首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Optical nonlinearities enable photon-photon interaction and lie at the heart of several proposals for quantum information processing, quantum nondemolition measurements of photons, and optical signal processing. To date, the largest nonlinearities have been realized with single atoms and atomic ensembles. We show that a single quantum dot coupled to a photonic crystal nanocavity can facilitate controlled phase and amplitude modulation between two modes of light at the single-photon level. At larger control powers, we observed phase shifts up to pi/4 and amplitude modulation up to 50%. This was accomplished by varying the photon number in the control beam at a wavelength that was the same as that of the signal, or at a wavelength that was detuned by several quantum dot linewidths from the signal. Our results present a step toward quantum logic devices and quantum nondemolition measurements on a chip.  相似文献   

2.
Modern cavity quantum electrodynamics (cavity QED) illuminates the most fundamental aspects of coherence and decoherence in quantum mechanics. Experiments on atoms in cavities can be described by elementary models but reveal intriguing subtleties of the interplay of coherent dynamics with external couplings. Recent activity in this area has pioneered powerful new approaches to the study of quantum coherence and has fueled the growth of quantum information science. In years to come, the purview of cavity QED will continue to grow as researchers build on a rich infrastructure to attack some of the most pressing open questions in micro- and mesoscopic physics.  相似文献   

3.
Conditional quantum dynamics, where the quantum state of one system controls the outcome of measurements on another quantum system, is at the heart of quantum information processing. We demonstrate conditional dynamics for two coupled quantum dots, whereby the probability that one quantum dot makes a transition to an optically excited state is controlled by the presence or absence of an optical excitation in the neighboring dot. Interaction between the dots is mediated by the tunnel coupling between optically excited states and can be optically gated by applying a laser field of the right frequency. Our results represent substantial progress toward realization of an optically effected controlled-phase gate between two solid-state qubits.  相似文献   

4.
Picosecond optical excitation was used to coherently control the excitation in a single quantum dot on a time scale that is short compared with the time scale for loss of quantum coherence. The excitonic wave function was manipulated by controlling the optical phase of the two-pulse sequence through timing and polarization. Wave function engineering techniques, developed in atomic and molecular systems, were used to monitor and control a nonstationary quantum mechanical state composed of a superposition of eigenstates. The results extend the concept of coherent control in semiconductors to the limit of a single quantum system in a zero-dimensional quantum dot.  相似文献   

5.
We propose a protocol and physical implementation for partial Bell-state measurements of Fermionic qubits, allowing for deterministic quantum computing in solid-state systems without the need for two-qubit gates. Our scheme consists of two spin qubits in a double quantum dot where the two dots have different Zeeman splittings and resonant tunneling between the dots is only allowed when the spins are antiparallel. This converts spin parity into charge information by means of a projective measurement and can be implemented with established technologies. This measurement-based qubit scheme greatly simplifies the experimental realization of scalable quantum computers in electronic nanostructures.  相似文献   

6.
The homogeneous linewidths in the photoluminescence excitation spectrum of a single, naturally formed gallium arsenide (GaAs) quantum dot have been measured with high spatial and spectral resolution. The energies and linewidths of the homogeneous spectrum provide a new perspective on the dephasing dynamics of the exciton in a quantum-confined, solid-state system. The origins of the linewidths are discussed in terms of the dynamics of the exciton in zero dimensions, in particular, in terms of lifetime broadening through the emission or absorption of phonons and photons.  相似文献   

7.
A bidirectional single-electron counting device is demonstrated. Individual electrons flowing in forward and reverse directions through a double quantum dot are detected with a quantum point contact acting as a charge sensor. A comprehensive statistical analysis in the frequency and time domains and of higher order moments of noise reveals antibunching correlation in single-electron transport through the device itself. The device can also be used to investigate current flow in the attoampere range, which cannot be measured by existing current meters.  相似文献   

8.
A single cesium atom trapped within the mode of an optical cavity is used to generate single photons on demand. The photon wave packets are emitted as a Gaussian beam with temporal profile and repetition rate controlled by external driving fields. Each generation attempt is inferred to succeed with a probability near unity, whereas the efficiency for creating an unpolarized photon in the total cavity output is 0.69 +/- 0.10, as limited by passive cavity losses. An average of 1.4 x 10(4) photons are produced by each trapped atom. These results constitute an important step in quantum information science, for example, toward the realization of distributed quantum networking.  相似文献   

9.
Optically induced entanglement is identified by the spectrum of the phase-sensitive homodyne-detected coherent nonlinear optical response in a single gallium arsenide quantum dot. The electron-hole entanglement involves two magneto-excitonic states differing in transition energy and polarization. The strong coupling needed for entanglement is provided through the Coulomb interaction involving the electrons and holes. The result presents a first step toward the optical realization of quantum logic operations using two or more quantum dots.  相似文献   

10.
Manipulation of single spins is essential for spin-based quantum information processing. Electrical control instead of magnetic control is particularly appealing for this purpose, because electric fields are easy to generate locally on-chip. We experimentally realized coherent control of a single-electron spin in a quantum dot using an oscillating electric field generated by a local gate. The electric field induced coherent transitions (Rabi oscillations) between spin-up and spin-down with 90 degrees rotations as fast as approximately 55 nanoseconds. Our analysis indicated that the electrically induced spin transitions were mediated by the spin-orbit interaction. Taken together with the recently demonstrated coherent exchange of two neighboring spins, our results establish the feasibility of fully electrical manipulation of spin qubits.  相似文献   

11.
The effective interaction between magnetic impurities in metals that can lead to various magnetic ground states often competes with a tendency for electrons near impurities to screen the local moment (known as the Kondo effect). The simplest system exhibiting the richness of this competition, the two-impurity Kondo system, was realized experimentally in the form of two quantum dots coupled through an open conducting region. We demonstrate nonlocal spin control by suppressing and splitting Kondo resonances in one quantum dot by changing the electron number and coupling of the other dot. The results suggest an approach to nonlocal spin control that may be relevant to quantum information processing.  相似文献   

12.
Kerr rotation measurements on a single electron spin confined in a charge-tunable semiconductor quantum dot demonstrate a means to directly probe the spin off-resonance, thus minimally disturbing the system. Energy-resolved magneto-optical spectra reveal information about the optically oriented spin polarization and the transverse spin lifetime of the electron as a function of the charging of the dot. These results represent progress toward the manipulation and coupling of single spins and photons for quantum information processing.  相似文献   

13.
14.
We observed ring expansion of 1-methylcyclobutylfluorocarbene at 8 kelvin, a reaction that involves carbon tunneling. The measured rate constants were 4.0 x 10(-6) per second in nitrogen and 4 x 10(-5) per second in argon. Calculations indicated that at this temperature the reaction proceeds from a single quantum state of the reactant so that the computed rate constant has achieved a temperature-independent limit. According to calculations, the tunneling contribution to the rate is 152 orders of magnitude greater than the contribution from passage over the barrier. We discuss environmental effects of the solid-state inert-gas matrix on the reaction rate.  相似文献   

15.
Efficient collection and detection of fluorescence coupled with careful minimization of background from impurities and Raman scattering now enable routine optical microscopy and study of single molecules in complex condensed matter environments. This ultimate method for unraveling ensemble averages leads to the observation of new effects and to direct measurements of stochastic fluctuations. Experiments at cryogenic temperatures open new directions in molecular spectroscopy, quantum optics, and solid-state dynamics. Room-temperature investigations apply several techniques (polarization microscopy, single-molecule imaging, emission time dependence, energy transfer, lifetime studies, and the like) to a growing array of biophysical problems where new insight may be gained from direct observations of hidden static and dynamic inhomogeneity.  相似文献   

16.
研究了低维周期对称量子点中极化子的压缩效应。通过引入单模压缩态,改进了Lee-Low-Pines和Huybrechts(LLP-H)方法,并计算了压缩态下极化子的能量。该计算方法不仅适用于所有的耦合常数范围,而且还可以考虑LLP-H方法中忽略了的哈密顿量中声子算符的线形项以及双线形项。将该计算方法所得到的低维周期对称量子点中极化子基态下极化子结合能和势能与LLP-H方法的计算结果相比较,计算结果更加精确。  相似文献   

17.
Optical gain and stimulated emission in nanocrystal quantum dots   总被引:1,自引:0,他引:1  
The development of optical gain in chemically synthesized semiconductor nanoparticles (nanocrystal quantum dots) has been intensely studied as the first step toward nanocrystal quantum dot lasers. We examined the competing dynamical processes involved in optical amplification and lasing in nanocrystal quantum dots and found that, despite a highly efficient intrinsic nonradiative Auger recombination, large optical gain can be developed at the wavelength of the emitting transition for close-packed solids of these dots. Narrowband stimulated emission with a pronounced gain threshold at wavelengths tunable with the size of the nanocrystal was observed, as expected from quantum confinement effects. These results unambiguously demonstrate the feasibility of nanocrystal quantum dot lasers.  相似文献   

18.
Cavity optomechanics studies the coupling between a mechanical oscillator and the electromagnetic field in a cavity. We report on a cavity optomechanical system in which a collective density excitation of a Bose-Einstein condensate serves as the mechanical oscillator coupled to the cavity field. A few photons inside the ultrahigh-finesse cavity trigger strongly driven back-action dynamics, in quantitative agreement with a cavity optomechanical model. We approach the strong coupling regime of cavity optomechanics, where a single excitation of the mechanical oscillator substantially influences the cavity field. The results open up new directions for investigating mechanical oscillators in the quantum regime and the border between classical and quantum physics.  相似文献   

19.
We have demonstrated laser cooling of a single electron spin trapped in a semiconductor quantum dot. Optical coupling of electronic spin states was achieved using resonant excitation of the charged quantum dot (trion) transitions along with the heavy-light hole mixing, which leads to weak yet finite rates for spin-flip Raman scattering. With this mechanism, the electron spin can be cooled from 4.2 to 0.020 kelvin, as confirmed by the strength of the induced Pauli blockade of the trion absorption. Within the framework of quantum information processing, this corresponds to a spin-state preparation with a fidelity exceeding 99.8%.  相似文献   

20.
The motion of individual cesium atoms trapped inside an optical resonator is revealed with the atom-cavity microscope (ACM). A single atom moving within the resonator generates large variations in the transmission of a weak probe laser, which are recorded in real time. An inversion algorithm then allows individual atom trajectories to be reconstructed from the record of cavity transmission and reveals single atoms bound in orbit by the mechanical forces associated with single photons. In these initial experiments, the ACM yields 2-micrometer spatial resolution in a 10-microsecond time interval. Over the duration of the observation, the sensitivity is near the standard quantum limit for sensing the motion of a cesium atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号