首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One hundred and eighty-two bread wheat cultivars developed in India were characterized for low molecular weight (LMW) glutenins using SDS-PAGE and allele-specific polymerase chain reaction (PCR) to assess allelic diversity encoded by Glu-3 loci, as well as their utility for correctly identifying different alleles. SDS-PAGE indicated Glu-A3c is present in 64.6% of the cultivars, Glu-A3b in 13.8%, Glu-A3d in 12.7% and Glu-A3e/f in 8.8%. Seven types of alleles were present at the Glu-B3 locus: Glu-B3b (29.3%), Glu-B3g (27.0%), Glu-B3h (13.8%), Glu-B3i (16.1%), Glu-B3j (12.1%), Glu-B3c (0.6%) and Glu-B3d (1.1%). SDS-PAGE found three types of Glu-D3 alleles: Glu-D3a (30.2%), Glu-D3b (67.1%) and Glu-D3c (2.7%). However, PCR found two different alleles in cultivars classified as carrying Glu-D3a and three alleles in those identified as carrying Glu-D3b cultivars, indicating a more complex nature of the Glu-D3 locus. In conclusion, the data found greater consistency between the SDS-PAGE and PCR amplification patterns of alleles such as Glu-A3c, Glu-A3d, Glu-B3g, Glu-B3h and Glu-B3i, and less consistency between those same patterns in the Glu-A3b, Glu-A3e/f and Glu-B3b alleles. More studies are needed in order to achieve unambiguous identification of the Glu-3 alleles and thereby allow their greater utility in germplasm evaluation and breeding.  相似文献   

2.
The Glu-B1, Glu-D1 and Glu-B3 encoded glutenin subunit compositions of a population of synthetic hexaploid wheats (AABBDD, 2n=6x=42), which was random for flour protein (FP), SDS-sedimentation (SDSS), Alveograph strength (W), the tenacity/extensibility (P/G) ratio and bread loaf volume (LV) were examined in this study. The synthetics were produced from various crosses involving several Triticum lurgidum cultivars and Triticum lauschii (coss.) Schmal accessions. The Glu-A1 null allele as well as three Glu-B1 (subunits 7 + 8, 6 + 8 and 20), 13 Glu-D1 and two Glu-B3 (LMW-1 and LMW-2) allelic variants were present in the synthetic population. Thirty-six different glutenin subunit combinations, including the Glu-B1, Glu-D1 and Glu-B3 encoded alleles, were observed. The synthetic hexaploids showed large variations for all quality parameters evaluated. All quality characteristics except one (P/G ratio, which showed no association with allelic variations at Glu-B3) were influenced by allelic variations at the Glu-B1 and Glu-B3 loci; subunits 6 + 8 and 7 + 8 showed significantly better quality effects than subunit 20. Low Mr glutenin subunits LMW-1 and LMW-2 showed both negative and positive quality effects. The Glu-D1 locus of T. tauschii contributed various alleles not found in bread wheat. The influence of new Glu-D1 alleles on the bread-making quality characteristics of the synthetic wheats could not be established, partly because there was a limited frequency of some of the alleles in the population, and partly because some synthetics, having a common Glu-D1 allele, showed quality differences associated with allelic variation at Glu-B1 and/or Glu-B3. Differential quality effects could be observed, however, among some Glu-D1 alleles. Synthetics derived from a common durum wheat source showed better overall quality characteristics and bread loaf volume when they possessed subunits 5 + 12 or 1·5 + 10 than when they had any other Glu-D1 encoded glutenin subunit.  相似文献   

3.
为给我国优质小麦品种的选育和改良提供科学依据,应用SDS-PAGE方法对我国235份推广品种和高代品系的HMW-GS和LMW-GS组成与分布进行了分析。结果表明,HMW-GS和LMW-GS分别具有39和40种带型组合;5个位点共发现34个等位基因。Glu-A1、Glu-B1和Glu-D1分别有3、8和6个变异位点;亚基1、Null、7+9、5+10和2+12是主要的HMW-GS类型,频率分别为46.2%、46.2%、44.5%、47.0%和48.3%。Glu-A3和Glu-B3位点(本文不涉及Glu-D3)分别具有6和11个变异位点。Glu-A3c、Glu-A3d、Glu-B3e和Glu-B3j是主要的LMW-GS类型,频率分别为55.1%、21.6%、28%和28.8%。本研究还发现,在品种Z75和绵阳96-319的Glu-D1位点上,亚基组合形式为5+12;在品种周92034的Glu-D1位点,亚基组合形式为2+10。虽然这两种组合形式在本研究中出现的频率很低,但这两种亚基组合在以前的研究中很少出现。  相似文献   

4.
新疆小麦品种Glu-A3和Glu-B3位点等位变异的分布   总被引:1,自引:1,他引:1  
为给新疆小麦品质育种提供理论依据,利用Glu-A3、Glu-B3位点上的17个STS标记检测了185份新疆冬、春小麦品种Glu-A3和Glu-B3位点的等位变异。结果表明,新疆小麦品种以Glu-A3c、Glu-B3a和Glu-B3j亚基为主,其分布频率分别为64.86%、22.70%和17.84%。新疆冬、春小麦品种在Glu-A3位点上均以Glu-A3c亚基为主,分布频率分别为63.30%和67.11%;在Glu-B3位点上,新疆冬、春小麦品种分别以Glu-B3j和Glu-B3a为主,分布频率分别为22.02%和26.32%。新疆冬、春小麦农家品种亚基类型较少,冬小麦农家品种仅有5种类型(以Glu-A3c和Glu-B3i为主),春小麦农家品种有10种类型(以Glu-A3c和Glu-B3d为主)。引进品种和自育品种亚基类型丰富,冬小麦引进品种以Glu-A3c和Glu-B3i为主,分布频率为12.84%和6.42%;春小麦引进品种以Glu-A3c和Glu-B3j为主,分布频率为17.11%和6.58%。冬小麦自育品种以Glu-A3c和Glu-B3j亚基类型为主,分布频率为45.87%和18.35%;春小麦自育品种以Glu-A3c和Glu-B3a亚基类型为主,分布频率为36.84%和18.42%。  相似文献   

5.
High-molecular-weight glutenin (HMW-GS) and low-molecular-weight glutenin (LMW-GS) subunits play an important role in determining wheat quality. To clarify the contribution of each subunit/allele to processing quality, 25 near-isogenic lines with different HMW-GS and LMW-GS compositions grown at two locations during the 2010 cropping season were used to investigate the effects of allelic variation on milling parameters, mixograph properties, raw white Chinese noodle (RWCN) and northern style Chinese steamed bread (NSCSB) qualities. The results showed that Glu-B1 and Glu-B3 made a large contribution to determining mixograph properties and processing quality, respectively. Subunit pairs 17 + 18 and 5 + 10, and alleles Glu-A3b, Glu-A3d, Glu-B3g and Glu-D3f made significant contributions to mixograph properties and no significant difference was detected on most parameters of RWCN and NSCSB for the allelic variation of HMW-GS and LMW-GS. The allelic interactions among glutenin loci had significant effects on wheat quality. The line with 1, 17 + 18, 2 + 12, Glu-A3c, Glu-B3b, Glu-D3c associated with superior mixograph properties, the line with 1, 7 + 9, 2 + 12, Glu-A3c, Glu-B3d, Glu-D3c had superior viscoelasticity of RWCN, and the line with 1, 7 + 9, 2 + 12, Glu-A3e, Glu-B3b, Glu-D3c had the highest total score of NSCSB. These results provide useful information for genetic improvement of the qualities of traditional Chinese wheat products.  相似文献   

6.
The glutenin loci of wheat (Triticum aestivum L.) are important determinants of bread-making quality, although the effects of alleles at those loci are incompletely understood. We applied an association analysis method to assess the effects of glutenin alleles and 1RS wheat–rye (Secale cereale L.) translocations on dough-mixing properties in 96 wheat cultivars and advanced lines grown at three Colorado locations while accounting for population structure and relatedness of individuals in the population. The results indicated that (1) in the majority of cases, controlling relatedness of individuals reduced the significance of associations between glutenin loci and Mixograph traits; (2) the Glu-D1 and Glu-B3 loci and 1RS translocations had greater impacts on dough-mixing properties compared to other glutenin loci; (3) Glu-B1w, Glu-D1d, and Glu-B3b were consistently associated with greater (more favorable) Mixograph peak time (MPT) than other alleles at the respective loci, whereas Glu-B1e, Glu-D1a, and Glu-B3c were associated with reduced MPT; (4) the 1BL.1RS translocation was associated with a decrease in Mixograph properties. Our results indicate that taking multiple-level relatedness of individuals into account can improve the results of association analysis for wheat-quality traits.  相似文献   

7.
Low-molecular-weight glutenin subunits (LMW-GS) are a class of seed storage proteins that play a major role in the determination of the viscoelastic properties of wheat dough. The LMW-GSs are encoded by multi-gene families at the Glu-A3, Glu-B3 and Glu-D3 loci, with more than 15 genes present in most bread wheat varieties. However, the genic profile associated with different alleles has not been clearly defined. Here, the LMW-GSs in a set of standard varieties were analyzed using molecular markers. In most cases, each Glu-3 allele was represented by a specific haplotype; however, some alleles were undistinguishable. The Glu-A3e and Glu-A3g alleles showed an identical marker haplotype, as did the alleles Glu-B3c and Glu-B3d, and Glu-B3f and Glu-B3ab. In contrast, two haplotypes among varieties designated Glu-D3c were differentiated. The marker profiles present at the Glu-D3 locus exhibited less variation compared to the genes at the Glu-A3 and Glu-B3 loci. Results show the potential of the LMW-GS gene marker system in the characterization of the LMW-GS alleles present in specific bread wheat varieties, and its reconciliation with protein-based nomenclature. This approach will advance the understanding of the contribution of each of the LMW-GS gene alleles in the control of the end-use quality.  相似文献   

8.
Thirty-seven varieties of a Mediterranean durum wheat collection grown in Tunisia and Spain were analysed for their allelic composition in prolamins, as well as their protein concentration, sodium dodecyl sulphate sedimentation (SDSS) test and mixograph parameters. Genotype was a greater source of variation in all measurements than locality. Uncommon high and low molecular glutenin subunits (HMW-GS and LMW-GS) were found (V and 2•• subunits at Glu-A1, 13 + 16 at Glu-B1, 5* subunit and ax allele at Glu-A3). The rare combinations 2 + 4+14 + 18 and 8 + 9+13 + 16+18 subunits at the Glu-B3 locus were found. Glu-A3ax had a positive influence on SDSS and mixograph parameters. Of all the prolamins, those that have the B-LMW-GS composition aaa (for Glu-A3, Glu-B3 and Glu-B2 loci, respectively), when associated with the Glu-A1c and Glu-B1d gave the best semolina quality. By contrast, semolina quality is poor when this same composition is associated with the Glu-A1c and Glu-B1e and even poorer when associated with the Glu-A1c and Glu-B1f. In addition, the cultivars with B-LMW-GS allelic composition aab (for Glu-A3, Glu-B3 and Glu-B2 loci, respectively), when associated with the Glu-A1c and Glu-B1d, gave high quality, whereas when associated with the Glu-A1c and Glu-B1e or with Glu-A1o and Glu-B1f, the quality was very poor.  相似文献   

9.
黄淮麦区小麦品种高分子量谷蛋白亚基组成分析   总被引:4,自引:1,他引:3  
对黄淮麦区育成推广品种(59个)、2003~2004年度国家黄淮南片和江苏省区试参试品种(42个)、徐州农科所育成的高代品系以及一些育种亲本材料,共计309个品种(材料)的高分子量谷蛋白亚基组成进行了分析.结果共发现了32个亚基组成类型和16个等位基因变异.在Glu-A1位点发现了Glu-A1a、Glu-A1b、Glu-A1c 3个等位基因;在Glu-B1位点发现了Glu-B1a、Glu-B1b、Glu-B1c、Glu-B1d、Glu-B1e、Glu-B1f、Glu-B1g、Glu-B1h、Glu-B1i、Glu-B1k共10个等位基因;在Glu-D1位点发现了Glu-D1a、Glu-D1b、Glu-D1d 3个等位基因.以Glu-B1位点的变异最为丰富.在这3个位点上分别以等位基因Glu-A1c(null)、Glu-B1b(7 8)和Glu-D1a(2 12)为主,其出现频率分别为58.58%、58.90%和77.99%.高分子量谷蛋白亚基组成以(null,7 8,2 12)和(1,7 8,2 12)为主,分别占所有品种的32.69%和16.18%.在育成推广品种和参试品种中,等位基因变异均为11个;而亚基组成类型则分别为16个和13个.优质高分子量谷蛋白亚基5 10在所有材料、59个已审定推广品种和42个参试品种中的出现频率分别为20.4%、27.1%%和21.4%,频率均较低.这表明新近育成的品种在优质亚基的构成上并未取得较大进展,优质强筋小麦的品质育种还有较大的发展空间.试验结果也表明,黄淮冬麦区小麦品种的高分子量谷蛋白亚基组成类型和等位基因变异较为丰富,但其变异分布很不均匀,存在明显的优势亚基和组成类型.  相似文献   

10.
Low-molecular weight glutenin subunits (LWM-GS) are important components of wheat (Triticum aestivum L.) gluten, with important effects on end-use quality. The LMW-GS are encoded at Glu-3 loci (Glu-A3, Glu-B3 and Glu-D3, on the short arms of chromosomes 1A, 1B and 1D), each of which exhibits extensive allelic variation. Each locus encodes numerous LMW-GS, some of which have similar electrophoretic mobilities, making it difficult to distinguish among Glu-3 loci. Alleles of the Glu-D3 locus of bread wheat are considered the most problematic to assign. To date, six Glu-D3 alleles, designated a, b, c, d, e and f, have been reported. We report five previously undescribed alleles (g, h, i, j and k), and describe a method for characterizing them using a combination of SDS-PAGE and multiplexed PCR-based DNA markers. This method could be used for accurate identification of Glu-D3 alleles, permitting the estimation of the effects of these alleles on end-use quality and the selection of desirable alleles and allelic combinations in wheat breeding.  相似文献   

11.
In this report, we present a set of 104 ILs with 18 alleles for five glutenin loci. They were developed from crossing and backcrossing 64 varieties as donor parents to Yanzhan 1 as recurrent parent. The effects of the 18 alleles on nine dough quality parameters were evaluated in a similar background using these lines. The results showed that Glu-A1a produced the highest SDS-sedimentation volume (Ssd), midline time x=8 width (MTxW), mixing tolerance (MT) and the lowest weakening slope (WS). At the Glu-B1 locus, Glu-B1f produced the highest values for all quality parameters but WS. At the Glu-D1 locus, Glu-D1d was the best for Ssd, grain hardness (GH), midline peak width (MPW), MTxW and MT. The positive effects of Glu-B1f on GH and Glu-B3b on Ssd were mainly from the effect of GPC. Overall, 5 interactive loci and 13 interactive alleles were found to be significant. No negative interaction between high quality glutenin alleles was detected. The preferred allele combinations for breeding were recommended based on the additive and interactive effects. Our results suggest that the ILs with multiple alleles are ideal genomic stocks for evaluating the effects of alleles on some traits and for pyramiding favorable alleles in breeding wheat varieties.  相似文献   

12.
为探究安徽小麦品种高分子量麦谷蛋白亚基(HMW-GS)组成及品质性状,对97份安徽省主要种植的小麦品种进行了HMW-GS组成及品质性状分析。结果表明,供试材料中共检测出10种HMW-GS亚基类型和19种亚基组合,在 Glu-A1位点检测出3种亚基类型,以1亚基(57.73%)和Null亚基 (40.21%)为主;在 Glu-B1位点共检测出3种亚基类型,以7+8亚基(52.58%)为主;在 Glu-D1位点共鉴定出4种亚基类型,优质亚基5+10占比最大,为45.36%;供试品种亚基组合品质得分在4~10分之间,10分的亚基组合1/7+8/5+10和1/17+18/5+10共19份材料(19.59%),8分以下的共44份材料(45.36%)。对供试材料HMW-GS与品质性状进行相关分析发现, Glu-1的三个位点与硬度指数、溶剂保持力和吸水率相关达显著或极显著水平,对溶剂保持力影响表现为 Glu-A1> Glu-B1> Glu-D1;不同亚基组合对品质性状的影响存在差异,亚基组合为1/17+18/5+10的品种具有最高的硬度指数、4种溶剂保持力、吸水率、稳定时间和粉质质量指数,具有最低的L*W,该类品种有烟农19、泰农19、山农17和糯小麦1012;亚基组合为Null/7+9/4+12的品种具有最低的硬度指数、4种溶剂保持力、吸水率、稳定时间和粉质质量指数,具有最高的弱化度、L*W,该类品种有荃麦725、皖麦52和未来0818。  相似文献   

13.
A total of 485 common landraces of bread wheat were collected from the Yangtze-River region of China. Their high molecular weight glutenin subunit (HMW-GS) composition was analyzed by Matrix-assisted laser desorption/ionization time-of-flight Mass Spectrometry (MALDI-TOF-MS). Among all landraces tested, 453 were homogeneous for HMW-GS, 32 were heterogeneous, and 37 contained abnormal subunits. A total of 22 alleles were detected, including 3 at Glu-A1, 13 at Glu-B1 and 6 at Glu-D1, respectively. Higher variations occurred at the Glu-B1 locus compared with Glu-A1 and Glu-D1. Glu-A1c (74.0%), Glu-B1b (40.4%), Glu-D1a (84.9%) appeared to be the most frequent alleles at Glu-A1, Glu-B1 and Glu-D1, respectively. Two alleles ("null" and 1) at the Glu-A1 locus, three allele compositions (7 + 8, 7OE + 8, 7 + 9) at the Glu-B1 locus, and two (2 + 12 and 5 + 10) at the Glu-D1 locus appeared to be the common types in the 485 landraces. Sixteen new alleles represented by abnormal subunits were identified at the Glu-B1 and the Glu-D1 locus.  相似文献   

14.
The B low Mr subunits of glutenin of the F2 generation from three durum wheat crosses were analysed. Three new alleles were found at three different loci: Glu-A3i coding for 5+20 subunits, Glu-B2c coding for subunit 12* and Glu-B3l coding for 1+3+13*+16 subunits. The genetic distances between Glu-A3-Gli-A1, Glu-B2-Gli-B1, Glu-B3-Glu-B2 and Glu-B3-Gli-B1 were calculated. The effects of the allelic variation at the Glu-A3, Glu-B2 and Glu-B3 on protein content and gluten strength, as measured by the SDS-sedimentation test, were determined using F4 lines from the three crosses. All the new alleles affected significantly gluten strength. The presence of Glu-A3i had a negative influence on SDSS values compared with the allele a. For Glu-B2 and Glu-B3 the data obtained enable the effects of the alleles on SDSS volume to be ranked: a=b>c for Glu-B2 and a>b>l for Glu-B3. The results also shown that the allelic variants at Glu-B3 had a much greater effect on gluten strength than the variants at Glu-A3 or Glu-B2 loci. A high percentage of variation in sedimentation volume was explained by the prolamins (52 and 70%).  相似文献   

15.
16.
The influence of high molecular weight glutenin subunits (HMW-GS) on wheat breadmaking quality has been extensively studied but the effect of different Glu-1 alleles on cookie quality is still poorly understood. This study was conducted to analyze the effect of HMW-GS composition and wheat-rye translocations on physicochemical flour properties and cookie quality of soft wheat flours. Alleles encoded at Glu-A1, Glu-B1 and Glu-D1 locus had a significant effect over physicochemical flour properties and solvent retention capacity (SRC) profile. The null allele for Glu-A1 locus presented the highest cookie factor observed (CF = 7.10), whereas 1BL/1RS and 1AL/1RS rye translocations had a negative influence on CF. The three cultivars that showed the highest CF (19, 44 and 47) had the following combination: Glu-A1 = null, Glu-B1 = 7 + 8, Glu-D1 = 2 + 12 and no secalins. Two prediction equations were developed to estimate soft wheat CF: one using the HMW-GS composition and the other using physicochemical flour parameters, where SRCsuc, SRC carb, water-soluble pentosans, damaged starch and protein turned out to be better CF predictors. This data suggests that grain protein allelic composition and physicochemical flour properties can be useful tools in breeding programs to select soft wheat of good cookie making quality.  相似文献   

17.
The influence of high molecular weight glutenin subunits (HMW-GS) on wheat breadmaking quality has been extensively studied but the effect of different Glu-1 alleles on cookie quality is still poorly understood. This study was conducted to analyze the effect of HMW-GS composition and wheat-rye translocations on physicochemical flour properties and cookie quality of soft wheat flours. Alleles encoded at Glu-A1, Glu-B1 and Glu-D1 locus had a significant effect over physicochemical flour properties and solvent retention capacity (SRC) profile. The null allele for Glu-A1 locus presented the highest cookie factor observed (CF = 7.10), whereas 1BL/1RS and 1AL/1RS rye translocations had a negative influence on CF. The three cultivars that showed the highest CF (19, 44 and 47) had the following combination: Glu-A1 = null, Glu-B1 = 7 + 8, Glu-D1 = 2 + 12 and no secalins. Two prediction equations were developed to estimate soft wheat CF: one using the HMW-GS composition and the other using physicochemical flour parameters, where SRCsuc, SRC carb, water-soluble pentosans, damaged starch and protein turned out to be better CF predictors. This data suggests that grain protein allelic composition and physicochemical flour properties can be useful tools in breeding programs to select soft wheat of good cookie making quality.  相似文献   

18.
为了从分子水平上探讨优质小麦资源中LMW-GS等位基因与小麦品质的关系,以及在改善小麦品质方面的潜在价值,利用小麦Glu-A3和Glu-B3基因的特异引物从强筋型、中筋型和弱筋型小麦共计10份材料中分离出LMW-GS基因后进行序列分析。结果表明,共发现14个新的核苷酸变异类型和4个肽链变异类型。其中,14个新的核苷酸变异类型中,4个为Glu-A3基因变异类型,1个为Glu-B3基因变异类型,9个为Glu-D3基因变异类型。值得注意的是,有2个半胱氨酸数目特殊的亚基类型被发现,一个是来自师栾02-1含有9个半胱氨酸残基的GluA3-18基因,另一个是来自偃展4110含有7个半胱氨酸残基的GluD3-13基因。  相似文献   

19.
Low molecular weight glutenin subunits (LMW-GS) encoded by the Glu-3 loci are known to contribute to wheat breadmaking quality. However, the specific effect of individual Glu-3 alleles is not well understood due to their complex protein banding patterns in SDS-PAGE and tight linkage with gliadins at the Gli-1 locus. Using DNA markers and a backcross program, we developed a set of nine near isogenic lines (NILs) including different Glu-A3/Gli-A1 or Glu-B3/Gli-B1 alleles in the genetic background of the Argentine variety ProINTA Imperial. The nine NILs and the control were evaluated in three different field trials in Argentina. Significant genotype-by-environment interactions were detected for most quality parameters indicating that the effects of the Glu-3/Gli-1 alleles are modulated by environmental differences. None of the NILs showed differences in total flour protein content, but relative changes in the abundance of particular classes of proteins cannot be ruled out. On average, the Glu-A3f, Glu-B3b, Glu-B3g and Glu-B3iMan alleles were associated with the highest values in gluten strength-related parameters, while Glu-A3e, Glu-B3a and Glu-B3iChu were consistently associated with weak gluten and low quality values. The value of different Glu-3/Gli-1 allele combinations to improve breadmaking quality is discussed.  相似文献   

20.
The stress relaxation behaviour of 36 bread wheat kernel lines was studied using the generalized Maxwell model with 4-exponential terms. The data suggested four relaxation phases, two fast phases at shorter times of 1–10 s (τ1 and τ2) and two slow phases with longer times of ≈50–450 s (τ3 and τ4). The stresses were mainly correlated with kernel mechanical properties. There were differences in spring and stress elements of Glu-A1 null compared to Glu-A1 1 and 2∗. The Glu-B1 and Glu-D1 showed differences in the stresses. Glu-A3 only affected kernel mechanical properties while Glu-B3 showed differences in both quality parameters and mechanical properties. The relaxation times τ3 were high for genotypes with high SDS-sedimentation volume and long mixing time. Genotypes with 45–60 s of τ3 usually had good HMW-GS background and LMW allelic combination generally associated with good quality. As expected, genotypes with short relaxation and mixing times and poor sedimentation volume were samples with Glu-A1 null, Glu-B3 j 1B/1R, and with Glu-A3 e (null). Differences in stress relaxation were found among HMW-GS and LMW-GS alleles specially Glu-3 loci and the differences were related to SDS-sedimentation, mixing and alveograph data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号