首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
云南松天然林的种内和种间竞争   总被引:3,自引:2,他引:1       下载免费PDF全文
[目的]通过对云南松天然林内云南松种内和种间竞争强度的测定,分析揭示竞争强度在云南松群落内的动态变化规律及云南松种群的生态适应机制.[方法]在云龙天池自然保护区云南松天然林设置样方进行群落学调查的基础上,采用Hegyi单木竞争指数模型,以云南松为对象木,定量分析林分、对象木、竞争木的竞争强度,采用回归分析方法建立对象木胸径与林分、种内、种间竞争强度的函数模型.[结果]天池自然保护区云南松天然林的种内和种间竞争强度分别为80.16%和19.84%;云南松种内与主要伴生树种种间竞争强度大小顺序为:云南松种内> 水红木> 华山松> 米饭花> 大白花杜鹃> 槲栎> 马缨花> 旱冬瓜;云南松与整个林分、伴生树种以及种内的竞争强度与对象木胸径之间存在显著负相关关系,对象木胸径越大,其竞争能力越强.[结论]云南松天然林内云南松的竞争压力主要来自种内竞争;林分种内及种间竞争强度与对象木胸径间存在CI=AD-B形式的幂函数关系;胸径20 cm以上云南松的竞争压力变化趋于平缓,胸径20 cm以下的云南松中、幼林是抚育管理的重点林分.  相似文献   

2.
调查分析了上海外环绿带植物群落的邻体干扰指数,结果表明:外环林带林分内,植物个体大小与基株的胸径、邻体胸径、邻体距离、邻体冠幅相关。群落内个体之间存在着强烈的种内竞争,且种内、种间及与整个林分的邻体干扰指数强度都随着基株木个体的增大而下降。提出了应依据邻体指数对植物生长空间的最适宜范围、邻体干扰程度等进行量化,选出各类植物群落中邻体间的较适宜的生长空间,并与群落中单位面积株数值与群落冠幅总面积等密度因子结合,为进行必要的经营措施提供基础。  相似文献   

3.
红花尔基沙地樟子松天然林枯立木特征分析   总被引:1,自引:0,他引:1       下载免费PDF全文
[目的]了解沙地樟子松天然纯林中枯立木的数量及空间结构特征,探究枯立木形成的原因,为樟子松林的保护和经营提供依据。[方法]在沙地樟子松天然纯林中设置2块1 hm~2的大样地,用全站仪对样地中所有胸径大于5 cm的立木进行定位并进行全面调查;对调查样地的基本特征,枯立木的数量特征及径级分布进行了分析,提出了用于表达林分中枯立木微环境的活立木比的概念,并采用林分空间结构参数一元分布和二元分布分析方法,对枯立木与其最近4株相邻木的关系进行分析。[结果]2块不同密度的樟子松天然纯林下更新幼苗和枯立木数量相差较大,密度较小(样地1)的样地更新幼苗和枯立木较少,而密度较大的样地(样地2)中枯立木达到200棵,林下更新幼苗数量达到15 280株·hm~(-2);樟子松天然纯林样地内枯立木主要以小径级木为主,胸径集中在11 cm以下;样地1枯立木径级连续分布,幅度较窄;样地2中的枯立木径级幅度较宽,但在20 22 cm缺刻,有2株大于23 cm的枯立木;2块样地中枯立木的分布格局均为随机分布,样地1中枯立木周围的4株相邻立木大多为活立木,且胸径较枯立木大;样地2中,只有一半的枯立木周围的最近4株立木为活立木,且有三分之一以上的枯立木胸径不是最小的,枯立木有连续分布的现象。2块样地中枯立木的角尺度-大小比数二元分布特征的差异不明显,而角尺度-活立木比二元分布特征和大小比数-活立木比二元分布特征差异明显,样地1中枯立木的最近4株随机分布于其周围的相邻木为活立木且胸径大于枯立木的比例明显高于样地2,而枯立木最近4株随机分布于其周围的相邻木有枯立木的比例明显小于样地2。[结论]樟子松天然纯林枯立木以小径级林木为主,枯立木的数量与林分密度相关,林木竞争是林木死亡的主要原因,密度过大也会产生病虫害,因此,对天然樟子松纯林要进行适度经营,保持合理密度。  相似文献   

4.
邻体干扰指数模型的改进及其应用研究   总被引:10,自引:0,他引:10  
洪伟  吴承祯 《林业科学》2001,37(Z1):1-5
在前人研究工作基础上提出邻体干扰指数的改进模型H.,以马尾松人工林邻体干扰为对象探讨了改进模型的具体应用,并与前人提出的主要模型进行了比较分析.实例应用结果表明,改进的指数模型能够解释马尾松人工林生长速度变异的83%左右,因此可以说改进模型优于原先的指数模型,具有更大的适用性和灵活性,可在植物邻体干扰研究中应用.马尾松人工林邻体干扰的灵敏度分析表明,基株大小对邻体干扰指数的影响较邻体大小和基株到邻体之间距离更灵敏,是决定邻体干扰的主要因素.  相似文献   

5.
以藏东南嘎朗国家湿地公园内39株对象木及210株竞争木为研究对象,基于野外实地调查数据,利用Hegyi的单木竞争指数模型计算华山松群落内物种的竞争指数,并采用回归分析的方法建立对象木胸径与整个林分、伴生树种、种内竞争强度的函数模型。结果表明:1)华山松胸径与树高存在显著的幂函数关系;2)华山松的种内和种间竞争指数分别占总竞争指数的54.68%和45.32%,以种内竞争为主;3)华山松种间竞争树种的顺序为川滇高山栎林芝云杉高山松;4)华山松胸径与整个林分、伴生树种、种内的竞争指数呈显著的负相关关系,所得模型能有效的预测华山松种内和种间的竞争强度;5)华山松种群属于增长型,需加强保护成熟林以防出现断层。  相似文献   

6.
马尾松+红锥、杂交松+红锥混交幼林种间关系   总被引:1,自引:0,他引:1  
采用Hegyi单木竞争指数模型,对6年生1∶1同龄混交马尾松+红锥、杂交松+红锥混交林进行了种间关系研究,结果表明:马尾松、杂交松对象木所受到的平均竞争强度随胸径增大而减小,混交林分种间竞争强度大于种内,杂交松混交林分种内和种间竞争强度分别占总竞争强度的49.5%和50.5%,马尾松混交林分种内和种间竞争强度分别占总竞争强度的48.1%和51.9%。杂交松、马尾松对象木胸径大小与竞争指数之间呈三次多项式关系。  相似文献   

7.
不同间伐强度对云南松人工林生长影响的研究   总被引:1,自引:0,他引:1  
在云南省石屏牛达林场小白得林区,对造林密度为4 464株/hm2的14年生云南松人工林,设置了伐除林分中林木株数15%、25%、35%、50%的4个间伐强度试验,以研究不同间伐强度对云南松人工林生长的影响。通过对不同间伐强度间伐3年后林木的胸径、树高生长量和林分单株材积以及单位面积活立木蓄积生长量的测试分析,提出该云南松人工林幼林期最佳的间伐强度为35%。  相似文献   

8.
采用Hegyi单木竞争指数模型对次生林台湾相思种内和种间竞争强度进行了定量分析。结果表明:竞争强度与对象木胸径服从指数函数关系,台湾相思胸径小于26cm时应加强对其保护,采取人工抚育措施促进生长;台湾相思胸径达到26cm时竞争强度趋于稳定。这可为台湾相思次生林的抚育间伐提供一定的理论参考。  相似文献   

9.
以2006年和2015年洱源县森林资源二类调查数据为材料,统计分析黑虎山自然保护区森林资源现状特征,得出以下结论:保护区森林覆盖率近10年来提高了3.0%,达89.3%;森林资源以天然林为主,占比高达89.5%,其中云南松占60.0%左右,栎类占18.8%;生态公益林比例较高,占林地面积的78.8%,其中国家级公益林占75.2%;保护区主要乔木和灌木种类有13种;云南松主要以中龄林和近熟林为主,栎类以幼龄林为主,活立木总蓄积量为367 170 m3。建议与"社区参与"的保护管理原则相结合,提高社区居民的保护意识,加强监管部门的管理力度。  相似文献   

10.
基于湖南省平江县芦头林场的12块青冈栎次生林固定样地数据,采用固定半径法、树冠重叠法以及单木影响圈分析样地内青冈栎树种的竞争状况,同时依据对象木与竞争木的树高比值对Hegyi竞争指数进行改进。结果表明:青冈栎树种的竞争影响范围随着直径的增加而增大,说明林木直径越大,竞争越激烈;青冈栎自由树冠幅模型为:CW=0.1773+0.2799×D,直径与冠幅大小呈正相关;三类竞争指标的相关性大小比较为Hegyi改进模型Bella竞争指数Hegyi竞争指数,说明综合考虑树木胸径比值、树高比值以及树木距离的竞争指标能更加准确地反映青冈栎次生林的竞争状况。  相似文献   

11.
Fire hazard reduction treatments are commonly applied to mixed-species coniferous forests in western Montana, USA, to modify fuels structures and alter the competitive environments of individual trees. An improved understanding of how competition can be measured and how it conditions individual tree growth is needed for projecting the development of these forests, with and without treatment. Numerous studies have evaluated how competition affects tree growth and many indices have been developed to quantify the competition an individual tree experiences. These studies suggest that no single competition index or a single class of indices is universally superior; indices perform differently according to forest type and forest conditions. We chose several widely used distance-independent and distance-dependent competition indices, and also derived anisotropic distance-dependent indices from estimates of light interception by tree crowns. We evaluated the effectiveness of these competition measures for predicting basal area increment (BAI) of Pinus ponderosa, Pseudotsuga menziesii, and Larix occidentalis in western Montana. The best distance-dependent competition indices explained a larger proportion of growth variation than the best distance-independent indices (64% vs. 56%). This result indicates that competition is an important growth determinant in these forests and that competition varies locally, with variable tree densities and relatively complex stand structures creating heterogeneous neighborhood conditions. Competition indices derived from light interception models were only weakly correlated with other indices and performed poorly in terms of predicting tree growth. This result accords with previous observations that competition for light is not the primarily growth limitation for trees in the semi-arid conditions of western Montana. More sophisticated light availability models could be used to better assess variability in light interception and its marginal contribution to predictive accuracy of radial tree growth. Diameter and distance-dependent BAI models were developed for growth prediction at the species level and for all species combined.  相似文献   

12.
【目的】以漳江口红树林为研究对象,利用泰森多边形和四株树法划分天然红树林林木平面空间分布结构,确定对象木的最邻近竞争木,计算林分空间结构指数,对比分析两种方法的异同,探讨泰森多边形法应用红树林林分空间结构量化的适用性。【方法】设置20 m×20 m样地,每木调查时用钢尺测量横纵坐标,在坐标纸上标记调查木的位置和编号,同时在调查表上记录树种、树高、胸径等林分因子。利用ArcGIS软件,将外业调查的坐标纸上的样木位置图矢量化形成样木点图层,将林分因子调查表导入样木属性表,并由调查木的点位置生成泰森多边形。用VBA编程来计算林分空间结构指数:混交度、大小比数、角尺度。【结果】在福建漳江口红树林国家自然保护区选择样地进行试验,对比分析基于泰森多边形法与传统的四株树法的计算结果,结果表明:1)基于泰森多边形法确定的林分空间结构单元由1株对象木和3~12株竞争木构成,平均值为6株。2)两种方法计算的混交度的相关系数为0.828,大小比数的相关系数为0.881,角尺度的相关系数为0.225。这两种方法计算的混交度和大小比数具有较高的相关性和一致性,而角尺度,两者差异较大。3)基于泰森多边形法与四株树法的不同树种的混交度和大小比数平均值非常接近,混交度最大差0.05,大小比数最大差0.02;角尺度差异较大,最大差值达0.11;泰森多边形法计算的混交度比四株树法的略大一些,而大小比数和角尺度则略小一些。【结论】无论从单株还是从整个调查林分上看,基于泰森多边形法计算的混交度和大小比数与传统四株树法的计算结果差异小,两种方法有较高的相关性和一致性,但其中泰森多边形法与四株树法相比,混交度略大,大小比数略小;而对于角尺度,两种方法的计算结果有较大的差异,并且泰森多边形法的计算结果值小于四株树法。这种差异的根源在于泰森多边形法确定的竞争木数量波动。泰森多边形法通过最邻近原则将平面空间进行划分,不重不漏,对于量化表达林木在空间上的竞争关系具有合理性和有效性,同时外业调查时不需要判断对象木的最邻近竞争木以及距离量算和角度测量,大幅减轻外业调查工作量,适用于天然红树林林分空间结构研究。  相似文献   

13.
天然红松阔叶林不同径阶林木的空间分布特征分析   总被引:18,自引:0,他引:18       下载免费PDF全文
为进一步揭示天然红松阔叶混交林的空间结构规律,为合理经营天然红松阔叶林提供借鉴,本研究在吉林省蛟河林业实验区大坡经营区设立面积为1 hm2的样地,利用全站仪对高度1.3 m以上的林木进行每木调查,然后利用角尺度、大小比数和混交度等3种结构参数,分析了样地内不同径阶林木的空间分布特征.结果表明:天然红松阔叶林中小径阶(胸径≤10 cm)林木占总株数的59.4%,其周围林木呈随机分布,与林分的总体分布格局一致.大径木的平均角尺度呈急剧下降的趋势,说明其相邻木挤在一起的现象大幅度减少,相邻树木在其四周趋于均匀分布.林木大小比数随胸径的增大呈迅速减小的趋势,小径木多明显受压,中径木处于中庸状态或亚优势地位,大径木全部处于优势地位.林木混交度随着胸径的增大呈逐渐递增的趋势,竞争压力逐步减小,林木空间分布特征渐趋优化.  相似文献   

14.
A series of conventional distance-independent and distance-dependent competition indices, a highly flexible distance-dependent crowding index, and two light resource estimation indices were compared to predict individual tree diameter growth of five species of mature trees from natural-origin boreal mixed forests. The crowding index was the superior index for most species and ecosites. However, distance-independent indices, such as basal area of competing trees, were also effective. Distance-dependent light estimation indices, which estimate the fraction of seasonal photosynthetically-active radiation available to each tree, ranked intermediate to low. Determining separate competition indices for each competitor species accounted for more variation than ignoring species or classifying by ecological groups. Species’ competitive ability ranked (most competitive to least): paper birch ≈ white spruce ≈> trembling aspen > lodgepole pine > balsam poplar. Stratification by ecosite further improved model performance. However, the overall impact of competition on mature trees in these forests appears to be small.  相似文献   

15.
Understanding forest dynamics and stand structures is crucial for predicting forest succession. However, many forests have been altered due to century-long land-use practices, which complicates the reconstruction of past and current successional trajectories. For a better understanding of successional processes, we suggest studying the intra- and interspecific competition among single trees across time. We introduce a tree-ring based competition index to reconstruct the competitive dynamics of individual trees over time. This new retrospective dynamic competition index combines a temporal and a spatial component by calculating the yearly ratio between the basal area increments (bai) of the neighbouring trees and the subject tree. The new index is applied to mixed Scots pine (Pinus sylvestris L.) and pubescent oak (Quercus pubescens Willd.) stands in the inner-Alpine dry-valley Valais, for which a change in species composition is hypothesised. The aim is to analyse current stand structures in terms of recent changes in the competitive interactions at the single tree level and to relate these competitive dynamics to land-use change and increasing drought due to climate change. On five plots, the positions of 456 trees were recorded and increment cores were taken to derive bai data. The individual dynamic competition index curves were aggregated in clusters, which define typical patterns of competitive dynamics in both tree species. A large percentage of the trees (87% in oak, 70% in pine) were clustered into a group of trees with constant competition at a relatively low level. However, a smaller group of pines (20%) had recently faced increasing competition. In addition, stand structure analyses indicated a change towards a higher proportion of oak. This change in the competitive ability between oak and pine was found to be related to drought, in that oak had a competitive advantage in dry years. Furthermore, the high proportion of dead branches in pines with decreasing competitive abilities indicated increasing competition for light as a consequence of natural development towards a later successional stage that favours the more shade-tolerant oak. The new retrospective dynamic competition index proved to be promising in studying forest succession. The tree-ring based method allows us to identify changes in the competitive ability of single trees with a high temporal resolution and without repeated assessments.  相似文献   

16.
以整合的基径代替胸径,采用Hegyi单木竞争指数模型对灌木泰山柳进行种内与种间的竞争关系分析。结果表明:泰山柳的种内、种间竞争强度分别占总竞争强度(86.11)的35.01%、64.99%,说明泰山柳的竞争压力主要来自种间。随着泰山柳基径的增加,种内、种间竞争强度均逐渐降低。对泰山柳产生竞争影响的树木共9种,其竞争强度为泰山柳>花楸树>紫椴>油松>连翘>湖北海棠>天目琼花>金花忍冬>巧玲花。整个林分和伴生树种竞争指数都与对象木基径近似地服从幂函数关系(I C=AB-K),根据函数模型可以看出,当泰山柳基径达到10 cm后,竞争强度趋于平稳,而基径小于10 cm的泰山柳竞争强度激烈,可以清除其周围部分竞争木,给予足够的生存空间,从而达到保护的目的。  相似文献   

17.
In Europe, the English yew species (Taxus baccata L.) is endangered. Intensive human land-use, including forest management, has caused a decrease of the yew populations all over Europe. In Austria, gene conservation forests are used for the in situ conservation of populations of this rare tree species by silvicultural treatments. In order to improve the conservation management in these gene conservation forests, this study addresses the relation between competition and viability of yew populations through the use of structural diversity indices. The structural indices, which include mingling, tree–tree distance, diameter, and tree height differentiation, were determined for a structural group of four trees as well as the neighbouring trees of the male and female yews at the monitoring plots on a regular grid in three gene conservation forests. Although the three study sites provided quite different environmental conditions for English yew, the vitality of each individual yew was influenced by the inter-specific competition of the neighbouring tree species at all sites. Low vitality was associated with a small mean distance to neighbours and large tree height differentiation. In conclusion, we suggest that a combination of different structural indicators is needed for an integrative assessment of conservation status in the gene conservation forests. This would help improve the evaluation of the impact management has on yew population viability.  相似文献   

18.
De Luis  M.  Raventós  J.  Cortina  J.  Moro  M.J.  Bellot  J. 《New Forests》1998,15(3):223-242
The relationship between tree growth and competition may depend on some subjective choices that are commonly left to the researcher. Among these are the neighborhood radius, the number of years of growth that are integrated, and tree age. We have evaluated the importance of these factors when relating growth and competition in a forest stand with contrasted densities of the dominant tree species (Pinus nigra) and understory shrub species (Adenocarpus decorticans). Previous to this evaluation we performed a randomization test to assess the relationship between tree growth and neighbors. By using Daniels index of competition we found that the use of a fixed neighborhood radius underestimated the importance of tree competition. The coefficient of determination (r2) of the relationship between tree growth and Daniels index increased asymptotically with the number of years considered. Five years of growth gave high r2 independently of the density of trees and shrubs. The intensity of competition was weakly affected by the characteristics of the plot (tree and shrub densities), and did not change with time. In contrast, the potential growth at equal competition – as represented by constant a in the allometric model – changed with time suggesting a gradual decrease in potential tree growth in the plots with higher tree density, and a gradual increase in those plots with high density of shrubs. These results may reflect tree canopy closure and the senescence of Adenocarpus decorticans. A method is suggested to select optimum neighborhood radius and growing period for the calculation of competition indices. By applying this method we were able to explain as much as 79–84% of the variability in tree growth of this stand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号