基因表达,构建植物表达载体pBI-PAh SAD。通过农杆菌介导法转化拟南芥和在花生不同组织中瞬时表达,利用GUS组织化学染色研究其表达特性。表明在拟南芥和花生受体中,AhSAD启动子主要调控下游基因在根、茎、叶片和子叶中表达,在花生的果针中也检测到GUS活性;拟南芥的茎生叶只有叶脉中具有GUS活性,而花生整个叶片中都具有GUS活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号