首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Context

Playa wetlands are the primary habitat for numerous wetland-dependent species in the Southern Great Plains of North America. Plant and wildlife populations that inhabit these wetlands are reciprocally linked through the dispersal of individuals, propagules and ultimately genes among local populations.

Objective

To develop and implement a framework using network models for conceptualizing, representing and analyzing potential biological flows among 48,981 spatially discrete playa wetlands in the Southern Great Plains.

Methods

We examined changes in connectivity patterns and assessed the relative importance of wetlands to maintaining these patterns by targeting wetlands for removal based on network centrality metrics weighted by estimates of habitat quality and probability of inundation.

Results

We identified several distinct, broad-scale sub networks and phase transitions among playa wetlands in the Southern Plains. In particular, for organisms that can disperse >2 km a dense and expansive wetland sub network emerges in the Southern High Plains. This network was characterized by localized, densely connected wetland clusters at link distances (h) >2 km but <5 km and was most sensitive to changes in wetland availability (p) and configuration when h = 4 km, and p = 0.2–0.4. It transitioned to a single, large connected wetland system at broader spatial scales even when the proportion of inundated wetland was relatively low (p = 0.2).

Conclusions

Our findings suggest that redundancy in the potential for broad and fine-scale movements insulates this system from damage and facilitates system-wide connectivity among populations with different dispersal capacities.
  相似文献   

2.
We employed a sliding-window approach at multiple scales (window sizes and dispersal distances) to calculate seven standard graph-theoretical metrics within a subset of a large, freshwater wetland network. In contrast to most graph analyses, which quantify connectivity at a single (global) scale or at a patch-level scale, a multi-scaled, sliding-window approach provides an assessment that bridges these two approaches to examine patch clusters. As a case study we focused on a subset of a habitat patch network in a ~20,000 km2 area encompassing 2,782 playa wetlands in the panhandle of Texas. Playas are seasonal wetlands of the southern Great Plains of North America that form a network of regional habitat resources for wildlife. The large size of this network meant that global metrics failed to capture localized properties, so we used contour mapping to visualize continuous surfaces as functions of playa density, linkage density, and other topological traits at different window sizes and dispersal distances. This technique revealed spatial patterns in the components (i.e., the network properties of regions of the landscape at a given dispersal scale), with the spatial scale of habitat clustering varying with the size of the sliding window and dispersal distance. Using a tool familiar to landscape ecology (sliding-window methodology) in a novel way (to examine ecological networks at multiple scales), our approach provides a way to represent ecologically determined local-scale graph properties and illustrates how a multi-scaled approach is useful in examining habitat connectivity to investigate graph properties.  相似文献   

3.

Context

The Rainwater Basin region in south-central Nebraska supports a complex network of spatially-isolated wetlands that harbor diverse floral and faunal communities. Since European settlement, many wetlands have been lost from the network, which has increased distances among remaining wetlands. As a result, populations of wildlife species with limited dispersal capabilities may have become isolated and face greater local extinction risks.

Objectives

We compared the pre-European settlement and current extent of the Rainwater Basin network to assess the effects of wetland losses on network connectivity for a range of maximum dispersal distances.

Methods

We constructed network models for a range of maximum dispersal distances and calculated network metrics to assess changes in network connectivity and the relative importance of individual wetlands in regulating flow.

Results

Since European settlement, the number of wetlands in the Rainwater Basin has decreased by?>?90%. The average distance to the nearest neighboring wetland has increased by 150% to ~?1.2 km, and the dispersal distance necessary to travel throughout the whole network has increased from 3.5 to 10.0 km. Last, relative importance of individual wetlands depended on the maximum dispersal distance. Which wetlands to preserve to maintain connectivity might therefore depend on the dispersal capabilities of the species or taxa of interest.

Conclusions

To preserve a broad range of biodiversity, conservation efforts should focus on preserving dense clusters of wetlands at fine spatial scales to maintain current levels of network connectivity, and restoring connections between clusters to facilitate long-range dispersal of species with limited dispersal capabilities.
  相似文献   

4.
Landscape structure can influence demographics of spatially structured populations, particularly less vagile organisms such as amphibians. We examined the influence of agricultural landscape structure on community composition and relative abundance of the 4 most common amphibians in the Southern High Plains of central USA. Amphibian populations were monitored using pitfall traps and drift fence at 16 playa wetlands (8 playas/year) in 1999 and 2000. We quantified landscape structure surrounding each playa via estimating 13 spatial metrics that indexed playa isolation and inter-playa landscape complexity. Multivariate ordination and univariate correlations and regressions indicated that landscape structure was associated with community composition and relative abundance for 2 of the 4 amphibians. Spadefoots (Spea multiplicata, S. bombifrons) generally were positively associated with decreasing inter-playa distance and increasing inter-playa landscape complexity. Great Plains toads (Bufo cognatus) and barred tiger salamanders (Ambystoma tigrinum mavortium) usually were negatively associated with spadefoots but not influenced by landscape structure. Composition and relative abundance patterns were related to amphibian body size, which can influence species vagility and perception to landscape permeability. Spatial separation of these species in the multivariate ordination also may have been a consequence of differential competitive ability among species. These results suggest agricultural landscape structure may influence abundance and composition of spatially structured amphibian populations. This also is the first applied documentation that inter-patch landscape complexity can affect intra-patch community composition of amphibians as predicted by metapopulation theory. In the Southern High Plains, landscape complexity is positively associated with agricultural cultivation. Agricultural cultivation increases sedimentation, decreases hydroperiod, alters amphibian community dynamics, and negatively impacts postmetamorphic body size of amphibians in playa wetlands. Thus, conservation efforts should focus on preserving or restoring native landscape structure, hydroperiod, and connectivity among playas to maintain native amphibian populations and historic inter-playa movement.  相似文献   

5.

Context

The relative importance of habitat area and connectivity for species richness is often unknown. Connectivity effects may be confounded with area effects or they may be of minor importance as posited by the habitat-amount hypothesis.

Objectives

We studied effects of habitat area and connectivity of linear landscape elements for plant species richness at plot level. We hypothesized that connectivity of linear landscape elements, assessed by resistance distance, has a positive effect on species richness beyond the effect of area and, further, that the relative importance of connectivity varies among groups of species with different habitat preferences and dispersal syndromes.

Methods

We surveyed plant species richness in 50 plots (25 m2) located on open linear landscape elements (field margins, ditches) in eight study areas of 1 km2 in agricultural landscapes of Northwest Germany. We calculated the area of linear landscape elements and assessed their connectivity using resistance distance within circular buffers (500 m) around the plots. Effects of area and connectivity on species richness were modelled with generalised linear mixed models.

Results

Species richness did not increase with area. Resistance distance had significant negative effects on total richness and on the richness of typical species of grasslands and wetlands. Regarding dispersal syndromes, resistance distance had negative effects on the richness of species with short-distance, long-distance and aquatic dispersal. The significant effects of resistance distance indicated that species richness increased with connectivity of the network of linear landscape elements.

Conclusions

Connectivity is more important for plant species richness in linear landscape elements than area. In particular, the richness of plant species that are dispersal limited and confined to semi-natural habitats benefits from connective networks of linear landscape elements in agricultural landscapes.
  相似文献   

6.

Context

In deserts, many plant species exhibit a patchy spatial distribution within a harsh habitat matrix, where the likelihood of propagule dispersal among patches is uncertain, but may be promoted by landscape corridors or dispersal vectors.

Objectives

We examine the connectivity of a representative desert plant species (Acacia (Senegalia) greggii), and the ability of three major factors (animal dispersal agents, water flow along dry-washes, and climate) to facilitate dispersal within four watersheds in the Mojave National Preserve.

Methods

We genotyped 323 individuals sampled across 22 one-hectare sites using ten nuclear microsatellite markers.

Results

A hierarchical AMOVA revealed no significant differentiation among watersheds (F RT = 0.00, P > 0.10), and very little genetic structure among all sites (F ST = 0.03, P < 0.001), indicating regional connectivity. Mantel tests indicated distance along dry-washes best explained genetic distance between sites (r = 0.47, P < 0.05) when compared to Euclidean distance (P > 0.05), a distance measure based on rodent dispersal (P > 0.05), and a distance measure avoiding inhospitable climate (P > 0.05). An AIC comparison of generalized linear models found that within site genetic diversity (H E and allelic richness) and average relatedness were best explained by slope (which increases seed dispersal potential via water flow) and area of the upstream watershed (which determines the number of potential seed donors), rather than plant density or habitat suitability.

Conclusions

Together, these findings indicate that dry-washes are key landscape features that enhance dispersal and regional connectivity in this patchy desert plant.
  相似文献   

7.
Many populations are spatially structured with frequent extinction–colonization events. A clear understanding of these processes is necessary for making informed and effective management decisions. Due to the spatially and temporally dynamic nature of many systems, population connectivity and local extinction–colonization processes can be difficult to assess, but graph theoretic and occupancy modeling approaches are increasingly being utilized to answer such vital ecological questions. In our study, we used 6 years of egg mass counts from 34 ponds for Rana sylvatica to parameterize spatially explicit demographic network models. Our models revealed that the studied populations have spatial structure with strong source–sink dynamics. We also assessed the colonization and persistence probability of each pond using multi-season occupancy modeling. We observed extreme fluctuation in reproductive effort among years, resulting in variable levels of connectivity across the landscape. Pond colonization and persistence were most influenced by local population dynamics, but colonization was also affected by precipitation. Our demographic network model had moderate ability to predict reproductive effort, but accuracy was hindered by variation in annual precipitation. Source populations had higher colonization and persistence rates as well as a greater proportion of ravine habitat within 1,000 m than sink populations. By linking a spatially explicit connectivity model with a temporal occupancy/persistence model, we provide a framework for interpreting patterns of occupancy and dispersal that can serve as an initial guide for future habitat management and restoration.  相似文献   

8.
The tallgrass prairie of North America has undergone widespread habitat loss and fragmentation (<4% remains). The Flint Hills region of Kansas and Oklahoma is the largest tallgrass prairie remaining and therefore provides an opportunity to study the population genetic structure of grassland species in a relatively contiguous landscape and set a baseline for evaluating changes when the habitat is fragmented. We adopted a landscape genetics approach to identify how landscape structure affected dispersal, population genetic structure, and landscape connectivity of the Eastern Yellowbelly Racer (Coluber constrictor flaviventris) across a 13,500-km2 landscape in northeastern Kansas, USA. The racer population had high allelic diversity, high heterozygosity, and was maintaining migration-drift equilibrium. Autocorrelation between genetic and geographic distance revealed that racers exhibited restricted dispersal within 3 km, and isolation-by-distance. Significant isolation-by-distance occurred at broad regional scales (>100 km), but because of sufficient gene flow between locations, we were unable to define discrete subpopulations using Bayesian clustering analyses. Resistance distance, which considers the permeability of habitats, did not explain significant variation in genetic distance beyond Euclidean distance alone, suggesting that racers are not currently influenced by landscape composition. In northeastern Kansas, racers appear to be an abundant and continuously distributed snake that perceives the landscape as well connected with no cover type currently impeding snake dispersal or gene flow.  相似文献   

9.

Context

Amphibian metapopulations have become increasingly fragmented in the Midwestern United States, with wetland-breeding salamanders being especially dependent on intact, high-quality forested landscapes. However, the degree to which amphibian populations are isolated, the factors that influence dispersal and, ultimately, functional connectivity remain areas in need of investigation.

Objectives and methods

We combined population demographic and genetic approaches to assess how a landscape fragmented by agriculture influences functional connectivity and metapopulation dynamics of a locally threatened salamander (Ambystoma jeffersonianum).

Results

We found that the allelic richness and heterozygosity of this species was significantly related to the level of connectivity with other occupied breeding wetlands and that decreased connectivity resulted in increased genetic differentiation. We also found that effective population size appears to be declining and, while correlative, our focal landscape has experienced significant losses of forested upland habitats and potential wetland breeding habitats over the last 200 years.

Conclusions

By combining population and landscape genetic analyses with an assessment of regional wetland occupancy, our study has uniquely synthesized genetic and metapopulation processes, while also incorporating the effects of the landscape matrix on dispersal, connectivity, and population differentiation. The significant relationship between connectivity with heterozygosity, allelic richness, and genetic divergence observed in this study reinforces empirical observations of long distance dispersal and movements in ambystomatid salamanders. However, our results show that protection of core habitat around isolated wetlands may not sufficiently minimize genetic differentiation among populations and preserve critical genetic diversity that may be essential for the long-term persistence of local populations.
  相似文献   

10.
Connectivity models using empirically-derived landscape resistance maps can predict potential linkages among fragmented animal and plant populations. However, such models have rarely been used to guide systematic decision-making, such as identifying the most important habitat patches and dispersal corridors to protect or restore in order to maximize regional connectivity. Combining resistance models with network theory offers one means of prioritizing management for connectivity, and we applied this approach to a metapopulation of desert bighorn sheep (Ovis canadensis nelsoni) in the Mojave Desert of the southwestern United States. We used a genetic-based landscape resistance model to construct network models of genetic connectivity (potential for gene flow) and demographic connectivity (potential for colonization of empty habitat patches), which may differ because of sex-biased dispersal in bighorn sheep. We identified high-priority habitat patches and corridors and found that the type of connectivity and the network metric used to quantify connectivity had substantial effects on prioritization results, although some features ranked highly across all combinations. Rankings were also sensitive to our empirically-derived estimates of maximum effective dispersal distance, highlighting the importance of this often-ignored parameter. Patch-based analogs of our network metrics predicted both neutral and mitochondrial genetic diversity of 25 populations within the study area. This study demonstrates that network theory can enhance the utility of landscape resistance models as tools for conservation, but it is critical to consider the implications of sex-biased dispersal, the biological relevance of network metrics, and the uncertainty associated with dispersal range and behavior when using this approach.  相似文献   

11.
A central theme in landscape ecology is that of understanding the consequences of landscape heterogeneity for ecological processes. The effects of landscape heterogeneity on parasite communities are poorly understood, although it has been shown that anthropogenic impacts may contribute to outbreaks of both parasites and pathogens. We tested for effects of landcover type, composition, configuration, and urbanisation on avian diversity and avian malaria prevalence in 26 communities of wetland-associated passerines in the Western Cape of South Africa. We predicted that avian malaria prevalence would be influenced by the pattern of farmland and urban areas in the surrounding landscapes and the sizes of the wetlands in which birds were sampled. We quantified landscape pattern using a six-class simplification of the National Landcover data set at 35 × 35 m resolution and five extents of between 1 and 20 km from each wetland. The bird community was sampled using point counts and we collected blood samples from birds at each site. We screened these for malaria using PCR and molecular techniques. Passerine species richness and infection prevalence varied significantly between different landcover types. Host richness and parasite prevalence were highest in viticultural and cropping sites respectively and lowest in urban sites. Wetlands located in indigenous vegetation had intermediate numbers of bird species and intermediate parasite prevalence. Landscape composition and habitat type surrounding wetlands emerged as useful correlates of infection prevalence. Anthropogenic landscape modification appears to have both direct and indirect effects on avian communities and their associated parasite assemblages, with attendant consequences for avian health.  相似文献   

12.

Context

Animal movements are inherently linked to landscape structure. Understanding this relationship for highly-mobile species requires documenting their responses to spatiotemporal variability of resources. To that end, characterizing movement behaviors and resource distributions using the principles of habitat connectivity facilitates coordinated landscape planning efforts within highly modified landscapes.

Objectives and methods

We tracked locations and movements for 156 dunlin (Calidris alpina) and 109 long-billed dowitchers (Limnodromus scolopaceus) overwintering in two regions with distinct water distributions in California’s Central Valley. We then compared residency rates, functional connectivity to other regions, and associations between movement distances and average habitat availability and structural connectivity of habitat at multiple temporal and spatial scales.

Results

A widespread yet highly variable regional water distribution was associated with lower residency rates and substantially higher functional connectivity to nearby regions when compared to a stable regional water distribution characterized by a large, contiguous wetland complex. Longer movements were associated with decreasing average availability and spatial aggregation of surface water. Movement models suggested shorebirds primarily responded to habitat availability at smaller scales (<?10 km) and structural connectivity at larger scales (≥?10 km).

Conclusions

Differences in movement behaviors suggested that wintering shorebirds will avoid long distance movements and remain resident within a wetland region when possible. Conservation and management efforts should reliably flood individual wetlands and agricultural lands from November to April and prioritize locations that maximize structural wetland connectivity and limit spatiotemporal variability of surface water throughout the Central Valley.
  相似文献   

13.

Context

The problem of how ecological mechanisms create and interact with patterns across different scales is fundamental not only for understanding ecological processes, but also for interpretations of ecological dynamics and the strategies that organisms adopt to cope with variability and cross-scale influences.

Objectives

Our objective was to determine the consistency of the role of individual habitat patches in pattern-process relationships (focusing on the potential for dispersal within a network of patches in a fragmented landscape) across a range of scales.

Methods

Network analysis was used to assess and compare the potential connectivity and spatial distribution of highland fynbos habitat in and between protected areas of the Western Cape of South Africa. Connectivity of fynbos patches was measured using ten maximum threshold distances, ranging from five to 50 km, based on the known average dispersal distances of fynbos endemic bird species.

Results

Network connectivity increased predictably with scale. More interestingly, however, the relative contributions of individual protected areas to network connectivity showed strong scale dependence.

Conclusions

Conservation approaches that rely on single-scale analyses of connectivity and context (e.g., based on data for a single species with a given dispersal distance) are inadequate to identify key land parcels. Landscape planning, and specifically the assessment of the value of individual areas for dispersal, must therefore be undertaken with a multi-scale approach. Developing a better understanding of scaling dependencies in fragmenting landscapes is of high importance for both ecological theory and conservation planning.
  相似文献   

14.
Habitat availability—or how much habitat species can reach at the landscape scale—depends primarily on the percentage of native cover. However, attributes of landscape configuration such as the number, size and isolation of habitat patches may have complementary effects on habitat availability, with implications for the management of landscapes. Here, we determined whether, and at which percentages of native cover, the number, size and isolation of patches contribute for habitat availability. We quantified habitat availability in 325 landscapes spread across the state of Rio de Janeiro, in the Atlantic Forest hotspot, with either high (>50 %), intermediate (50–30 %), low (30–10 %) or very low (<10 %) percentage of native cover, and for six hypothetical species differing in inter-patch dispersal ability. Above 50 % of native cover, the percentage of cover per se was the only determinant of habitat availability, but below 50 % the attributes of landscape configuration also contributed for habitat availability. The number of patches had a negative effect on habitat availability in landscapes with 50–10 % of native cover, whereas patch size had a positive effect in landscapes with <10 % of native cover. The different species generally responded to the same set of landscape attributes, although to different extents, potentially facilitating decision making for conservation. In landscapes with >50 % of native cover, conservation actions are probably sufficient to guarantee habitat availability, whereas in the remaining landscapes additional restoration efforts are needed, especially to reconnect and/or enlarge remaining habitat patches.  相似文献   

15.
Landscape features that promote animal movement contribute to functional habitat connectivity. Factors that affect the use of landscape features, such as predation risk, may alter functional connectivity. We identify factors important to functional habitat connectivity by quantifying movement patterns of the Santa Rosa beach mouse (Peromyscus polionotus leucocephalus) in relation to landscape features and by examining how ambient perceived predation risk, which is altered by moon phase, interacts with landscape features. We use track paths across the sand to relate the probability that beach mice cross gaps between vegetation patches to gap width, patch quality, landscape context and moon phase. Overall activity levels were lower during full versus new moon nights, demonstrating that beach mice respond negatively to moonlight. Gap crossing was more likely during new moon nights (25 % of gaps crossed vs. 7 % during full moon nights), and across narrower gaps (<8.38 m) that led to larger vegetation patches (>11.75 m2). This study suggests that vegetation recovery is necessary for functional connectivity in post-hurricane landscapes commonly inhabited by beach mice and provides initial guidelines for restoring landscape connectivity. More broadly, this study highlights the importance of considering predation risk when quantifying landscape connectivity, as landscape features that facilitate connectivity when predation risk is low may be ineffective if predation risk increases over time or across space.  相似文献   

16.
Assessing landscape connectivity is important to understand the ecology of landscapes and to evaluate alternative conservation strategies. The question is though, how to quantify connectivity appropriately, especially when the information available about the suitability of the matrix surrounding habitat is limited. Our goal here was to investigate the effects of matrix representation on assessments of the connectivity among habitat patches and of the relative importance of individual patches for the connectivity within a habitat network. We evaluated a set of 50 × 50 km2 test areas in the Carpathian Mountains and considered three different matrix representations (binary, categorical and continuous) using two types of connections among habitat patches (shortest lines and least-cost paths). We compared connections, and the importance of patches, based on (1) isolation, (2) incidence-functional, and (3) graph measures. Our results showed that matrix representation can greatly affect assessments of connections (i.e., connection length, effective distance, and spatial location), but not patch prioritization. Although patch importance was not much affected by matrix representation, it was influenced by the connectivity measure and its parameterization. We found the biggest differences in the case of the integral index of connectivity and equally weighted patches, but no consistent pattern in response to changing dispersal distance. Connectivity assessments in more fragmented landscapes were more sensitive to the selection of matrix representation. Although we recommend using continuous matrix representation whenever possible, our results indicated that simpler matrix representations can be also used as a proxy to delineate those patches that are important for overall connectivity, but not to identify connections among habitat patches.  相似文献   

17.
Understanding animal responses to landscape elements helps forecast population reactions to changing landscape conditions. The challenge is that some behaviors are poorly known and difficult to estimate. We assessed how uncertainty in behavioral responses to dense woods, an avoided landscape structure, impacts functional connectivity among reproductive habitat patches for Fender’s blue butterfly, an endangered prairie species of western Oregon, USA. We designed a factorial simulation experiment using a spatially explicit individual-based model to project functional connectivity for female butterflies across current and alternative landscapes. We varied the probability of dense woods entry and turning angle standard deviation for movements within the dense woods over a range of biologically reasonable and observed values. Butterflies in the current landscape (46 % dense woods) and one with prairie encroached by forest (60 % dense woods) showed reductions in functional connectivity estimates consistent with the expectations of habitat fragmentation. Although dense woods entrance uncertainty impacted functional connectivity projections, uncertainty in the dense woods turning angle standard deviation had comparatively little impact on connectivity estimates. Reduction and reconfiguration of the current dense woods to 27 % cover (restored landscape) appeared to facilitate a corridor behavior in dispersing individuals, likely providing a functional connectivity estimate comparable to the historic landscape (<5 % dense woods). Our simulations suggest that additional study of butterfly movement within the dense woods is unnecessary and that a partial reduction in dense woods would be sufficient to achieve historic levels of functional connectivity for Fender’s blue across the study landscape.  相似文献   

18.
Heterogeneity in habitat often influences how organisms traverse the landscape matrix that connects populations. Understanding landscape connectivity is important to determine the ecological processes that influence those movements, which lead to evolutionary change due to gene flow. Here, we used landscape genetics and statistical models to evaluate hypotheses that could explain isolation among locations of the threatened Mojave desert tortoise (Gopherus agassizii). Within a causal modeling framework, we investigated three factors that can influence landscape connectivity: geographic distance, barriers to dispersal, and landscape friction. A statistical model of habitat suitability for the Mojave desert tortoise, based on topography, vegetation, and climate variables, was used as a proxy for landscape friction and barriers to dispersal. We quantified landscape friction with least-cost distances and with resistance distances among sampling locations. A set of diagnostic partial Mantel tests statistically separated the hypotheses of potential causes of genetic isolation. The best-supported model varied depending upon how landscape friction was quantified. Patterns of genetic structure were related to a combination of geographic distance and barriers as defined by least-cost distances, suggesting that mountain ranges and extremely low-elevation valleys influence connectivity at the regional scale beyond the tortoises’ ability to disperse. However, geographic distance was the only influence detected using resistance distances, which we attributed to fundamental differences between the two ways of quantifying friction. Landscape friction, as we measured it, did not influence the observed patterns of genetic distances using either quantification. Barriers and distance may be more valuable predictors of observed population structure for species like the desert tortoise, which has high dispersal capability and a long generation time.  相似文献   

19.
Wetlands, carbon, and climate change   总被引:3,自引:0,他引:3  
Wetland ecosystems provide an optimum natural environment for the sequestration and long-term storage of carbon dioxide (CO2) from the atmosphere, yet are natural sources of greenhouse gases emissions, especially methane. We illustrate that most wetlands, when carbon sequestration is compared to methane emissions, do not have 25 times more CO2 sequestration than methane emissions; therefore, to many landscape managers and non specialists, most wetlands would be considered by some to be sources of climate warming or net radiative forcing. We show by dynamic modeling of carbon flux results from seven detailed studies by us of temperate and tropical wetlands and from 14 other wetland studies by others that methane emissions become unimportant within 300 years compared to carbon sequestration in wetlands. Within that time frame or less, most wetlands become both net carbon and radiative sinks. Furthermore, we estimate that the world’s wetlands, despite being only about 5–8 % of the terrestrial landscape, may currently be net carbon sinks of about 830 Tg/year of carbon with an average of 118 g-C m?2 year?1 of net carbon retention. Most of that carbon retention occurs in tropical/subtropical wetlands. We demonstrate that almost all wetlands are net radiative sinks when balancing carbon sequestration and methane emissions and conclude that wetlands can be created and restored to provide C sequestration and other ecosystem services without great concern of creating net radiative sources on the climate due to methane emissions.  相似文献   

20.
The storm surge from a single hurricane can deposit tens of millions of tons of sediment on coastal wetlands within 100 km of landfall, but the distribution and cumulative amount from hurricanes at a centurial timescale is unknown. Here we use a model calibrated by three storms to estimate the average deposition on the deteriorating Louisiana coast from 1851 to 2008. The total deposition on Louisiana coastal wetlands, exclusive of open water, averages 5.6 million tons of inorganic sediment per year, equivalent to 3.8 % of the modern annual Mississippi River sediment load. Seventy nine percent of this sediment is deposited in a 20 km strip along the Gulf of Mexico (7,400 km2 wetlands) comprised primarily of salt marshes, and this distribution matches spatial and temporal patterns described in modern surficial deposits and sediment cores. We estimate that surge-induced deposition of sediment is attributable to at least 65 % of the inorganic content of the top 24 cm of soils in abandoned delta lobes, and 80 % in the chenier plain. While the most sedimentation from a given event results from the most intense storms, 78 % of the long-term hurricane sedimentation results from moderate storms (930–990 mb) that comprise 51 % of tropical cyclone events. Furthermore, we estimate that the 47 % of storms that make landfall with an internal barometric pressure above 990 mb account for only 7 % of the tropical cyclone sedimentation on wetlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号