首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Lea DW  Pak DK  Spero HJ 《Science (New York, N.Y.)》2000,289(5485):1719-1724
Magnesium/calcium data from planktonic foraminifera in equatorial Pacific sediment cores demonstrate that tropical Pacific sea surface temperatures (SSTs) were 2.8 degrees +/- 0.7 degrees C colder than the present at the last glacial maximum. Glacial-interglacial temperature differences as great as 5 degrees C are observed over the last 450 thousand years. Changes in SST coincide with changes in Antarctic air temperature and precede changes in continental ice volume by about 3 thousand years, suggesting that tropical cooling played a major role in driving ice-age climate. Comparison of SST estimates from eastern and western sites indicates that the equatorial Pacific zonal SST gradient was similar or somewhat larger during glacial episodes. Extraction of a salinity proxy from the magnesium/calcium and oxygen isotope data indicates that transport of water vapor into the western Pacific was enhanced during glacial episodes.  相似文献   

2.
Sea surface temperatures (SSTs) in the cold tongue of the eastern equatorial Pacific exert powerful controls on global atmospheric circulation patterns. We examined climate variability in this region from the Last Glacial Maximum (LGM) to the present, using a SST record reconstructed from magnesium/calcium ratios in foraminifera from sea-floor sediments near the Galápagos Islands. Cold-tongue SST varied coherently with precession-induced changes in seasonality during the past 30,000 years. Observed LGM cooling of just 1.2 degrees C implies a relaxation of tropical temperature gradients, weakened Hadley and Walker circulation, southward shift of the Intertropical Convergence Zone, and a persistent El Ni?o-like pattern in the tropical Pacific. This is contrasted with mid-Holocene cooling suggestive of a La Ni?a-like pattern with enhanced SST gradients and strengthened trade winds. Our results support a potent role for altered tropical Pacific SST gradients in global climate variations.  相似文献   

3.
A rapid increase in greenhouse gas levels is thought to have fueled global warming at the Paleocene-Eocene Thermal Maximum (PETM). Foraminiferal magnesium/calcium ratios indicate that bottom waters warmed by 4 degrees to 5 degrees C, similar to tropical and subtropical surface ocean waters, implying no amplification of warming in high-latitude regions of deep-water formation under ice-free conditions. Intermediate waters warmed before the carbon isotope excursion, in association with downwelling in the North Pacific and reduced Southern Ocean convection, supporting changing circulation as the trigger for methane hydrate release. A switch to deep convection in the North Pacific at the PETM onset could have amplified and sustained warming.  相似文献   

4.
Middle Miocene Southern Ocean cooling and Antarctic cryosphere expansion   总被引:1,自引:0,他引:1  
Magnesium/calcium data from Southern Ocean planktonic foraminifera demonstrate that high-latitude (approximately 55 degrees S) southwest Pacific sea surface temperatures (SSTs) cooled 6 degrees to 7 degrees C during the middle Miocene climate transition (14.2 to 13.8 million years ago). Stepwise surface cooling is paced by eccentricity forcing and precedes Antarctic cryosphere expansion by approximately 60 thousand years, suggesting the involvement of additional feedbacks during this interval of inferred low-atmospheric partial pressure of CO2 (pCO2). Comparing SSTs and global carbon cycling proxies challenges the notion that episodic pCO2 drawdown drove this major Cenozoic climate transition. SST, salinity, and ice-volume trends suggest instead that orbitally paced ocean circulation changes altered meridional heat/vapor transport, triggering ice growth and global cooling.  相似文献   

5.
A high-resolution western tropical Atlantic sea surface temperature (SST) record from the Cariaco Basin on the northern Venezuelan shelf, based on Mg/Ca values in surface-dwelling planktonic foraminifera, reveals that changes in SST over the last glacial termination are synchronous, within +/-30 to +/-90 years, with the Greenland Ice Sheet Project 2 air temperature proxy record and atmospheric methane record. The most prominent deglacial event in the Cariaco record occurred during the Younger Dryas time interval, when SSTs dropped by 3 degrees to 4 degrees C. A rapid southward shift in the atmospheric intertropical convergence zone could account for the synchroneity of tropical temperature, atmospheric methane, and high-latitude changes during the Younger Dryas.  相似文献   

6.
Sea-surface temperature from coral skeletal strontium/calcium ratios   总被引:1,自引:0,他引:1  
Seasonal records of tropical sea-surface temperature (SST) over the past 10(5) years can be recovered from high-precision measurements of coral strontium/calcium ratios with the use of thermal ionization mass spectrometry. The temperature dependence of these ratios was calibrated with corals collected at SST recording stations and by (18)O/(16)O thermometry. The results suggest that mean monthly SST may be determined with an apparent accuracy of better than 0.5 degrees C. Measurements on a fossil coral indicate that 10,200 years ago mean annual SSTs near Vanuatu in the southwestern Pacific Ocean were about 5 degrees C colder than today and that seasonal variations in SST were larger. These data suggest that tropical climate zones were compressed toward the equator during deglaciation.  相似文献   

7.
We present a 271-year record of Sr/Ca variability in a coral from Rarotonga in the South Pacific gyre. Calibration with monthly sea surface temperature (SST) from satellite and ship measurements made in a grid measuring 1 degrees by 1 degrees over the period from 1981 to 1997 indicates that this Sr/Ca record is an excellent proxy for SST. Comparison with SST from ship measurements made since 1950 in a grid measuring 5 degrees by 5 degrees also shows that the Sr/Ca data accurately record decadal changes in SST. The entire Sr/Ca record back to 1726 shows a distinct pattern of decadal variability, with repeated decadal and interdecadal SST regime shifts greater than 0. 75 degrees C. Comparison with decadal climate variability in the North Pacific, as represented by the Pacific Decadal Oscillation index (1900-1997), indicates that several of the largest decadal-scale SST variations at Rarotonga are coherent with SST regime shifts in the North Pacific. This hemispheric symmetry suggests that tropical forcing may be an important factor in at least some of the decadal variability observed in the Pacific Ocean.  相似文献   

8.
Temperatures in tropical regions are estimated to have increased by 3° to 5°C, compared with Late Paleocene values, during the Paleocene-Eocene Thermal Maximum (PETM, 56.3 million years ago) event. We investigated the tropical forest response to this rapid warming by evaluating the palynological record of three stratigraphic sections in eastern Colombia and western Venezuela. We observed a rapid and distinct increase in plant diversity and origination rates, with a set of new taxa, mostly angiosperms, added to the existing stock of low-diversity Paleocene flora. There is no evidence for enhanced aridity in the northern Neotropics. The tropical rainforest was able to persist under elevated temperatures and high levels of atmospheric carbon dioxide, in contrast to speculations that tropical ecosystems were severely compromised by heat stress.  相似文献   

9.
A 194-year annual record of skeletal delta(18)O from a coral growing at Malindi, Kenya, preserves a history of sea surface temperature (SST) change that is coherent with instrumental and proxy records of tropical Pacific climate variability over interannual to decadal periods. This variability is superimposed on a warming of as much as 1.3 degrees C since the early 1800s. These results suggest that the tropical Pacific imparts substantial decadal climate variability to the western Indian Ocean and, by implication, may force decadal variability in other regions with strong El Nino-Southern Oscillation teleconnections.  相似文献   

10.
Rapid global warming of 5 degrees to 10 degrees C during the Paleocene-Eocene Thermal Maximum (PETM) coincided with major turnover in vertebrate faunas, but previous studies have found little floral change. Plant fossils discovered in Wyoming, United States, show that PETM floras were a mixture of native and migrant lineages and that plant range shifts were large and rapid (occurring within 10,000 years). Floral composition and leaf shape and size suggest that climate warmed by approximately 5 degrees C during the PETM and that precipitation was low early in the event and increased later. Floral response to warming and/or increased atmospheric CO2 during the PETM was comparable in rate and magnitude to that seen in postglacial floras and to the predicted effects of anthropogenic carbon release and climate change on future vegetation.  相似文献   

11.
Large-scale convection over the warm tropical oceans provides an important portion of the driving energy for the general circulation of the atmosphere. Analysis of regional associations between ocean temperature, surface wind divergence, and convection produced two important results. First, over broad regions of the Indian and Pacific oceans, sea surface temperatures (SSTs) in excess of 27.5 degrees C are required for large-scale deep convection to occur. However, SSTs above that temperature are not a sufficient condition for convection and further increases in SST appear to have little effect on the intensity of convection. Second, when SSTs are above 27.5 degrees C, surface wind divergence is closely associated with the presence or absence of deep convection. Although this result could have been expected, it was also found that areas of persistent divergent surface flow coincide with regions where convection appears to be consistently suppressed even when SSTs are above 27.5 degrees C. Thus changes in atmospheric stability caused by remotely forced changes in subsidence aloft may play a major role in regulating convection over warm tropical oceans.  相似文献   

12.
Pore fluids from the upper 60 meters of sediment 3000 meters below the surface of the tropical Atlantic indicate that the oxygen isotopic composition (delta18O) of seawater at this site during the last glacial maximum was 0.8 ± 0.1 per mil higher than it is today. Combined with the delta18O change in benthic foraminifera from this region, the elevated ratio indicates that the temperature of deep water in the tropical Atlantic Ocean was 4°C colder during the last glacial maximum. Extrapolation from this site to a global average suggests that the ice volume contribution to the change in delta18O of foraminifera is 1.0 per mil, which partially reconciles the foraminiferal oxygen isotope record of tropical sea surface temperatures with estimates from Barbados corals and terrestrial climate proxies.  相似文献   

13.
Radiocarbon (14C) content of surface waters inferred from a coral record from the Galapagos Islands increased abruptly during the upwelling season (July through September) after the El Nino event of 1976. Sea-surface temperatures (SSTs) associated with the upwelling season also shifted after 1976. The synchroneity of the shift in both 14C and SST implies that the vertical thermal structure of the eastern tropical Pacific changed in 1976. This change may be responsible for the increase in frequency and intensity of El Nino events since 1976.  相似文献   

14.
The tropical ocean plays a major role in global climate. It is therefore crucial to establish the precise phase between tropical and high-latitude climate variability during past abrupt climate events in order to gain insight into the mechanisms of global climate change. Here we present alkenone sea surface temperature (SST) records from the tropical South China Sea that show an abrupt temperature increase of at least 1 degrees C at the end of the last glacial period. Within the recognized dating uncertainties, this SST increase is synchronous with the B?lling warming observed at 14.6 thousand years ago in the Greenland Ice Sheet Project 2 ice core.  相似文献   

15.
Uplifted coral terraces at Huon Peninsula, Papua New Guinea, preserve a record of sea level, sea-surface temperature, and salinity from the penultimate deglaciation. Remnants have been found of a shallow-water reef that formed during a pause, similar to the Younger Dryas, in the penultimate deglaciation at 130,000 +/- 2000 years ago, when sea level was 60 to 80 meters lower than it is today. Porites coral, which grew during this period, has oxygen isotopic values and strontium/calcium ratios that indicate that sea-surface temperatures were much cooler (22 degrees +/- 2 degreesC) than either Last Interglacial or present-day tropical temperatures (29 degrees +/- 1 degreesC). These observations provide further evidence for a major cooling of the equatorial western Pacific followed by an extremely rapid rise in sea level during the latter stages of Termination II.  相似文献   

16.
A tropical Pacific climate state resembling that of a permanent El Ni?o is hypothesized to have ended as a result of a reorganization of the ocean heat budget approximately 3 million years ago, a time when large ice sheets appeared in the high latitudes of the Northern Hemisphere. We report a high-resolution alkenone reconstruction of conditions in the heart of the eastern equatorial Pacific (EEP) cold tongue that reflects the combined influences of changes in the equatorial thermocline, the properties of the thermocline's source waters, atmospheric greenhouse gas content, and orbital variations on sea surface temperature (SST) and biological productivity over the past 5 million years. Our data indicate that the intensification of Northern Hemisphere glaciation approximately 3 million years ago did not interrupt an almost monotonic cooling of the EEP during the Plio-Pleistocene. SST and productivity in the eastern tropical Pacific varied in phase with global ice volume changes at a dominant 41,000-year (obliquity) frequency throughout this time. Changes in the Southern Hemisphere most likely modulated most of the changes observed.  相似文献   

17.
DZ Sun  Z Liu 《Science (New York, N.Y.)》1996,272(5265):1148-1150
The ocean currents connecting the western tropical Pacific Ocean with the eastern tropical Pacific Ocean are driven by surface winds. The surface winds are in turn driven by the sea-surface temperature (SST) differences between these two regions. This dynamic coupling between the atmosphere and ocean may limit the SST in the tropical Pacific Ocean to below 305 kelvin even in the absence of cloud feedbacks.  相似文献   

18.
Factors governing tropospheric mean temperature   总被引:3,自引:0,他引:3  
Two possible factors, which in addition to Pacific sea surface temperatures might affect the mean temperatures of the tropical troposphere are Atlantic sea surface temperatures and volcanic aerosol. The Mt. Agung eruption in March 1963 produced a decrease of about 0.5 degrees C in the mean temperature of the tropical troposphere. The contribution of the Atlantic is not significant.  相似文献   

19.
Super ENSO and global climate oscillations at millennial time scales   总被引:1,自引:0,他引:1  
The late Pleistocene history of seawater temperature and salinity variability in the western tropical Pacific warm pool is reconstructed from oxygen isotope (delta18O) and magnesium/calcium composition of planktonic foraminifera. Differentiating the calcite delta18O record into components of temperature and local water delta18O reveals a dominant salinity signal that varied in accord with Dansgaard/Oeschger cycles over Greenland. Salinities were higher at times of high-latitude cooling and were lower during interstadials. The pattern and magnitude of the salinity variations imply shifts in the tropical Pacific ocean/atmosphere system analogous to modern El Ni?o-Southern Oscillation (ENSO). El Ni?o conditions correlate with stadials at high latitudes, whereas La Ni?a conditions correlate with interstadials. Millennial-scale shifts in atmospheric convection away from the western tropical Pacific may explain many paleo-observations, including lower atmospheric CO2, N2O, and CH4 during stadials and patterns of extratropical ocean variability that have tropical source functions that are negatively correlated with El Ni?o.  相似文献   

20.
A sea surface temperature (SST) record based on planktonic foraminiferal magnesium/calcium ratios from a site in the western equatorial Pacific warm pool reveals that glacial-interglacial oscillations in SST shifted from a period of 41,000 to 100,000 years at the mid-Pleistocene transition, 950,000 years before the present. SST changes at both periodicities were synchronous with eastern Pacific cold-tongue SSTs but preceded changes in continental ice volume. The timing and nature of tropical Pacific SST changes over the mid-Pleistocene transition implicate a shift in the periodicity of radiative forcing by atmospheric carbon dioxide as the cause of the switch in climate periodicities at this time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号