首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 250 毫秒
1.
【目的】通过Meta分析,用数学模型分析与优化定位分散的猪肌内脂肪QTL,提高QTL定位的准确度和有效性,为猪肌内脂肪相关基因的精细定位和基因挖掘奠定基础。【方法】收集猪肌内脂肪QTL及其相关信息,以美国肉畜研究中心(USDA-MARC 2.0)公布的猪遗传连锁图谱为参考图谱,利用BioMercator2.1将各QTL映射到参考图谱上,构建新的整合图谱,得到QTL簇。对得到的QTL簇进行Meta分析,缩短置信区间,定位“真实”QTL(MQTL),减少QTL的定位误差。【结果】收集了67个猪肌内脂肪QTL及相关信息,经比对、映射,构建新的整合图谱,发现了12个QTL簇。通过Meta分析,得到12个MQTL(MQTL1~MQTL12),其图距比原平均图距缩小29.16%~87.40%,其中,MQTL3、MQTL5、MQTL6、MQTL7、MQTL9、MQTL12图距较原平均图距缩小比例均超过50%,其图距分别为7.76,6.72,5.20,19.45,15.61,9.37 cM。【结论】得到了12个猪IMF的MQTL,其图距比原平均图距均有不同程度缩小,最小仅5.20 cM,图距缩小比例最大可达87.40%,提高了QTL定位的准确度和有效性。  相似文献   

2.
【目的】通过构建整合图谱和Meta分析,利用数学模型整合与优化猪肉色相关QTL,分析已知候选基因与“真实”QTL(MQTL)的关联性,为肉色性状的分子标记辅助选择奠定基础。【方法】收集猪肉色相关QTL,包括明度系数(L值,MCOLORL)、红度值(a值,MCOLORa)和黄色度(b值,MCOLORb)等指标,利用BioMercator2.1软件,将原始QTL映射到美国肉畜研究中心(USDA-MARC 2.0)公布的猪遗传连锁图谱中,构建整合图谱,分析得到QTL簇;对各QTL簇进行Meta分析,定位MQTL;进一步将已知候选基因映射到整合图谱,比较候选基因与各MQTL在染色体上的位置关系,分析其关联性。【结果】将176个猪肉色相关QTL进行比对、映射后,构建成新的整合图谱。通过Meta分析,将原本分散的QTL定量合并为37个MQTL,其中MQTL2、MQTL3、MQTL8~MQTL11、MQTL13~MQTL16、MQTL18~MQTL20、MQTL24、MQTL25、MQTL29、MQTL31、MQTL32、MQTL35~MQTL37共 21个MQTL的缩短比例均超过50%,MQTL9、MQTL19、MQTL11、MQTL28、MQTL35、MQTL8、MQTL2、MQTL3等8个MQTL的置信区间在5 cM内。【结论】获得了37个猪肉色性状,图距1.16~22.68 cM,较原QTL图距均有不同程度地缩短,缩短比例为25.19%~90.33%,提高了QTL定位的准确度和有效性。  相似文献   

3.
【目的】通过构建整合图谱及Meta分析,利用数学模型整合优化猪肉系水力相关数量性状位点(QTL),并比较已知候选基因与“真实”QTL(MQTL)的位置,分析其相关性,为猪肉系数力的分子标记辅助选择奠定基础。【方法】收集2000年至今发表的猪肉系水力相关QTL信息,以美国肉畜研究中心(USDAMARC 2.0)公布的猪遗传连锁图谱为参考图谱,利用BioMercater 2.1软件将已报道的猪肉系水力相关QTL映射到参考图谱,构建新的整合图谱,分析其中存在的QTL簇;对各QTL簇进行Meta分析,将原始QTL整合为“真实”QTL(MQTL);将已知的候选基因促红细胞生成素受体基因(EPOR)、锚定蛋白1基因(ANK1)、碳酸酐酶Ⅲ基因(CAⅢ)和氟烷基因(HAL)映射到整合图谱,比较其与MQTL的位置关系,并分析二者的关联性。【结果】共收集到80个猪肉系水力相关QTL,将其进行比对、映射后,成功构建了新的整合图谱,并通过Meta分析定位了12个MQTL,这些MQTL的图距与原始QTL的平均图距相比均有不同程度的缩短。EPOR基因、ANK1基因分别定位在MQTL3、MQTL12的置信区间内,其中ANK1基因映射到整合图谱后与MQTL12的中心位置一致。【结论】整合定位的12个MQTL的图距为3.66~28.98 cM,较原始QTL缩短35.82%~78.81%,提高了QTL定位的准确度和有效性。  相似文献   

4.
基于Meta分析的大豆百粒重的QTLs定位   总被引:9,自引:2,他引:7  
 【目的】百粒重是控制大豆产量性状的主要数量性状,对大豆产量性状进行基因定位具有重要的研究和应用价值。现有百粒重QTL定位结果分散,需选择合适的公共图谱,整合前人的研究结果,使其真正应用到实践中。【方法】以2004年发布大豆公共遗传连锁图谱soymap2为参考图谱,将近20年不同试验中的大豆百粒重的QTLs进行映射整合,构建百粒重QTL综合图谱。利用BioMercator2.1的映射功能将国内外常用的大豆图谱上的百粒重QTLs通过公共标记映射整合到大豆公共遗传连锁图谱soymap2上,并利用Meta分析,通过对比已经报道的QTLs的95%的置信区间来推断QTL位置,从而提取真正有效的QTL标记。【结果】在已经发表的文献中共找到65个百粒重QTLs定位信息,其中有53个QTLs定位区间与公共图谱有共有标记,包括36个增效效应的QTLs和17个减效效应的百粒重QTLs,共得到12个QTL簇,通过Meta分析,发掘出6个增效效应和6个减效效应的百粒重“通用QTLs”及其连锁标记。【结论】本研究得到的“通用QTLs”其置信区间最小可达到1.52 cM,为辅助选择分子标记、QTL精细定位以及数量性状基因的克隆奠定基础。  相似文献   

5.
为挖掘控制棉花苗期耐盐的重要数量性状位点(quantitative trait loci, QTL),利用BioMercator V4.2.3软件,以棉花高密度遗传连锁图谱作为参考,对来自3个作图群体涉及19个性状的194个QTLs进行图谱整合、映射以及QTL元分析。结果表明,通过建立棉花苗期耐盐相关性状一致性图谱,共挖掘出11个一致性QTL(meta quantitative trait loci, MQTL)位点,各MQTL至少包含3个原始QTLs,置信区间最短缩小至0.92 cM,分布于A03、A06、A11、A12、A13、D01、D03、D06、D07和D08共10条染色体上。通过对A11染色体上MQTL区间进行候选基因预测,挖掘到14个与棉花苗期耐盐相关的候选基因,为棉花苗期耐盐相关性状精细定位及分子辅助选择育种提供理论依据。  相似文献   

6.
【目的】定位猪CACNA2D1基因并分析该基因是否可作为影响猪某些生产性状的候选基因。【方法】扩增并测定猪CACNA2D1基因的部分序列,运用辐射杂种细胞系对其进行定位并将定位结果与相关遗传图谱进行整合分析。【结果】将猪CACNA2D1基因定位在猪9号染色体79.3~86.7 cM的位置上,发现在CACNA2D1基因定位区域有3个分别影响母猪发情期排卵数、胴体肩胛重以及10周龄体重的QTL,在定位区域附近有影响猪屠宰24 h后肌肉pH值的QTL。【结论】猪CACNA2D1基因可作为猪繁殖性状、胴体性状、生长性状甚至肉质性状的候选基因进行进一步的研究。  相似文献   

7.
 【目的】通过测量猪体长、体高、管围、胸围、胸宽、胸深、腹围和腿臀围等8个体尺性状,应用全基因组扫描定位影响猪体尺性状的数量性状位点(QTL)。【方法】在210日龄,活体测量白色杜洛克×二花脸资源群体129头F2个体的上述8个体尺性状,利用分布于猪18条常染色体和X染色体上的183个微卫星标记,对这129头F2个体及其父母和祖代亲本进行基因型检测。应用基于最小二乘线性回归分析的复合区间作图法在QTL Express进行在线QTL定位分析,并通过1 000次的Permutation来确定不同显著水平的临界值。【结果】在8条染色体上共检测到19个影响猪体尺性状的QTL,其中位于4和7号染色体上的5个QTL达到基因组1%显著水平,位于2和7号染色体上的2个QTL达基因组5%显著水平,但是没有检测到影响胸深的QTL。【结论】影响猪体尺性状的QTL位点大多数分布于不同染色体区域,QTL所解释的表型方差介于5.23%—41.58%。白色杜洛克和二花脸中均存在增加表型值的有利等位基因。  相似文献   

8.
 【目的】通过全基因组扫描,鉴别影响猪四肢骨骨骼长度,股骨和肱骨的骨髓腔长度、骨髓腔直径以及股骨骨壁厚度的数量性状位点(QTL)。【方法】在白色杜洛克×二花脸资源群体中测定132头240日龄阉割公猪29类四肢骨骨骼的长度、6类四肢骨骨骼直径以及股骨和肱骨骨壁厚度、骨髓腔长度和骨髓腔直径等表型性状。选择多态信息含量丰富并覆盖猪全基因组19条染色体的183个微卫星标记,采用最小二乘区间定位法进行猪全基因组扫描,定位猪四肢骨骼各性状QTL。【结果】在39个表型性状中定位到14个基因组1%显著水平QTL,14个基因组5%显著水平QTL和47个染色体5%显著水平QTL。除SSC11没有检测到QTL外,其它各染色体都存在影响四肢骨骼QTL。【结论】定位75个影响猪四肢骨骼性状QTL,在SSC7上57~59 cM 发现影响多种骨骼生长的QTL。  相似文献   

9.
倒伏性状是影响大豆品种产量、品质及能否大面积推广的一个重要数量性状。为促进大豆抗倒伏基因的精细定位和分子标记辅助选择育种,本研究共搜集整理30年来SoyBase网站上已经报道的大豆倒伏性状QTL,以2010年发布的大豆基因组物理图谱为参考图谱,通过BioMercator2.1软件将大豆倒伏性QTL映射到物理图谱上,并进行元分析得到有效的QTL位点,共得到17个通用QTL分布于8个连锁群上,通用QTL的最小图距为0.08 Mb,最大图距为13.47 Mb。  相似文献   

10.
【目的】对水稻F8重组自交系群体穗长QTL进行检测,并比较分析相同亲本衍生的不同群体的遗传图谱、QTL位置、QTL效应的异同,鉴定稳定表达的穗长QTL,以期增加对穗长遗传行为的了解,且有助于通过分子聚合育种手段改良穗长性状。【方法】以籼稻品种泸恢99和粳稻品种日本晴(基因组测序)为亲本构建的F8重组自交系群体中的188个家系为研究材料,利用包含207个标记的遗传连锁图谱,采用基于混合线性模型的QTL定位软件QTLNetwork 2.0,对水稻穗长QTL进行定位和效应分析,并比较分析F8、F2群体的QTL定位和遗传图谱异同。【结果】在F8群体中检测到7个与穗长性状相关的QTL,分别位于第2、3、6、7、8、10染色体上,QTL对表型变异的贡献率为3.38%—14.8%,总贡献率为52.5%。F8、F2群体在5条相同染色体上都定位到了穗长QTL,这些QTL所在标记区间物理位置大部分是重叠和包含关系。F8、F2图谱在定位标记数、标记的位置顺序、遗传距离、平均图距等方面发生了变化。【结论】在F8、F2群体检测到一个稳定遗传的主效应QTL位点,位于第6染色体,并发现了4个尚未报道的穗长QTL。  相似文献   

11.
 【目的】鉴定影响猪重要经济性状的QTL。【方法】利用中国地方猪种蓝塘猪(16头母猪)与外来品种长白猪(8头公猪)建立了资源家系,对257头F2代个体的11个活体性状进行测定。根据美国肉畜中心(USDA-MARC 2.0)公布的猪连锁图谱,在1、4和8号染色体上大约每间隔10—20 cM选择一个微卫星标记,共21个标记,采用ABI 377 DNA序列分析仪进行微卫星基因分型,运用QTL Express 软件包在http://latte.cap.ed.ac.uk网站在线分析,进行QTL定位分析。【结果】体高(body height,BodyHh)的QTL定位于SSC1的68 cM处,与标记SW2185(67.6cM)紧密联锁,达到染色体显著水平(P<0.05),解释表型变异的2.22%。体长(body length,BodyLh)的QTL定位于SSC4上的72cM处,位于标记SW839—SW0214,达到染色体显著水平(P<0.05)。【结论】在猪1和4号染色体上分别检测到一个影响体高和体长的QTL,为今后的QTL精细定位、大片段功能基因的克隆分析、以及猪分子育种技术的应用提供参考依据。  相似文献   

12.
 【目的】检测定位猪10号染色体上影响血常规指标的数量性状位点。【方法】以3个品种(大白猪、长白猪、松辽黑猪)16个公猪家系共计368头试验猪组成资源群体,在猪10号染色体上共选取13个微卫星标记,采用基于线性混合模型方法,对影响与猪白细胞、红细胞和血小板相关的共计18项血常规指标的数量性状基因座(quantitative trait loci,QTL)进行了检测。通过似然比检验,利用置换法确定显著性阈值。【结果】()13个标记在群体中绝大多数的微卫星属于中度多态的遗传标记,所有微卫星标记在3个品种中的平均等位基因数为3.1754,平均杂合度为0.5215,平均多态信息含量为0.5999,平均香浓指数为1.3222。(2)达到了染色体极显著水平的3个QTL(P<0.01),分别是影响着红细胞压积(HCT)、血红蛋白含量(HGB)和平均红细胞体积(MCV),影响血小板总数(PLT)的QTL也达到染色体显著水平(P<0.05)。【结论】定位的4个影响猪血常规的QTL集中在10号染色体81—136cM区域,临近的标记分别为SW249、SWR136、S0070和SW1894。  相似文献   

13.
【目的】改进染色体片段代换系群体,挖掘野生大豆(Glycine soja Sieb. et Zucc.)中蕴藏的农艺性状优异等位变异,为拓宽栽培大豆(Glycine max (L.) Merr.)的遗传基础提供材料和依据。【方法】通过标记加密和剔除部分单标记型片段的方法,改进以野生大豆N24852为供体,栽培大豆NN1138-2为受体的染色体片段代换系(CSSL)群体SojaCSSLP1;对改进后的群体(SojaCSSLP2)进行3年2点田间试验,通过单标记分析、区间作图、完备复合区间作图和基于混合线性模型的复合区间作图等4种定位方法,结合与轮回亲本有显著差异的染色体片段代换系间相互比对,检测与大豆开花期、株高、主茎节数、单株荚数、百粒重和单株粒重相关的野生片段。【结果】改进后的群体(SojaCSSLP2)由150个CSSL构成,其中,有130个家系与SojaCSSLP1相同;在原遗传图谱上,新增40个SSR标记,相邻标记间平均遗传距离由16.15 cM变为12.91 cM,大于20 cM的区段由32个减少至17个,标记覆盖遗传距离总长度较原图谱(2 063.04 cM)增加103.52 cM;群体NN1138-2背景回复率变幅为79.45%-99.70%,平均为94.62%。利用SojaCSSLP2群体,分别鉴定到与开花期、株高、主茎节数、单株荚数、百粒重和单株粒重相关的4、5、5、7、14和3个工作QTL(working QTL)/片段,其中有15个工作QTL/片段能在多个环境下检测到,属共性工作QTL(joint working QTL);除片段Sct_190-Sat_293上的主茎节数位点外,野生等位变异具有的加性效应方向与双亲表型差异方向一致;单个位点分别能解释5%-64%的表型变异;同时,分别检测到3、2和2个与地点存在互作的株高、主茎节数和单株荚数QTL/片段,其中与凤阳环境的互作均具有增加表型的效应,这可能与凤阳较南京所处纬度高有关;这些位点/片段分布在26个染色体片段上,其中有7个片段与2个及以上性状相关,可能是性状相关的遗传基础;与前人结果比较,有3个开花期、3个株高、2个主茎节数、2个单株荚数、8个百粒重、2个单株粒重位点能在其他遗传背景栽培大豆中检测到,说明在这些位点上野生大豆和栽培大豆间及栽培大豆间均存在遗传差异;另外18个位点(片段)为本研究利用野生大豆的新发现。【结论】大豆开花期、株高和主茎节数的遗传基础较百粒重简单,前者均存在效应较大位点/片段,后者多由小效应位点控制,遗传基础极为复杂;野生大豆中蕴藏着新的等位变异,能拓宽栽培大豆遗传基础。  相似文献   

14.
甘蓝型油菜含油量及皮壳率的QTL分析   总被引:1,自引:1,他引:1  
【目的】通过构建甘蓝型油菜遗传连锁图谱,对含油量及皮壳率进行QTL分析。【方法】以黄籽亲本GH06和黑籽亲本P174杂交得到的F2:6家系的188个株系为作图群体,利用SRAP、SSR、AFLP及TRAP四种标记构建遗传连锁图谱,在此基础上采用复合区间作图法(CIM)对含油量及皮壳率两个性状进行QTL分析。【结果】图谱包含19个连锁群、300个标记位点,总长为1 248.5 cM。共得到7个与含油量相关的QTL,单位点遗传贡献率在3.73%~10.46%之间;4个与皮壳率相关的QTL,单位点遗传贡献率在4.89%~6.84%之间。【结论】黄籽油菜具有高含油量的优势;皮壳率对含油量有显著影响;SRAP标记具有较好的检测QTL位点的能力。  相似文献   

15.
 【目的】构建黄麻遗传连锁图谱,定位质量性状基因,为今后有关黄麻基因组结构、重要农艺性状QTL定位、分子标记辅助育种和基因克隆等研究工作奠定基础。【方法】以甜麻(黄麻野生种)和宽叶长果(黄麻栽培品种)为杂交亲本,构建了187个F2单株作为作图群体,利用513对SRAP引物进行遗传图谱构建,并对3个质量性状基因(托叶色、叶柄色、叶缘色)进行了定位。【结果】122个SRAP多态性标记位点和这3个形态学标记被定位在该图谱上,初步构建的长果种黄麻遗传连锁图谱全长2 231.9 cM,包含10个连锁群,每个连锁群有2—38个标记位点,2个标记间平均间距为17.86 cM。【结论】该图谱上的标记位点均匀分布在10个连锁群上,没有出现标记位点聚集的现象,表明SRAP标记十分适合黄麻遗传图谱的构建。  相似文献   

16.
基于SNP遗传图谱定位甘蓝型油菜千粒重QTL位点   总被引:1,自引:0,他引:1  
【目的】甘蓝型油菜籽粒重量是构成油菜单株产量的三大因素之一(单株有效角果数、每角果粒数、粒重),是重要的育种目标。通过对5种环境下甘蓝型油菜千粒重进行QTL定位分析,寻找甘蓝型油菜千粒重的QTL及影响本甘蓝型油菜群体千粒重的候选基因。【方法】利用重组自交系群体在德国吉森、重庆北碚5种不同的环境下,测定各株系天然种子千粒重。利用重庆市油菜工程技术研究中心实验室构建的SNP高密度遗传图谱扫描5种环境中的千粒重QTL。该遗传图谱包括2 795个SNP位点,覆盖甘蓝型油菜基因组1 832.9 cM,标记之间的平均距离为0.66 cM。利用Windows QTL Cartographer2.5复合区间作图法对千粒重进行QTL定位。将49个拟南芥粒重相关基因与QTL对应置信区间序列进行同源比较分析(E值<1E–21),找出可能与甘蓝型油菜千粒重关联的候选基因。【结果】5种环境中千粒重变异范围较大,且均呈现正态分布,符合QTL定位要求。在5种环境之间千粒重均表现出正相关,其中,2013北碚与2012北碚、2008年吉森达到极显著水平,相关系数分别为0.248和0.249;2012年北碚与2010年北碚、2011年北碚及2008年吉森达到显著相关,相关系数分别为0.226、0.397和0.190。5种环境中共检测到14个QTL,分布在9条染色体,其中,C03染色体3个,A06、A07和C01各有2个,A03、A05、A08、A10和C02染色体上各有1个,LOD值在2.57-6.05,单个QTL解释的表型变异为4.64%-14.13%。与拟南芥粒重基因进行同源性分析,有16个粒重相关基因落在8个QTL置信区间,匹配E值介于0-2E-21。其中QTL qTSWA07-2区间内筛出7个粒重基因。粒重基因TTG2qTSWA03-1qTSWC02-1 2个QTL区间内均被检测到。AHK3qTSWA07-2qTSWA08-1qTSWC01-1区间内被检测到。【结论】利用该套油菜60K芯片准确定位了5种环境条件千粒重的QTL位点,与拟南芥粒重基因比对出该群体油菜粒重基因,该结果有利于不同材料在使用该套SNP芯片分析及对千粒重QTL位点的比对和候选基因的分析。  相似文献   

17.
【目的】构建甜瓜高密度遗传图谱,为研究甜瓜重要性状基因定位及功能分析奠定基础。【方法】以甜瓜材料K7-4(高抗霜霉病)和K7-2(高感霜霉病)为亲本,杂交再自交得到 F2分离群体。构建GBS文库并进行双末端测序,使用滑动窗口的方法进行基因型分型,SAM TOOLS软件检测SNP位点,采用Joinmap 4.0软件进行排图,用perl SVG模块绘制连锁图,用win QTL cart 2.5进行QTL检验,根据复合区间作图法,使用R/qtl软件包进行QTL定位。【结果】构建了总长为4 823.55 cM的遗传图谱,标记间平均遗传距离为1.43 cM。在苗期、生长中期和生长后期共检测到26个与甜瓜霜霉病性状相关的QTL。【结论】基于GBS-seq技术获得了甜瓜高密度遗传图谱,最终将抗霜霉病基因关联到CM3.5.1_scaffold00005上的6,831,227~7,830,935 bp,约1Mb的区间范围内。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号